diff --git a/Workshop3/Molcal_workshop3_materials_property_prediction.ipynb b/Workshop3/Molcal_workshop3_materials_property_prediction.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..75035f45ffb9d84f18a91ebdfe0a0d08cf9d13bc --- /dev/null +++ b/Workshop3/Molcal_workshop3_materials_property_prediction.ipynb @@ -0,0 +1,4416 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "768ce9da55994740bd19d449bd0880db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_744b1e9c9b304373b89b69c16527bba4", + "IPY_MODEL_c87376480c15453e80da77d7b6d2dc8d", + "IPY_MODEL_a2274b0c8e724eba88ed9831e0fe657f" + ], + "layout": "IPY_MODEL_1d9bf139827846faaca37ba65aa026fc" + } + }, + "744b1e9c9b304373b89b69c16527bba4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_58e128907c7c4270a06475bcbe214344", + "placeholder": "​", + "style": "IPY_MODEL_82d62370c96f4a63a54da01f895e194a", + "value": "Sanity Checking DataLoader 0: 100%" + } + }, + "c87376480c15453e80da77d7b6d2dc8d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6e9ad03ead644bddbd57452191ec933e", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d2667d11892849faafba2b44e977c0f7", + "value": 2 + } + }, + "a2274b0c8e724eba88ed9831e0fe657f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d965cf7c3f3a42189cbfc933911a0247", + "placeholder": "​", + "style": "IPY_MODEL_8ae912d0878b4a37956c43fb76cbd2e5", + "value": " 2/2 [00:00<00:00,  7.99it/s]" + } + }, + "1d9bf139827846faaca37ba65aa026fc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "58e128907c7c4270a06475bcbe214344": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82d62370c96f4a63a54da01f895e194a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e9ad03ead644bddbd57452191ec933e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d2667d11892849faafba2b44e977c0f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d965cf7c3f3a42189cbfc933911a0247": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8ae912d0878b4a37956c43fb76cbd2e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d9d6aacd59ea4fcf9c0f4224b377c610": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3d0ea474af934d64a2bbbdf0fdb32a02", + "IPY_MODEL_1bb71e54cd95404b846d9cbe5d551ca4", + "IPY_MODEL_c0cc07d05463491fa633ecbf841ee082" + ], + "layout": "IPY_MODEL_4433c936afb347899ef59e62b0fdd9a0" + } + }, + "3d0ea474af934d64a2bbbdf0fdb32a02": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8ff7258417a34807bf11740040d7e54c", + "placeholder": "​", + "style": "IPY_MODEL_c4f756d6ef224ddbaaf3a04ef0470078", + "value": "Epoch 4: 100%" + } + }, + "1bb71e54cd95404b846d9cbe5d551ca4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4d3773a2ea1344838abd5d565cc14763", + "max": 141, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_106bdf51936f49efab22ca3fa22bb1a1", + "value": 141 + } + }, + "c0cc07d05463491fa633ecbf841ee082": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cdb174433a1d43a3bd5274791234bf0d", + "placeholder": "​", + "style": "IPY_MODEL_ca8fcb63cae84124b3536af2434dfcf1", + "value": " 141/141 [00:37<00:00,  3.76it/s, v_num=0, val_Total_Loss=nan.0, val_MAE=nan.0, val_RMSE=nan.0, train_Total_Loss=nan.0, train_MAE=nan.0, train_RMSE=nan.0]" + } + }, + "4433c936afb347899ef59e62b0fdd9a0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "100%" + } + }, + "8ff7258417a34807bf11740040d7e54c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c4f756d6ef224ddbaaf3a04ef0470078": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4d3773a2ea1344838abd5d565cc14763": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "106bdf51936f49efab22ca3fa22bb1a1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cdb174433a1d43a3bd5274791234bf0d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca8fcb63cae84124b3536af2434dfcf1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "52064c4ca7734cd9baea5a5d8e81a81a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b74dfb101dd84c97893a6ba875cfcba0", + "IPY_MODEL_b5334febcbb248b5a1cce202a2de0b55", + "IPY_MODEL_622af7e0cf1d405aa6c178009b72558e" + ], + "layout": "IPY_MODEL_bfde609fc1054a24b8c3756613cbfa2e" + } + }, + "b74dfb101dd84c97893a6ba875cfcba0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3af2179787e2482c852c6db649181967", + "placeholder": "​", + "style": "IPY_MODEL_0d01dd8ca27944839e51976b2e63c557", + "value": "Validation DataLoader 0: 100%" + } + }, + "b5334febcbb248b5a1cce202a2de0b55": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2fd6a0dc83f34fa695755bfdb12b62ae", + "max": 47, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2091a3dd510943b79d027917a1617112", + "value": 47 + } + }, + "622af7e0cf1d405aa6c178009b72558e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9bcd8d062d554d66b110c399d9c0b625", + "placeholder": "​", + "style": "IPY_MODEL_e53dd3ed466a49c4ad12cf824a1e6ed3", + "value": " 47/47 [00:10<00:00,  4.54it/s]" + } + }, + "bfde609fc1054a24b8c3756613cbfa2e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "3af2179787e2482c852c6db649181967": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d01dd8ca27944839e51976b2e63c557": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2fd6a0dc83f34fa695755bfdb12b62ae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2091a3dd510943b79d027917a1617112": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9bcd8d062d554d66b110c399d9c0b625": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e53dd3ed466a49c4ad12cf824a1e6ed3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2e3d634584694485a3dc805dd4e6bb71": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_731b73b798c440e8ae4428f118cf4b50", + "IPY_MODEL_fe08f3f0bffc41c684745a6f3352c70a", + "IPY_MODEL_862a622adef047479bf306e707f8362e" + ], + "layout": "IPY_MODEL_ab911180843344b7b9231fc356a1a829" + } + }, + "731b73b798c440e8ae4428f118cf4b50": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_07f41aeca3df4799a3c07f54ab61661f", + "placeholder": "​", + "style": "IPY_MODEL_4928e22f1f7541c7883d6bddbd6d1a49", + "value": "Validation DataLoader 0: 100%" + } + }, + "fe08f3f0bffc41c684745a6f3352c70a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0625bafcce584b17bda54af0054c69da", + "max": 47, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bad36731d291429ba9ac961539ff09a2", + "value": 47 + } + }, + "862a622adef047479bf306e707f8362e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_545ae88a21f44cdbbbf1832e6dac8152", + "placeholder": "​", + "style": "IPY_MODEL_e46782297fb4465e94e19a56e56f0dcf", + "value": " 47/47 [00:05<00:00,  8.58it/s]" + } + }, + "ab911180843344b7b9231fc356a1a829": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "07f41aeca3df4799a3c07f54ab61661f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4928e22f1f7541c7883d6bddbd6d1a49": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0625bafcce584b17bda54af0054c69da": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bad36731d291429ba9ac961539ff09a2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "545ae88a21f44cdbbbf1832e6dac8152": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e46782297fb4465e94e19a56e56f0dcf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6fbc5cb56b044b36b6ac6fa704a42509": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ea5611dacff74566a5d536b61fce35b2", + "IPY_MODEL_5522746482f845bca9a95e0a2224909e", + "IPY_MODEL_ad81dd6ad47541a692b0802aba292c87" + ], + "layout": "IPY_MODEL_88972e62ec0c4b4bb33780ecaf4df32f" + } + }, + "ea5611dacff74566a5d536b61fce35b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bd1f348e965244e89c2d53fb83da7934", + "placeholder": "​", + "style": "IPY_MODEL_15ed082c47c24ad2bf4a84ae85198b41", + "value": "Validation DataLoader 0: 100%" + } + }, + "5522746482f845bca9a95e0a2224909e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f5e16d6a057e44458ad68b354ff01eda", + "max": 47, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a2f302420ac451ba2a0c967c7b80b8a", + "value": 47 + } + }, + "ad81dd6ad47541a692b0802aba292c87": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d988de00f6b34fb5b7edc6aacbf6ce24", + "placeholder": "​", + "style": "IPY_MODEL_dfa2352a7ec947e585caabea0b5378c0", + "value": " 47/47 [00:07<00:00,  6.07it/s]" + } + }, + "88972e62ec0c4b4bb33780ecaf4df32f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "bd1f348e965244e89c2d53fb83da7934": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "15ed082c47c24ad2bf4a84ae85198b41": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f5e16d6a057e44458ad68b354ff01eda": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5a2f302420ac451ba2a0c967c7b80b8a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d988de00f6b34fb5b7edc6aacbf6ce24": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dfa2352a7ec947e585caabea0b5378c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f0a25dc24c19453ba9f3e84169914ed5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_17e55c8a116546cfadd75932be36604c", + "IPY_MODEL_9ef9e5e64a5546fda0b2f2ee360b063b", + "IPY_MODEL_0f296de304ef4f2aab1c61d922220962" + ], + "layout": "IPY_MODEL_7c47a7b3bed64f7e94054764e8607b14" + } + }, + "17e55c8a116546cfadd75932be36604c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7e5e21fb8a7d4ebea7c71e9f655fe606", + "placeholder": "​", + "style": "IPY_MODEL_9fb1d2f72fda43e4a91e4cbb23426322", + "value": "Validation DataLoader 0: 100%" + } + }, + "9ef9e5e64a5546fda0b2f2ee360b063b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0cc181a9b3e04d658d0eefefaabecaf4", + "max": 47, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b320af0dc127481fb92415d2247a565a", + "value": 47 + } + }, + "0f296de304ef4f2aab1c61d922220962": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2a6e76a13e5747c2888b73ff55361dea", + "placeholder": "​", + "style": "IPY_MODEL_2d3bfc8b4da94766a48e6bd84e3932b3", + "value": " 47/47 [00:05<00:00,  9.38it/s]" + } + }, + "7c47a7b3bed64f7e94054764e8607b14": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "7e5e21fb8a7d4ebea7c71e9f655fe606": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9fb1d2f72fda43e4a91e4cbb23426322": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0cc181a9b3e04d658d0eefefaabecaf4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b320af0dc127481fb92415d2247a565a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2a6e76a13e5747c2888b73ff55361dea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2d3bfc8b4da94766a48e6bd84e3932b3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "530114990c934b02b04ed88233a4cda3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2fbda58508c94503891ad1ab96445398", + "IPY_MODEL_348fc0c1069a4430be11d2112f212080", + "IPY_MODEL_0c134e301fe5481bbcd47eb35ff1ecd9" + ], + "layout": "IPY_MODEL_cda06210315d42f3b4909bdc14310e15" + } + }, + "2fbda58508c94503891ad1ab96445398": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_98131182118a4e0bbb0de266875c10ec", + "placeholder": "​", + "style": "IPY_MODEL_9ef52af34b6d4030b0ed2ad1006e2a05", + "value": "Validation DataLoader 0: 100%" + } + }, + "348fc0c1069a4430be11d2112f212080": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c719f246dc254ba284b1975932eaedf9", + "max": 47, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b70eedcca7744a8dab61e3c5796e2072", + "value": 47 + } + }, + "0c134e301fe5481bbcd47eb35ff1ecd9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3ccc25decd5b48e39bd101a6a526865e", + "placeholder": "​", + "style": "IPY_MODEL_904fb13e4c9a4290a95c7003770d0a32", + "value": " 47/47 [00:06<00:00,  7.72it/s]" + } + }, + "cda06210315d42f3b4909bdc14310e15": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "98131182118a4e0bbb0de266875c10ec": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ef52af34b6d4030b0ed2ad1006e2a05": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c719f246dc254ba284b1975932eaedf9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b70eedcca7744a8dab61e3c5796e2072": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3ccc25decd5b48e39bd101a6a526865e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "904fb13e4c9a4290a95c7003770d0a32": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jd6K5XZdeAMu", + "outputId": "974bad76-8527-47c4-f3b5-1fcd84c9c49b" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting jarvis-tools\n", + " Downloading jarvis_tools-2024.10.10-py2.py3-none-any.whl.metadata (3.1 kB)\n", + "Requirement already satisfied: numpy>=1.20.1 in /usr/local/lib/python3.10/dist-packages (from jarvis-tools) (1.26.4)\n", + "Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from jarvis-tools) (1.13.1)\n", + "Requirement already satisfied: matplotlib>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from jarvis-tools) (3.8.0)\n", + "Requirement already satisfied: joblib>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from jarvis-tools) (1.4.2)\n", + "Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.10/dist-packages (from jarvis-tools) (2.32.3)\n", + "Requirement already satisfied: toolz>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from jarvis-tools) (0.12.1)\n", + "Collecting xmltodict>=0.11.0 (from jarvis-tools)\n", + " Downloading xmltodict-0.14.2-py2.py3-none-any.whl.metadata (8.0 kB)\n", + "Requirement already satisfied: tqdm>=4.41.1 in /usr/local/lib/python3.10/dist-packages (from jarvis-tools) (4.66.6)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from jarvis-tools) (1.5.2)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->jarvis-tools) (1.3.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->jarvis-tools) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->jarvis-tools) (4.54.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->jarvis-tools) (1.4.7)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->jarvis-tools) (24.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->jarvis-tools) (10.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->jarvis-tools) (3.2.0)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0.0->jarvis-tools) (2.8.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->jarvis-tools) (3.4.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->jarvis-tools) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->jarvis-tools) (2.2.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->jarvis-tools) (2024.8.30)\n", + "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->jarvis-tools) (3.5.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib>=3.0.0->jarvis-tools) (1.16.0)\n", + "Downloading jarvis_tools-2024.10.10-py2.py3-none-any.whl (4.2 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m4.2/4.2 MB\u001b[0m \u001b[31m22.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading xmltodict-0.14.2-py2.py3-none-any.whl (10.0 kB)\n", + "Installing collected packages: xmltodict, jarvis-tools\n", + "Successfully installed jarvis-tools-2024.10.10 xmltodict-0.14.2\n" + ] + } + ], + "source": [ + "!pip install jarvis-tools" + ] + }, + { + "cell_type": "code", + "source": [ + "!pip3 install pymatgen" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mC4gkbnBeP7t", + "outputId": "e8b7d83a-2c04-4909-e84d-1bdf75b8f42d" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: pymatgen in /usr/local/lib/python3.10/dist-packages (2024.10.29)\n", + "Requirement already satisfied: joblib>=1 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (1.4.2)\n", + "Requirement already satisfied: matplotlib>=3.8 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (3.8.0)\n", + "Requirement already satisfied: monty>=2024.7.29 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (2024.10.21)\n", + "Requirement already satisfied: networkx>=3 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (3.4.2)\n", + "Requirement already satisfied: palettable>=3.3.3 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (3.3.3)\n", + "Requirement already satisfied: pandas>=2 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (2.2.2)\n", + "Requirement already satisfied: plotly>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (5.24.1)\n", + "Requirement already satisfied: pybtex>=0.24.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (0.24.0)\n", + "Requirement already satisfied: requests>=2.32 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (2.32.3)\n", + "Requirement already satisfied: ruamel.yaml>=0.17.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (0.18.6)\n", + "Requirement already satisfied: scipy>=1.13.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (1.13.1)\n", + "Requirement already satisfied: spglib>=2.5.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (2.5.0)\n", + "Requirement already satisfied: sympy>=1.2 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (1.13.1)\n", + "Requirement already satisfied: tabulate>=0.9 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (0.9.0)\n", + "Requirement already satisfied: tqdm>=4.60 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (4.66.6)\n", + "Requirement already satisfied: uncertainties>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (3.2.2)\n", + "Requirement already satisfied: numpy<3,>=1.25.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen) (1.26.4)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.8->pymatgen) (1.3.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.8->pymatgen) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.8->pymatgen) (4.54.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.8->pymatgen) (1.4.7)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.8->pymatgen) (24.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.8->pymatgen) (10.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.8->pymatgen) (3.2.0)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.8->pymatgen) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=2->pymatgen) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=2->pymatgen) (2024.2)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly>=4.5.0->pymatgen) (9.0.0)\n", + "Requirement already satisfied: PyYAML>=3.01 in /usr/local/lib/python3.10/dist-packages (from pybtex>=0.24.0->pymatgen) (6.0.2)\n", + "Requirement already satisfied: latexcodec>=1.0.4 in /usr/local/lib/python3.10/dist-packages (from pybtex>=0.24.0->pymatgen) (3.0.0)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from pybtex>=0.24.0->pymatgen) (1.16.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32->pymatgen) (3.4.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32->pymatgen) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32->pymatgen) (2.2.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32->pymatgen) (2024.8.30)\n", + "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /usr/local/lib/python3.10/dist-packages (from ruamel.yaml>=0.17.0->pymatgen) (0.2.12)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy>=1.2->pymatgen) (1.3.0)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install dgl -f https://data.dgl.ai/wheels/torch-2.1/repo.html" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fhA7AxnzeQfj", + "outputId": "3e9e530c-b84f-4285-8c00-659d64cb79b2" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Looking in links: https://data.dgl.ai/wheels/torch-2.1/repo.html\n", + "Requirement already satisfied: dgl in /usr/local/lib/python3.10/dist-packages (2.4.0)\n", + "Requirement already satisfied: networkx>=2.1 in /usr/local/lib/python3.10/dist-packages (from dgl) (3.4.2)\n", + "Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from dgl) (1.26.4)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from dgl) (24.1)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from dgl) (2.2.2)\n", + "Requirement already satisfied: psutil>=5.8.0 in /usr/local/lib/python3.10/dist-packages (from dgl) (5.9.5)\n", + "Requirement already satisfied: pydantic>=2.0 in /usr/local/lib/python3.10/dist-packages (from dgl) (2.9.2)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from dgl) (6.0.2)\n", + "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from dgl) (2.32.3)\n", + "Requirement already satisfied: scipy>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from dgl) (1.13.1)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from dgl) (4.66.6)\n", + "Requirement already satisfied: torch<=2.4.0 in /usr/local/lib/python3.10/dist-packages (from dgl) (2.4.0)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2.0->dgl) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.23.4 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2.0->dgl) (2.23.4)\n", + "Requirement already satisfied: typing-extensions>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2.0->dgl) (4.12.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->dgl) (3.4.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->dgl) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->dgl) (2.2.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->dgl) (2024.8.30)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (3.16.1)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (1.13.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (3.1.4)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (2024.10.0)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (12.1.105)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (9.1.0.70)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (11.4.5.107)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (2.20.5)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (12.1.105)\n", + "Requirement already satisfied: triton==3.0.0 in /usr/local/lib/python3.10/dist-packages (from torch<=2.4.0->dgl) (3.0.0)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch<=2.4.0->dgl) (12.6.77)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->dgl) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->dgl) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->dgl) (2024.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->dgl) (1.16.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch<=2.4.0->dgl) (3.0.2)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch<=2.4.0->dgl) (1.3.0)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip3 install matgl" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YM0zUT9-fqfc", + "outputId": "6bca17f0-06c7-4559-9b81-a79c3739a116" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting matgl\n", + " Downloading matgl-1.1.3-py3-none-any.whl.metadata (16 kB)\n", + "Collecting ase (from matgl)\n", + " Downloading ase-3.23.0-py3-none-any.whl.metadata (3.8 kB)\n", + "Requirement already satisfied: dgl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from matgl) (2.4.0)\n", + "Requirement already satisfied: pymatgen in /usr/local/lib/python3.10/dist-packages (from matgl) (2024.10.29)\n", + "Collecting lightning (from matgl)\n", + " Downloading lightning-2.4.0-py3-none-any.whl.metadata (38 kB)\n", + "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (from matgl) (2.4.0)\n", + "Requirement already satisfied: pydantic in /usr/local/lib/python3.10/dist-packages (from matgl) (2.9.2)\n", + "Collecting torchdata<0.8.0 (from matgl)\n", + " Downloading torchdata-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (13 kB)\n", + "Requirement already satisfied: networkx>=2.1 in /usr/local/lib/python3.10/dist-packages (from dgl>=2.0.0->matgl) (3.4.2)\n", + "Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from dgl>=2.0.0->matgl) (1.26.4)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from dgl>=2.0.0->matgl) (24.1)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from dgl>=2.0.0->matgl) (2.2.2)\n", + "Requirement already satisfied: psutil>=5.8.0 in /usr/local/lib/python3.10/dist-packages (from dgl>=2.0.0->matgl) (5.9.5)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from dgl>=2.0.0->matgl) (6.0.2)\n", + "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from dgl>=2.0.0->matgl) (2.32.3)\n", + "Requirement already satisfied: scipy>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from dgl>=2.0.0->matgl) (1.13.1)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from dgl>=2.0.0->matgl) (4.66.6)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic->matgl) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.23.4 in /usr/local/lib/python3.10/dist-packages (from pydantic->matgl) (2.23.4)\n", + "Requirement already satisfied: typing-extensions>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from pydantic->matgl) (4.12.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (3.16.1)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (1.13.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (3.1.4)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (2024.10.0)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (12.1.105)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (9.1.0.70)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (11.4.5.107)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (2.20.5)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (12.1.105)\n", + "Requirement already satisfied: triton==3.0.0 in /usr/local/lib/python3.10/dist-packages (from torch->matgl) (3.0.0)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch->matgl) (12.6.77)\n", + "Requirement already satisfied: urllib3>=1.25 in /usr/local/lib/python3.10/dist-packages (from torchdata<0.8.0->matgl) (2.2.3)\n", + "Requirement already satisfied: matplotlib>=3.3.4 in /usr/local/lib/python3.10/dist-packages (from ase->matgl) (3.8.0)\n", + "Collecting lightning-utilities<2.0,>=0.10.0 (from lightning->matgl)\n", + " Downloading lightning_utilities-0.11.8-py3-none-any.whl.metadata (5.2 kB)\n", + "Collecting torchmetrics<3.0,>=0.7.0 (from lightning->matgl)\n", + " Downloading torchmetrics-1.5.1-py3-none-any.whl.metadata (20 kB)\n", + "Collecting pytorch-lightning (from lightning->matgl)\n", + " Downloading pytorch_lightning-2.4.0-py3-none-any.whl.metadata (21 kB)\n", + "Requirement already satisfied: joblib>=1 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matgl) (1.4.2)\n", + "Requirement already satisfied: monty>=2024.7.29 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matgl) (2024.10.21)\n", + "Requirement already satisfied: palettable>=3.3.3 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matgl) (3.3.3)\n", + "Requirement already satisfied: plotly>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matgl) (5.24.1)\n", + "Requirement already satisfied: pybtex>=0.24.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matgl) (0.24.0)\n", + "Requirement already satisfied: ruamel.yaml>=0.17.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matgl) (0.18.6)\n", + "Requirement already satisfied: spglib>=2.5.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matgl) (2.5.0)\n", + "Requirement already satisfied: tabulate>=0.9 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matgl) (0.9.0)\n", + "Requirement already satisfied: uncertainties>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matgl) (3.2.2)\n", + "Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]<2026.0,>=2022.5.0->lightning->matgl) (3.10.10)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from lightning-utilities<2.0,>=0.10.0->lightning->matgl) (75.1.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase->matgl) (1.3.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase->matgl) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase->matgl) (4.54.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase->matgl) (1.4.7)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase->matgl) (10.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase->matgl) (3.2.0)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase->matgl) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->dgl>=2.0.0->matgl) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->dgl>=2.0.0->matgl) (2024.2)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly>=4.5.0->pymatgen->matgl) (9.0.0)\n", + "Requirement already satisfied: latexcodec>=1.0.4 in /usr/local/lib/python3.10/dist-packages (from pybtex>=0.24.0->pymatgen->matgl) (3.0.0)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from pybtex>=0.24.0->pymatgen->matgl) (1.16.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->dgl>=2.0.0->matgl) (3.4.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->dgl>=2.0.0->matgl) (3.10)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->dgl>=2.0.0->matgl) (2024.8.30)\n", + "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /usr/local/lib/python3.10/dist-packages (from ruamel.yaml>=0.17.0->pymatgen->matgl) (0.2.12)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch->matgl) (1.3.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch->matgl) (3.0.2)\n", + "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<2026.0,>=2022.5.0->lightning->matgl) (2.4.3)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<2026.0,>=2022.5.0->lightning->matgl) (1.3.1)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<2026.0,>=2022.5.0->lightning->matgl) (24.2.0)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<2026.0,>=2022.5.0->lightning->matgl) (1.5.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<2026.0,>=2022.5.0->lightning->matgl) (6.1.0)\n", + "Requirement already satisfied: yarl<2.0,>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<2026.0,>=2022.5.0->lightning->matgl) (1.17.0)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<2026.0,>=2022.5.0->lightning->matgl) (4.0.3)\n", + "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from yarl<2.0,>=1.12.0->aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<2026.0,>=2022.5.0->lightning->matgl) (0.2.0)\n", + "Downloading matgl-1.1.3-py3-none-any.whl (223 kB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m223.3/223.3 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading torchdata-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m4.7/4.7 MB\u001b[0m \u001b[31m61.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading ase-3.23.0-py3-none-any.whl (2.9 MB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m2.9/2.9 MB\u001b[0m \u001b[31m72.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading lightning-2.4.0-py3-none-any.whl (810 kB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m811.0/811.0 kB\u001b[0m \u001b[31m34.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading lightning_utilities-0.11.8-py3-none-any.whl (26 kB)\n", + "Downloading torchmetrics-1.5.1-py3-none-any.whl (890 kB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m890.6/890.6 kB\u001b[0m \u001b[31m45.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading pytorch_lightning-2.4.0-py3-none-any.whl (815 kB)\n", + "\u001b[2K \u001b[90mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[32m815.2/815.2 kB\u001b[0m \u001b[31m42.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: lightning-utilities, ase, torchmetrics, torchdata, pytorch-lightning, lightning, matgl\n", + "Successfully installed ase-3.23.0 lightning-2.4.0 lightning-utilities-0.11.8 matgl-1.1.3 pytorch-lightning-2.4.0 torchdata-0.7.1 torchmetrics-1.5.1\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from __future__ import annotations\n", + "\n", + "import os\n", + "import shutil\n", + "import warnings\n", + "import zipfile\n", + "import matgl\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import pytorch_lightning as pl\n", + "import torch\n", + "import pickle\n", + "import numpy as np\n", + "from dgl.data.utils import split_dataset\n", + "from pymatgen.core import Structure\n", + "from pytorch_lightning.loggers import CSVLogger\n", + "from lightning.pytorch import Trainer\n", + "from tqdm import tqdm\n", + "\n", + "from matgl.ext.pymatgen import Structure2Graph, get_element_list\n", + "from matgl.graph.data import MGLDataset, MGLDataLoader #collate_fn. - shivani i don't think you need this as num_workers=0\n", + "from matgl.layers import BondExpansion\n", + "from matgl.models import MEGNet\n", + "from matgl.utils.io import RemoteFile\n", + "from matgl.utils.training import ModelLightningModule\n", + "\n", + "# To suppress warnings for clearer output\n", + "warnings.simplefilter(\"ignore\")" + ], + "metadata": { + "id": "avglyJbheVCr" + }, + "execution_count": 39, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from jarvis.db.figshare import data\n", + "\n", + "dft_3d = data('dft_3d')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vZFdOECqfefs", + "outputId": "e722910c-d5f9-48c0-85af-fb7536d81ce7" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Obtaining 3D dataset 76k ...\n", + "Reference:https://www.nature.com/articles/s41524-020-00440-1\n", + "Other versions:https://doi.org/10.6084/m9.figshare.6815699\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 40.8M/40.8M [00:01<00:00, 20.5MiB/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Loading the zipfile...\n", + "Loading completed.\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "dft_3d[0].keys()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "o1-OpcxGgXn3", + "outputId": "eb48c546-8539-4acc-f8cd-290039cd1a6f" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "dict_keys(['jid', 'spg_number', 'spg_symbol', 'formula', 'formation_energy_peratom', 'func', 'optb88vdw_bandgap', 'atoms', 'slme', 'magmom_oszicar', 'spillage', 'elastic_tensor', 'effective_masses_300K', 'kpoint_length_unit', 'maxdiff_mesh', 'maxdiff_bz', 'encut', 'optb88vdw_total_energy', 'epsx', 'epsy', 'epsz', 'mepsx', 'mepsy', 'mepsz', 'modes', 'magmom_outcar', 'max_efg', 'avg_elec_mass', 'avg_hole_mass', 'icsd', 'dfpt_piezo_max_eij', 'dfpt_piezo_max_dij', 'dfpt_piezo_max_dielectric', 'dfpt_piezo_max_dielectric_electronic', 'dfpt_piezo_max_dielectric_ionic', 'max_ir_mode', 'min_ir_mode', 'n-Seebeck', 'p-Seebeck', 'n-powerfact', 'p-powerfact', 'ncond', 'pcond', 'nkappa', 'pkappa', 'ehull', 'Tc_supercon', 'dimensionality', 'efg', 'xml_data_link', 'typ', 'exfoliation_energy', 'spg', 'crys', 'density', 'poisson', 'raw_files', 'nat', 'bulk_modulus_kv', 'shear_modulus_gv', 'mbj_bandgap', 'hse_gap', 'reference', 'search'])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "## Let's make a dataframe from this:\n", + "import pandas as pd\n", + "import numpy as np" + ], + "metadata": { + "id": "RnAkEQBSgZki" + }, + "execution_count": 14, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df=pd.DataFrame(dft_3d)\n", + "df.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 429 + }, + "id": "HUvXBAGDgdYn", + "outputId": "cb02920a-b7e5-469e-8b8e-8fb55a7177e3" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " jid spg_number spg_symbol formula formation_energy_peratom \\\n", + "0 JVASP-90856 129 P4/nmm TiCuSiAs -0.42762 \n", + "1 JVASP-86097 221 Pm-3m DyB6 -0.41596 \n", + "2 JVASP-64906 119 I-4m2 Be2OsRu 0.04847 \n", + "3 JVASP-98225 14 P2_1/c KBi -0.44140 \n", + "4 JVASP-10 164 P-3m1 VSe2 -0.71026 \n", + "\n", + " func optb88vdw_bandgap \\\n", + "0 OptB88vdW 0.000 \n", + "1 OptB88vdW 0.000 \n", + "2 OptB88vdW 0.000 \n", + "3 OptB88vdW 0.472 \n", + "4 OptB88vdW 0.000 \n", + "\n", + " atoms slme magmom_oszicar ... \\\n", + "0 {'lattice_mat': [[3.566933224304235, 0.0, -0.0... na 0.0 ... \n", + "1 {'lattice_mat': [[4.089078911208881, 0.0, 0.0]... na 0.0 ... \n", + "2 {'lattice_mat': [[-1.833590720595598, 1.833590... na 0.0 ... \n", + "3 {'lattice_mat': [[7.2963518353359165, 0.0, 0.0... na 0.0 ... \n", + "4 {'lattice_mat': [[1.6777483798834445, -2.90594... na 0.0 ... \n", + "\n", + " density poisson raw_files nat \\\n", + "0 5.956 na [] 8 \n", + "1 5.522 na [OPT-LOPTICS,JVASP-86097.zip,https://ndownload... 7 \n", + "2 10.960 na [OPT-LOPTICS,JVASP-64906.zip,https://ndownload... 4 \n", + "3 5.145 na [] 32 \n", + "4 5.718 0.23 [FD-ELAST,JVASP-10.zip,https://ndownloader.fig... 3 \n", + "\n", + " bulk_modulus_kv shear_modulus_gv mbj_bandgap hse_gap \\\n", + "0 na na na na \n", + "1 na na na na \n", + "2 na na na na \n", + "3 na na na na \n", + "4 48.79 33.05 0.0 na \n", + "\n", + " reference search \n", + "0 mp-1080455 -As-Cu-Si-Ti \n", + "1 mp-568319 -B-Dy \n", + "2 auid-3eaf68dd483bf4f4 -Be-Os-Ru \n", + "3 mp-31104 -Bi-K \n", + "4 mp-694 -Se-V \n", + "\n", + "[5 rows x 64 columns]" + ], + "text/html": [ + "\n", + " <div id=\"df-7bedbd8a-b0f7-4b76-aac4-3afa628ac70d\" class=\"colab-df-container\">\n", + " <div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>jid</th>\n", + " <th>spg_number</th>\n", + " <th>spg_symbol</th>\n", + " <th>formula</th>\n", + " <th>formation_energy_peratom</th>\n", + " <th>func</th>\n", + " <th>optb88vdw_bandgap</th>\n", + " <th>atoms</th>\n", + " <th>slme</th>\n", + " <th>magmom_oszicar</th>\n", + " <th>...</th>\n", + " <th>density</th>\n", + " <th>poisson</th>\n", + " <th>raw_files</th>\n", + " <th>nat</th>\n", + " <th>bulk_modulus_kv</th>\n", + " <th>shear_modulus_gv</th>\n", + " <th>mbj_bandgap</th>\n", + " <th>hse_gap</th>\n", + " <th>reference</th>\n", + " <th>search</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>JVASP-90856</td>\n", + " <td>129</td>\n", + " <td>P4/nmm</td>\n", + " <td>TiCuSiAs</td>\n", + " <td>-0.42762</td>\n", + " <td>OptB88vdW</td>\n", + " <td>0.000</td>\n", + " <td>{'lattice_mat': [[3.566933224304235, 0.0, -0.0...</td>\n", + " <td>na</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>5.956</td>\n", + " <td>na</td>\n", + " <td>[]</td>\n", + " <td>8</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>mp-1080455</td>\n", + " <td>-As-Cu-Si-Ti</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>JVASP-86097</td>\n", + " <td>221</td>\n", + " <td>Pm-3m</td>\n", + " <td>DyB6</td>\n", + " <td>-0.41596</td>\n", + " <td>OptB88vdW</td>\n", + " <td>0.000</td>\n", + " <td>{'lattice_mat': [[4.089078911208881, 0.0, 0.0]...</td>\n", + " <td>na</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>5.522</td>\n", + " <td>na</td>\n", + " <td>[OPT-LOPTICS,JVASP-86097.zip,https://ndownload...</td>\n", + " <td>7</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>mp-568319</td>\n", + " <td>-B-Dy</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>JVASP-64906</td>\n", + " <td>119</td>\n", + " <td>I-4m2</td>\n", + " <td>Be2OsRu</td>\n", + " <td>0.04847</td>\n", + " <td>OptB88vdW</td>\n", + " <td>0.000</td>\n", + " <td>{'lattice_mat': [[-1.833590720595598, 1.833590...</td>\n", + " <td>na</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>10.960</td>\n", + " <td>na</td>\n", + " <td>[OPT-LOPTICS,JVASP-64906.zip,https://ndownload...</td>\n", + " <td>4</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>auid-3eaf68dd483bf4f4</td>\n", + " <td>-Be-Os-Ru</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>JVASP-98225</td>\n", + " <td>14</td>\n", + " <td>P2_1/c</td>\n", + " <td>KBi</td>\n", + " <td>-0.44140</td>\n", + " <td>OptB88vdW</td>\n", + " <td>0.472</td>\n", + " <td>{'lattice_mat': [[7.2963518353359165, 0.0, 0.0...</td>\n", + " <td>na</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>5.145</td>\n", + " <td>na</td>\n", + " <td>[]</td>\n", + " <td>32</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>na</td>\n", + " <td>mp-31104</td>\n", + " <td>-Bi-K</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>JVASP-10</td>\n", + " <td>164</td>\n", + " <td>P-3m1</td>\n", + " <td>VSe2</td>\n", + " <td>-0.71026</td>\n", + " <td>OptB88vdW</td>\n", + " <td>0.000</td>\n", + " <td>{'lattice_mat': [[1.6777483798834445, -2.90594...</td>\n", + " <td>na</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>5.718</td>\n", + " <td>0.23</td>\n", + " <td>[FD-ELAST,JVASP-10.zip,https://ndownloader.fig...</td>\n", + " <td>3</td>\n", + " <td>48.79</td>\n", + " <td>33.05</td>\n", + " <td>0.0</td>\n", + " <td>na</td>\n", + " <td>mp-694</td>\n", + " <td>-Se-V</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>5 rows × 64 columns</p>\n", + "</div>\n", + " <div class=\"colab-df-buttons\">\n", + "\n", + " <div class=\"colab-df-container\">\n", + " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-7bedbd8a-b0f7-4b76-aac4-3afa628ac70d')\"\n", + " title=\"Convert this dataframe to an interactive table.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", + " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", + " </svg>\n", + " </button>\n", + "\n", + " <style>\n", + " .colab-df-container {\n", + " display:flex;\n", + " gap: 12px;\n", + " }\n", + "\n", + " .colab-df-convert {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-convert:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " .colab-df-buttons div {\n", + " margin-bottom: 4px;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + "\n", + " <script>\n", + " const buttonEl =\n", + " document.querySelector('#df-7bedbd8a-b0f7-4b76-aac4-3afa628ac70d button.colab-df-convert');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " async function convertToInteractive(key) {\n", + " const element = document.querySelector('#df-7bedbd8a-b0f7-4b76-aac4-3afa628ac70d');\n", + " const dataTable =\n", + " await google.colab.kernel.invokeFunction('convertToInteractive',\n", + " [key], {});\n", + " if (!dataTable) return;\n", + "\n", + " const docLinkHtml = 'Like what you see? Visit the ' +\n", + " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", + " + ' to learn more about interactive tables.';\n", + " element.innerHTML = '';\n", + " dataTable['output_type'] = 'display_data';\n", + " await google.colab.output.renderOutput(dataTable, element);\n", + " const docLink = document.createElement('div');\n", + " docLink.innerHTML = docLinkHtml;\n", + " element.appendChild(docLink);\n", + " }\n", + " </script>\n", + " </div>\n", + "\n", + "\n", + "<div id=\"df-bd8b8a00-937e-4b1d-a50c-05a9e032c404\">\n", + " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-bd8b8a00-937e-4b1d-a50c-05a9e032c404')\"\n", + " title=\"Suggest charts\"\n", + " style=\"display:none;\">\n", + "\n", + "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", + " width=\"24px\">\n", + " <g>\n", + " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", + " </g>\n", + "</svg>\n", + " </button>\n", + "\n", + "<style>\n", + " .colab-df-quickchart {\n", + " --bg-color: #E8F0FE;\n", + " --fill-color: #1967D2;\n", + " --hover-bg-color: #E2EBFA;\n", + " --hover-fill-color: #174EA6;\n", + " --disabled-fill-color: #AAA;\n", + " --disabled-bg-color: #DDD;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-quickchart {\n", + " --bg-color: #3B4455;\n", + " --fill-color: #D2E3FC;\n", + " --hover-bg-color: #434B5C;\n", + " --hover-fill-color: #FFFFFF;\n", + " --disabled-bg-color: #3B4455;\n", + " --disabled-fill-color: #666;\n", + " }\n", + "\n", + " .colab-df-quickchart {\n", + " background-color: var(--bg-color);\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: var(--fill-color);\n", + " height: 32px;\n", + " padding: 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-quickchart:hover {\n", + " background-color: var(--hover-bg-color);\n", + " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: var(--button-hover-fill-color);\n", + " }\n", + "\n", + " .colab-df-quickchart-complete:disabled,\n", + " .colab-df-quickchart-complete:disabled:hover {\n", + " background-color: var(--disabled-bg-color);\n", + " fill: var(--disabled-fill-color);\n", + " box-shadow: none;\n", + " }\n", + "\n", + " .colab-df-spinner {\n", + " border: 2px solid var(--fill-color);\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " animation:\n", + " spin 1s steps(1) infinite;\n", + " }\n", + "\n", + " @keyframes spin {\n", + " 0% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " border-left-color: var(--fill-color);\n", + " }\n", + " 20% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 30% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 40% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 60% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 80% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " 90% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " }\n", + "</style>\n", + "\n", + " <script>\n", + " async function quickchart(key) {\n", + " const quickchartButtonEl =\n", + " document.querySelector('#' + key + ' button');\n", + " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", + " quickchartButtonEl.classList.add('colab-df-spinner');\n", + " try {\n", + " const charts = await google.colab.kernel.invokeFunction(\n", + " 'suggestCharts', [key], {});\n", + " } catch (error) {\n", + " console.error('Error during call to suggestCharts:', error);\n", + " }\n", + " quickchartButtonEl.classList.remove('colab-df-spinner');\n", + " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", + " }\n", + " (() => {\n", + " let quickchartButtonEl =\n", + " document.querySelector('#df-bd8b8a00-937e-4b1d-a50c-05a9e032c404 button');\n", + " quickchartButtonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + " })();\n", + " </script>\n", + "</div>\n", + "\n", + " </div>\n", + " </div>\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df" + } + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "## Count number of entries for each property\n", + "for i in df.columns.values:\n", + " val=df[i].replace('na',np.nan).dropna().values\n", + " print(i,len(val))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hrRk8GKighlh", + "outputId": "d54272bd-a432-462c-d89a-65241d14db65" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "jid 75993\n", + "spg_number 75993\n", + "spg_symbol 75993\n", + "formula 75993\n", + "formation_energy_peratom 75993\n", + "func 75993\n", + "optb88vdw_bandgap 75993\n", + "atoms 75993\n", + "slme 9770\n", + "magmom_oszicar 71320\n", + "spillage 11377\n", + "elastic_tensor 25513\n", + "effective_masses_300K 75993\n", + "kpoint_length_unit 75671\n", + "maxdiff_mesh 5861\n", + "maxdiff_bz 5861\n", + "encut 75670\n", + "optb88vdw_total_energy 75993\n", + "epsx 52168\n", + "epsy 52168\n", + "epsz 52168\n", + "mepsx 18293\n", + "mepsy 18293\n", + "mepsz 18293\n", + "modes 13910\n", + "magmom_outcar 74261\n", + "max_efg 11871\n", + "avg_elec_mass 17645\n", + "avg_hole_mass 17645\n", + "icsd 75993\n", + "dfpt_piezo_max_eij 4799\n", + "dfpt_piezo_max_dij 3347\n", + "dfpt_piezo_max_dielectric 4706\n", + "dfpt_piezo_max_dielectric_electronic 4809\n", + "dfpt_piezo_max_dielectric_ionic 4809\n", + "max_ir_mode 4805\n", + "min_ir_mode 4809\n", + "n-Seebeck 23218\n", + "p-Seebeck 23218\n", + "n-powerfact 23218\n", + "p-powerfact 23218\n", + "ncond 23218\n", + "pcond 23218\n", + "nkappa 23218\n", + "pkappa 23218\n", + "ehull 75993\n", + "Tc_supercon 1058\n", + "dimensionality 75560\n", + "efg 75993\n", + "xml_data_link 75993\n", + "typ 75993\n", + "exfoliation_energy 813\n", + "spg 75993\n", + "crys 75993\n", + "density 75993\n", + "poisson 23597\n", + "raw_files 75993\n", + "nat 75993\n", + "bulk_modulus_kv 23824\n", + "shear_modulus_gv 23824\n", + "mbj_bandgap 19805\n", + "hse_gap 56\n", + "reference 75993\n", + "search 75993\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "## Filter dataset based on desired property\n", + "## We will focus on elastic properties for today, i.e. Bulk modulus" + ], + "metadata": { + "id": "6dxg4ITfgkOE" + }, + "execution_count": 17, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from jarvis.core.atoms import Atoms\n", + "bm=df[df.bulk_modulus_kv != 'na']\n", + "data = [(Atoms.from_dict(bm.iloc[i]['atoms']).pymatgen_converter(), bm.iloc[i].bulk_modulus_kv) for i in range(len(bm))]" + ], + "metadata": { + "id": "xcuLFYdNgq-u" + }, + "execution_count": 18, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "import itertools\n", + "def get_stoichiometry(elements):\n", + " return [(g[0], len(list(g[1]))) for g in itertools.groupby(elements)]" + ], + "metadata": { + "id": "Sc1zXAn4gtTT" + }, + "execution_count": 19, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "## Use all the material dataset for training the bulk modulus\n", + "from tqdm import tqdm\n", + "\n", + "stoichs=[] #stoichiometry\n", + "bulk=[] #bulk modulus\n", + "for i in tqdm(range(len(bm))):\n", + " stoichs.append(Atoms.from_dict(bm.iloc[i]['atoms']).pymatgen_converter())\n", + " bulk.append(bm.iloc[i]['bulk_modulus_kv'])\n", + "data_ran=list(zip(stoichs,bulk))\n", + "#write out the dataset, to train later\n", + "import pickle\n", + "with open('data_ran.pickle', 'wb') as f:\n", + " pickle.dump(data_ran, f)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "arU4jF5tgvt0", + "outputId": "c75f7f94-afe6-4d42-e81a-93405ddcc301" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 23824/23824 [00:25<00:00, 921.20it/s]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#read in the dataset\n", + "data_ran=pd.read_pickle('./data_ran.pickle')" + ], + "metadata": { + "id": "CFgTo75EgzKR" + }, + "execution_count": 22, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "type(data_ran)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BWZuJzqNg-ak", + "outputId": "8076df63-2b15-4739-f5fe-9f703b68db6f" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "list" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import random\n", + "import numpy as np\n", + "\n", + "\n", + "random.shuffle(data_ran)\n", + "\n", + "structures=[d[0] for d in data_ran[:15000]]\n", + "targets=np.log10([d[1] for d in data_ran])\n", + "\n", + "print(structures[0],targets[0])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TG4g1Dp4hBhg", + "outputId": "a3adbd5b-95c9-4ec9-8cd0-4c39136ea699" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Full Formula (Li4 Ce4 O8)\n", + "Reduced Formula: LiCeO2\n", + "abc : 5.778710 5.859847 6.029586\n", + "angles: 90.000000 90.000000 103.986129\n", + "pbc : True True True\n", + "Sites (16)\n", + " # SP a b c\n", + "--- ---- -------- -------- --------\n", + " 0 Li 0.182502 0.662954 0.132604\n", + " 1 Li 0.317498 0.337046 0.632604\n", + " 2 Li 0.817498 0.337046 0.867396\n", + " 3 Li 0.682502 0.662954 0.367396\n", + " 4 Ce 0.303409 0.200495 0.071539\n", + " 5 Ce 0.803409 0.200495 0.428461\n", + " 6 Ce 0.696591 0.799505 0.928461\n", + " 7 Ce 0.196591 0.799505 0.571539\n", + " 8 O 0.986063 0.906145 0.246099\n", + " 9 O 0.696592 0.43465 0.136137\n", + " 10 O 0.513937 0.093855 0.746099\n", + " 11 O 0.013937 0.093855 0.753901\n", + " 12 O 0.303408 0.56535 0.863863\n", + " 13 O 0.803408 0.56535 0.636137\n", + " 14 O 0.196592 0.43465 0.363863\n", + " 15 O 0.486063 0.906145 0.253901 2.0546896429499797\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# get element types in the dataset\n", + "elem_list = get_element_list(structures)\n", + "# setup a graph converter\n", + "converter = Structure2Graph(element_types=elem_list, cutoff=4.0)\n", + "# convert the raw dataset into MEGNetDataset\n", + "mp_dataset = MGLDataset(\n", + " structures=structures,\n", + " labels={\"bulk_modulus_kv\": targets},\n", + " converter=converter,\n", + ")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z-jazl2PhHsP", + "outputId": "0044297b-6dc9-4f70-83f0-afb9c4c558d7" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15000/15000 [00:24<00:00, 616.21it/s]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "train_data, val_data, test_data = split_dataset(\n", + " mp_dataset,\n", + " frac_list=[0.6, 0.2, 0.2],\n", + " shuffle=True,\n", + " random_state=42,\n", + ")\n", + "train_loader, val_loader, test_loader = MGLDataLoader(\n", + " train_data=train_data,\n", + " val_data=val_data,\n", + " test_data=test_data,\n", + " batch_size=64,\n", + " num_workers=0,\n", + ")" + ], + "metadata": { + "id": "QPyjAxGghK0Q" + }, + "execution_count": 26, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# setup the embedding layer for node attributes\n", + "node_embed = torch.nn.Embedding(len(elem_list), 16)\n", + "# define the bond expansion\n", + "bond_expansion = BondExpansion(rbf_type=\"Gaussian\", initial=0.0, final=5.0, num_centers=100, width=0.5)\n", + "\n", + "# setup the architecture of MEGNet model\n", + "model = MEGNet(\n", + " dim_node_embedding=16,\n", + " dim_edge_embedding=100,\n", + " dim_state_embedding=2,\n", + " nblocks=3,\n", + " hidden_layer_sizes_input=(64, 32),\n", + " hidden_layer_sizes_conv=(64, 64, 32),\n", + " nlayers_set2set=1,\n", + " niters_set2set=2,\n", + " hidden_layer_sizes_output=(32, 16),\n", + " is_classification=False,\n", + " activation_type=\"softplus2\",\n", + " bond_expansion=bond_expansion,\n", + " #collate_fn=collate_fn, shivani - not needed now?\n", + " cutoff=4.0,\n", + " gauss_width=0.5,\n", + ")\n", + "\n", + "# setup the MEGNetTrainer\n", + "lit_module = ModelLightningModule(model=model)" + ], + "metadata": { + "id": "pYGXwyZphQtd" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "logger = CSVLogger(\"logged\", name=\"MEGNet_training\")\n", + "trainer = Trainer(max_epochs=5, accelerator=\"cpu\", logger=logger) #set to SMALL NUMBER FOR TESTING, PLEASE CHANGE.\n", + "trainer.fit(model=lit_module, train_dataloaders=train_loader, val_dataloaders=val_loader)\n", + "\n", + "warnings.simplefilter(\"ignore\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 708, + "referenced_widgets": [ + "768ce9da55994740bd19d449bd0880db", + "744b1e9c9b304373b89b69c16527bba4", + "c87376480c15453e80da77d7b6d2dc8d", + "a2274b0c8e724eba88ed9831e0fe657f", + "1d9bf139827846faaca37ba65aa026fc", + "58e128907c7c4270a06475bcbe214344", + "82d62370c96f4a63a54da01f895e194a", + "6e9ad03ead644bddbd57452191ec933e", + "d2667d11892849faafba2b44e977c0f7", + "d965cf7c3f3a42189cbfc933911a0247", + "8ae912d0878b4a37956c43fb76cbd2e5", + "d9d6aacd59ea4fcf9c0f4224b377c610", + "3d0ea474af934d64a2bbbdf0fdb32a02", + "1bb71e54cd95404b846d9cbe5d551ca4", + "c0cc07d05463491fa633ecbf841ee082", + "4433c936afb347899ef59e62b0fdd9a0", + "8ff7258417a34807bf11740040d7e54c", + "c4f756d6ef224ddbaaf3a04ef0470078", + "4d3773a2ea1344838abd5d565cc14763", + "106bdf51936f49efab22ca3fa22bb1a1", + "cdb174433a1d43a3bd5274791234bf0d", + "ca8fcb63cae84124b3536af2434dfcf1", + "52064c4ca7734cd9baea5a5d8e81a81a", + "b74dfb101dd84c97893a6ba875cfcba0", + "b5334febcbb248b5a1cce202a2de0b55", + "622af7e0cf1d405aa6c178009b72558e", + "bfde609fc1054a24b8c3756613cbfa2e", + "3af2179787e2482c852c6db649181967", + "0d01dd8ca27944839e51976b2e63c557", + "2fd6a0dc83f34fa695755bfdb12b62ae", + "2091a3dd510943b79d027917a1617112", + "9bcd8d062d554d66b110c399d9c0b625", + "e53dd3ed466a49c4ad12cf824a1e6ed3", + "2e3d634584694485a3dc805dd4e6bb71", + "731b73b798c440e8ae4428f118cf4b50", + "fe08f3f0bffc41c684745a6f3352c70a", + "862a622adef047479bf306e707f8362e", + "ab911180843344b7b9231fc356a1a829", + "07f41aeca3df4799a3c07f54ab61661f", + "4928e22f1f7541c7883d6bddbd6d1a49", + "0625bafcce584b17bda54af0054c69da", + "bad36731d291429ba9ac961539ff09a2", + "545ae88a21f44cdbbbf1832e6dac8152", + "e46782297fb4465e94e19a56e56f0dcf", + "6fbc5cb56b044b36b6ac6fa704a42509", + "ea5611dacff74566a5d536b61fce35b2", + "5522746482f845bca9a95e0a2224909e", + "ad81dd6ad47541a692b0802aba292c87", + "88972e62ec0c4b4bb33780ecaf4df32f", + "bd1f348e965244e89c2d53fb83da7934", + "15ed082c47c24ad2bf4a84ae85198b41", + "f5e16d6a057e44458ad68b354ff01eda", + "5a2f302420ac451ba2a0c967c7b80b8a", + "d988de00f6b34fb5b7edc6aacbf6ce24", + "dfa2352a7ec947e585caabea0b5378c0", + "f0a25dc24c19453ba9f3e84169914ed5", + "17e55c8a116546cfadd75932be36604c", + "9ef9e5e64a5546fda0b2f2ee360b063b", + "0f296de304ef4f2aab1c61d922220962", + "7c47a7b3bed64f7e94054764e8607b14", + "7e5e21fb8a7d4ebea7c71e9f655fe606", + "9fb1d2f72fda43e4a91e4cbb23426322", + "0cc181a9b3e04d658d0eefefaabecaf4", + "b320af0dc127481fb92415d2247a565a", + "2a6e76a13e5747c2888b73ff55361dea", + "2d3bfc8b4da94766a48e6bd84e3932b3", + "530114990c934b02b04ed88233a4cda3", + "2fbda58508c94503891ad1ab96445398", + "348fc0c1069a4430be11d2112f212080", + "0c134e301fe5481bbcd47eb35ff1ecd9", + "cda06210315d42f3b4909bdc14310e15", + "98131182118a4e0bbb0de266875c10ec", + "9ef52af34b6d4030b0ed2ad1006e2a05", + "c719f246dc254ba284b1975932eaedf9", + "b70eedcca7744a8dab61e3c5796e2072", + "3ccc25decd5b48e39bd101a6a526865e", + "904fb13e4c9a4290a95c7003770d0a32" + ] + }, + "id": "nqWWnzQUhoki", + "outputId": "71988016-cb28-41b3-ea83-4400f135f481" + }, + "execution_count": 40, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "INFO: GPU available: False, used: False\n", + "INFO:lightning.pytorch.utilities.rank_zero:GPU available: False, used: False\n", + "INFO: TPU available: False, using: 0 TPU cores\n", + "INFO:lightning.pytorch.utilities.rank_zero:TPU available: False, using: 0 TPU cores\n", + "INFO: HPU available: False, using: 0 HPUs\n", + "INFO:lightning.pytorch.utilities.rank_zero:HPU available: False, using: 0 HPUs\n", + "INFO: \n", + " | Name | Type | Params | Mode \n", + "----------------------------------------------------\n", + "0 | model | MEGNet | 189 K | train\n", + "1 | mae | MeanAbsoluteError | 0 | train\n", + "2 | rmse | MeanSquaredError | 0 | train\n", + "----------------------------------------------------\n", + "189 K Trainable params\n", + "100 Non-trainable params\n", + "189 K Total params\n", + "0.758 Total estimated model params size (MB)\n", + "109 Modules in train mode\n", + "0 Modules in eval mode\n", + "INFO:lightning.pytorch.callbacks.model_summary:\n", + " | Name | Type | Params | Mode \n", + "----------------------------------------------------\n", + "0 | model | MEGNet | 189 K | train\n", + "1 | mae | MeanAbsoluteError | 0 | train\n", + "2 | rmse | MeanSquaredError | 0 | train\n", + "----------------------------------------------------\n", + "189 K Trainable params\n", + "100 Non-trainable params\n", + "189 K Total params\n", + "0.758 Total estimated model params size (MB)\n", + "109 Modules in train mode\n", + "0 Modules in eval mode\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Sanity Checking: | | 0/? [00:00<?, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "768ce9da55994740bd19d449bd0880db" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Training: | | 0/? [00:00<?, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "d9d6aacd59ea4fcf9c0f4224b377c610" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Validation: | | 0/? [00:00<?, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "52064c4ca7734cd9baea5a5d8e81a81a" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Validation: | | 0/? [00:00<?, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "2e3d634584694485a3dc805dd4e6bb71" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Validation: | | 0/? [00:00<?, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "6fbc5cb56b044b36b6ac6fa704a42509" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Validation: | | 0/? [00:00<?, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f0a25dc24c19453ba9f3e84169914ed5" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Validation: | | 0/? [00:00<?, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "530114990c934b02b04ed88233a4cda3" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "INFO: `Trainer.fit` stopped: `max_epochs=5` reached.\n", + "INFO:lightning.pytorch.utilities.rank_zero:`Trainer.fit` stopped: `max_epochs=5` reached.\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "metrics = pd.read_csv(\"logged/MEGNet_training/version_0/metrics.csv\")\n", + "metrics[\"train_MAE\"].dropna().plot()\n", + "metrics[\"val_MAE\"].dropna().plot()\n", + "\n", + "_ = plt.legend()\n", + "#plt.savefig(\"loss.jpg\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "x2mTOHAGhqvE", + "outputId": "252e83de-6b95-4b75-ac17-cbc96a04a0cf" + }, + "execution_count": 41, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGdCAYAAADuR1K7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqKElEQVR4nO3de3SV1Z3/8c/JPVySEC45BBJAyBgESqZAQliuQU2mQRFBQ8VMuLNEKqAWsIByqVjNVLCCirJcQ6CMIBRGGQuUDgaLKJFLsA73sS5uAicBMQnXJCT794e/nPaYEAPkJDmb92utZ2H2s/d5vnsTPR+f8zzPcRhjjAAAACzh19AFAAAA1CXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKgENXUBDqKio0OnTp9W8eXM5HI6GLgcAANSCMUYXLlxQdHS0/Pyuf37mtgw3p0+fVkxMTEOXAQAAbsLJkyfVvn376+6/LcNN8+bNJX2/OGFhYQ1cDQAAqI3i4mLFxMS438ev57YMN5UfRYWFhRFuAADwMT92SQkXFAMAAKsQbgAAgFUINwAAwCq35TU3AADfZ4zRtWvXVF5e3tCloI74+/srICDglh/TQrgBAPic0tJSnTlzRpcvX27oUlDHmjRporZt2yooKOimX4NwAwDwKRUVFTp69Kj8/f0VHR2toKAgHshqAWOMSktLdfbsWR09elRxcXE1PqivJoQbAIBPKS0tVUVFhWJiYtSkSZOGLgd1KDQ0VIGBgTp+/LhKS0sVEhJyU6/DBcUAAJ90s/9Xj8atLv5e+c0AAABWIdwAAACrEG4AAPBBHTt21MKFCxu6jEaJcAMAQD2555579Mwzz9TJa+3evVvjx4+vk9c6duyYHA6H/P39derUKY99Z86ccT975tixY1XGpqWlyd/fX7t3766yb/To0XI4HFW2AQMG1End10O4AQCgkah8MGFttG7dus7vFmvXrp1WrFjh0fb73/9e7dq1q7b/iRMntGPHDk2aNEnZ2dnV9hkwYIDOnDnjsb333nt1WvcPEW4AAD7PGKPLpdcaZDPG1KrG0aNHa9u2bVq0aJH7DMby5cvlcDj0pz/9Sb169VJwcLA+/fRTff311xo8eLCioqLUrFkz9enTRx999JHH6/3wYymHw6H/+I//0MMPP6wmTZooLi5OH3744Q2t46hRo7Rs2TKPtmXLlmnUqFHV9l+2bJkefPBB/eIXv9B7772nK1euVOkTHBwsp9PpsbVo0eKG6rpRPOcGAODzrpSV6645f26QYx+cl6YmQT/+drpo0SL93//9n7p376558+ZJkg4cOCBJmjFjhhYsWKA77rhDLVq00MmTJ/XAAw/opZdeUnBwsFasWKFBgwbpyJEjio2Nve4xXnjhBb3yyiuaP3++3njjDWVmZur48eOKjIys1VweeughLVmyRJ9++qnuvvtuffrpp/ruu+80aNAgvfjiix59jTFatmyZFi9erPj4eHXp0kXr1q3TiBEjanUsb+LMDQAA9SA8PFxBQUFq0qSJ+wyGv7+/JGnevHn613/9V3Xu3FmRkZHq2bOnnnjiCXXv3l1xcXF68cUX1blz5x89EzN69GhlZGSoS5cuevnll3Xx4kXt2rWr1jUGBgZq+PDh7o+YsrOzNXz4cAUGBlbp+9FHH+ny5ctKS0uTJA0fPlxLly6t0m/Dhg1q1qyZx/byyy/XuqabwZkbAIDPCw3018F5aQ127FvVu3dvj58vXryoX//619q4caPOnDmja9eu6cqVKzpx4kSNr/OTn/zE/c9NmzZVWFiYCgoKbqiWsWPHql+/fnr55Ze1du1a5ebmVnsdUHZ2toYNG6aAgO+jREZGhp599ll9/fXX6ty5s7vfvffeq7fffttjbG3PJN0swg0AwOc5HI5afTTUWDVt2tTj52nTpmnLli1asGCBunTpotDQUA0dOlSlpaU1vs4Pz7A4HA5VVFTcUC09evRQfHy8MjIy1LVrV3Xv3l1//etfPfqcP39eH3zwgcrKyjyCS3l5ubKzs/XSSy95zK1Lly43VMOt8t3fBAAAfExQUJDKy8t/tN9nn32m0aNH6+GHH5b0/Zmc6m7D9paxY8fqySefrHLGpdLKlSvVvn17rV+/3qP9f/7nf/Tqq69q3rx57o/cGgLhBgCAetKxY0ft3LlTx44dU7Nmza57ViUuLk7vv/++Bg0aJIfDodmzZ9/wGZhb8fjjj+vnP/+5IiIiqt2/dOlSDR06VN27d/doj4mJ0cyZM7V582YNHDhQklRSUiKXy+XRLyAgQK1atfJK7RIXFAMAUG+mTZsmf39/3XXXXWrduvV1r6H53e9+pxYtWqhfv34aNGiQ0tLS9NOf/rTe6qwMH5XX0/yjvLw8ffnll0pPT6+yLzw8XCkpKR4XFm/evFlt27b12O6++26v1u8wtb1B3yLFxcUKDw9XUVGRwsLCGrocAMANuHr1qo4ePapOnTopJCSkoctBHavp77e279+cuQEAAFYh3AAAYLkJEyZUedZM5TZhwoSGLq/OcUExAACWmzdvnqZNm1btPhsvzyDcAABguTZt2qhNmzYNXUa94WMpAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAOAjOnbsqIULFzZ0GY0e4QYAAAt17NhRDodDq1evrrKvW7ducjgcWr58eZV9WVlZ8vf31/z586vsW758uRwOR5WtsX0NBuEGAABLxcTEaNmyZR5tn3/+uVwul5o2bVrtmOzsbP3qV79SdnZ2tfvDwsJ05swZj+348eN1XvutINwAAHyfMVLppYbZavn90++8846io6NVUVHh0T548GCNHTtWX3/9tQYPHqyoqCg1a9ZMffr00UcffXRLy5KZmalt27bp5MmT7rbs7GxlZmZW+43f27Zt05UrVzRv3jwVFxdrx44dVfo4HA45nU6PLSoq6pbqrGs8oRgA4PvKLksvRzfMsZ87LQVVfxbkH/385z/X5MmT9fHHHyslJUWSdP78eW3evFmbNm3SxYsX9cADD+ill15ScHCwVqxYoUGDBunIkSOKjY29qdKioqKUlpam3//+95o1a5YuX76sNWvWaNu2bVqxYkWV/kuXLlVGRoYCAwOVkZGhpUuXql+/fjd17IbEmRsAAOpBixYtdP/992vVqlXutnXr1qlVq1a699571bNnTz3xxBPq3r274uLi9OKLL6pz58768MMPb+m4Y8eO1fLly2WM0bp169S5c2clJCRU6VdcXKx169Zp+PDhkqThw4frD3/4gy5evOjRr6ioqMqXb95///23VGNd48wNAMD3BTb5/gxKQx27ljIzM/X444/rrbfeUnBwsFauXKnHHntMfn5+unjxon79619r48aNOnPmjK5du6YrV67oxIkTt1TewIED9cQTT+iTTz5Rdna2xo4dW22/9957T507d1bPnj0lSQkJCerQoYPWrFmjcePGufs1b95ce/fu9RgbGhp6SzXWNcINAMD3ORy1+miooQ0aNEjGGG3cuFF9+vTR9u3b9dprr0mSpk2bpi1btmjBggXq0qWLQkNDNXToUJWWlt7SMQMCAjRixAjNnTtXO3fu1AcffFBtv6VLl+rAgQMe1+JUVFQoOzvbI9z4+fmpS5cut1STtxFuAACoJyEhIXrkkUe0cuVK/e1vf9Odd96pn/70p5Kkzz77TKNHj9bDDz8sSbp48aKOHTtWJ8cdO3asFixYoGHDhqlFixZV9u/bt0979uzRX/7yF0VGRrrbz58/r3vuuUeHDx9WfHx8ndRSHwg3AADUo8zMTD344IM6cOCA+/oWSYqLi9P777+vQYMGyeFwaPbs2VXurLpZXbt21blz59SkSfUfoS1dulSJiYn6l3/5lyr7+vTpo6VLl7qfe2OMkcvlqtKvTZs28vNrHJfyNo4qAAC4Tdx3332KjIzUkSNH9G//9m/u9t/97ndq0aKF+vXrp0GDBiktLc19VqcutGzZstprY0pLS/Xuu+8qPT292nHp6elasWKFysrKJH1/4XHbtm2rbAUFBXVW661yGFPLG/QtUlxcrPDwcBUVFSksLKyhywEA3ICrV6/q6NGj6tSpU6N7Mi5uXU1/v7V9/66XMzeLFy9Wx44dFRISoqSkJO3atavG/mvXrlV8fLxCQkLUo0cPbdq06bp9J0yYIIfDwXdtAAAASfUQbtasWaMpU6Zo7ty52rt3r3r27Km0tLTrnr7asWOHMjIyNG7cOH3xxRcaMmSIhgwZov3791fp+8EHH+jzzz9XdHQDPbgJAIAGsHLlyirPmqncunXr1tDlNTivfyyVlJSkPn366M0335T0/W1lMTExmjx5smbMmFGl/7Bhw3Tp0iVt2LDB3da3b18lJCRoyZIl7rZTp04pKSlJf/7znzVw4EA988wzeuaZZ2pVEx9LAYDv4mMp6cKFC8rPz692X2BgoDp06FDPFdWduvhYyqt3S5WWliovL08zZ850t/n5+Sk1NVW5ubnVjsnNzdWUKVM82tLS0rR+/Xr3zxUVFRoxYoSeffbZWiXUkpISlZSUuH8uLi6+wZkAANB4NG/eXM2bN2/oMhotr34sde7cOZWXl1f5Qq2oqKhqbyOTJJfL9aP9f/vb3yogIEBPPfVUrerIyspSeHi4e4uJibnBmQAAGpvb8H6Y20Jd/L363K3geXl5WrRokZYvXy6Hw1GrMTNnzlRRUZF7+8dvRwUA+JbAwEBJ0uXLlxu4EnhD5d9r5d/zzfDqx1KtWrWSv79/lc8F8/Pz5XQ6qx3jdDpr7L99+3YVFBR4fENqeXm5pk6dqoULF1b7NMfg4GAFBwff4mwAAI2Bv7+/IiIi3DemNGnSpNb/s4vGyxijy5cvq6CgQBEREfL397/p1/JquAkKClKvXr2Uk5OjIUOGSPr+epmcnBxNmjSp2jHJycnKycnxuDh4y5YtSk5OliSNGDFCqampHmPS0tI0YsQIjRkzxivzAAA0LpX/w9uYHhyHuhEREXHdEyC15fWvX5gyZYpGjRql3r17KzExUQsXLtSlS5fcQWTkyJFq166dsrKyJElPP/20+vfvr1dffVUDBw7U6tWrtWfPHr3zzjuSvn/CYsuWLT2OERgYKKfTqTvvvNPb0wEANAIOh0Nt27ZVmzZt3E/Ohe8LDAy8pTM2lbweboYNG6azZ89qzpw5crlcSkhI0ObNm90XDZ84ccLjuyj69eunVatWadasWXruuecUFxen9evXq3v37t4uFQDgY/z9/evkzRB24esXeM4NAAA+oVF9/QIAAEB9IdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxSL+Fm8eLF6tixo0JCQpSUlKRdu3bV2H/t2rWKj49XSEiIevTooU2bNrn3lZWVafr06erRo4eaNm2q6OhojRw5UqdPn/b2NAAAgA/werhZs2aNpkyZorlz52rv3r3q2bOn0tLSVFBQUG3/HTt2KCMjQ+PGjdMXX3yhIUOGaMiQIdq/f78k6fLly9q7d69mz56tvXv36v3339eRI0f00EMPeXsqAADABziMMcabB0hKSlKfPn305ptvSpIqKioUExOjyZMna8aMGVX6Dxs2TJcuXdKGDRvcbX379lVCQoKWLFlS7TF2796txMREHT9+XLGxsT9aU3FxscLDw1VUVKSwsLCbnBkAAKhPtX3/9uqZm9LSUuXl5Sk1NfXvB/TzU2pqqnJzc6sdk5ub69FfktLS0q7bX5KKiorkcDgUERFR7f6SkhIVFxd7bAAAwE5eDTfnzp1TeXm5oqKiPNqjoqLkcrmqHeNyuW6o/9WrVzV9+nRlZGRcN8VlZWUpPDzcvcXExNzEbAAAgC/w6bulysrK9Oijj8oYo7fffvu6/WbOnKmioiL3dvLkyXqsEgAA1KcAb754q1at5O/vr/z8fI/2/Px8OZ3Oasc4nc5a9a8MNsePH9fWrVtr/OwtODhYwcHBNzkLAADgS7x65iYoKEi9evVSTk6Ou62iokI5OTlKTk6udkxycrJHf0nasmWLR//KYPPVV1/po48+UsuWLb0zAQAA4HO8euZGkqZMmaJRo0apd+/eSkxM1MKFC3Xp0iWNGTNGkjRy5Ei1a9dOWVlZkqSnn35a/fv316uvvqqBAwdq9erV2rNnj9555x1J3weboUOHau/evdqwYYPKy8vd1+NERkYqKCjI21MCAACNmNfDzbBhw3T27FnNmTNHLpdLCQkJ2rx5s/ui4RMnTsjP7+8nkPr166dVq1Zp1qxZeu655xQXF6f169ere/fukqRTp07pww8/lCQlJCR4HOvjjz/WPffc4+0pAQCARszrz7lpjHjODQAAvqdRPOcGAACgvhFuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWqZdws3jxYnXs2FEhISFKSkrSrl27auy/du1axcfHKyQkRD169NCmTZs89htjNGfOHLVt21ahoaFKTU3VV1995c0pAAAAH+H1cLNmzRpNmTJFc+fO1d69e9WzZ0+lpaWpoKCg2v47duxQRkaGxo0bpy+++EJDhgzRkCFDtH//fnefV155Ra+//rqWLFminTt3qmnTpkpLS9PVq1e9PR0AANDIOYwxxpsHSEpKUp8+ffTmm29KkioqKhQTE6PJkydrxowZVfoPGzZMly5d0oYNG9xtffv2VUJCgpYsWSJjjKKjozV16lRNmzZNklRUVKSoqCgtX75cjz322I/WVFxcrPDwcBUVFSksLKyOZgoAALyptu/fXj1zU1paqry8PKWmpv79gH5+Sk1NVW5ubrVjcnNzPfpLUlpamrv/0aNH5XK5PPqEh4crKSnpuq9ZUlKi4uJijw0AANjJq+Hm3LlzKi8vV1RUlEd7VFSUXC5XtWNcLleN/Sv/vJHXzMrKUnh4uHuLiYm5qfkAAIDG77a4W2rmzJkqKipybydPnmzokgAAgJd4Ndy0atVK/v7+ys/P92jPz8+X0+msdozT6ayxf+WfN/KawcHBCgsL89gAAICdvBpugoKC1KtXL+Xk5LjbKioqlJOTo+Tk5GrHJCcne/SXpC1btrj7d+rUSU6n06NPcXGxdu7ced3XBAAAt48Abx9gypQpGjVqlHr37q3ExEQtXLhQly5d0pgxYyRJI0eOVLt27ZSVlSVJevrpp9W/f3+9+uqrGjhwoFavXq09e/bonXfekSQ5HA4988wz+s1vfqO4uDh16tRJs2fPVnR0tIYMGeLt6QAAgEbO6+Fm2LBhOnv2rObMmSOXy6WEhARt3rzZfUHwiRMn5Of39xNI/fr106pVqzRr1iw999xziouL0/r169W9e3d3n1/96le6dOmSxo8fr8LCQt19993avHmzQkJCvD0dAADQyHn9OTeNEc+5AQDA9zSK59wAAADUN8INAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqXgs358+fV2ZmpsLCwhQREaFx48bp4sWLNY65evWqJk6cqJYtW6pZs2ZKT09Xfn6+e/+XX36pjIwMxcTEKDQ0VF27dtWiRYu8NQUAAOCDvBZuMjMzdeDAAW3ZskUbNmzQJ598ovHjx9c45pe//KX++Mc/au3atdq2bZtOnz6tRx55xL0/Ly9Pbdq00bvvvqsDBw7o+eef18yZM/Xmm296axoAAMDHOIwxpq5f9NChQ7rrrru0e/du9e7dW5K0efNmPfDAA/rmm28UHR1dZUxRUZFat26tVatWaejQoZKkw4cPq2vXrsrNzVXfvn2rPdbEiRN16NAhbd26tdb1FRcXKzw8XEVFRQoLC7uJGQIAgPpW2/dvr5y5yc3NVUREhDvYSFJqaqr8/Py0c+fOasfk5eWprKxMqamp7rb4+HjFxsYqNzf3uscqKipSZGRk3RUPAAB8WoA3XtTlcqlNmzaeBwoIUGRkpFwu13XHBAUFKSIiwqM9KirqumN27NihNWvWaOPGjTXWU1JSopKSEvfPxcXFtZgFAADwRTd05mbGjBlyOBw1bocPH/ZWrR7279+vwYMHa+7cufrZz35WY9+srCyFh4e7t5iYmHqpEQAA1L8bOnMzdepUjR49usY+d9xxh5xOpwoKCjzar127pvPnz8vpdFY7zul0qrS0VIWFhR5nb/Lz86uMOXjwoFJSUjR+/HjNmjXrR+ueOXOmpkyZ4v65uLiYgAMAgKVuKNy0bt1arVu3/tF+ycnJKiwsVF5ennr16iVJ2rp1qyoqKpSUlFTtmF69eikwMFA5OTlKT0+XJB05ckQnTpxQcnKyu9+BAwd03333adSoUXrppZdqVXdwcLCCg4Nr1RcAAPg2r9wtJUn333+/8vPztWTJEpWVlWnMmDHq3bu3Vq1aJUk6deqUUlJStGLFCiUmJkqSfvGLX2jTpk1avny5wsLCNHnyZEnfX1sjff9R1H333ae0tDTNnz/ffSx/f/9aha5K3C0FAIDvqe37t1cuKJaklStXatKkSUpJSZGfn5/S09P1+uuvu/eXlZXpyJEjunz5srvttddec/ctKSlRWlqa3nrrLff+devW6ezZs3r33Xf17rvvuts7dOigY8eOeWsqAADAh3jtzE1jxpkbAAB8T4M+5wYAAKChEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKt4LdycP39emZmZCgsLU0REhMaNG6eLFy/WOObq1auaOHGiWrZsqWbNmik9PV35+fnV9v3222/Vvn17ORwOFRYWemEGAADAF3kt3GRmZurAgQPasmWLNmzYoE8++UTjx4+vccwvf/lL/fGPf9TatWu1bds2nT59Wo888ki1fceNG6ef/OQn3igdAAD4MIcxxtT1ix46dEh33XWXdu/erd69e0uSNm/erAceeEDffPONoqOjq4wpKipS69attWrVKg0dOlSSdPjwYXXt2lW5ubnq27evu+/bb7+tNWvWaM6cOUpJSdF3332niIiIWtdXXFys8PBwFRUVKSws7NYmCwAA6kVt37+9cuYmNzdXERER7mAjSampqfLz89POnTurHZOXl6eysjKlpqa62+Lj4xUbG6vc3Fx328GDBzVv3jytWLFCfn61K7+kpETFxcUeGwAAsJNXwo3L5VKbNm082gICAhQZGSmXy3XdMUFBQVXOwERFRbnHlJSUKCMjQ/Pnz1dsbGyt68nKylJ4eLh7i4mJubEJAQAAn3FD4WbGjBlyOBw1bocPH/ZWrZo5c6a6du2q4cOH3/C4oqIi93by5EkvVQgAABpawI10njp1qkaPHl1jnzvuuENOp1MFBQUe7deuXdP58+fldDqrHed0OlVaWqrCwkKPszf5+fnuMVu3btW+ffu0bt06SVLl5UKtWrXS888/rxdeeKHa1w4ODlZwcHBtpggAAHzcDYWb1q1bq3Xr1j/aLzk5WYWFhcrLy1OvXr0kfR9MKioqlJSUVO2YXr16KTAwUDk5OUpPT5ckHTlyRCdOnFBycrIk6b/+67905coV95jdu3dr7Nix2r59uzp37nwjUwEAAJa6oXBTW127dtWAAQP0+OOPa8mSJSorK9OkSZP02GOPue+UOnXqlFJSUrRixQolJiYqPDxc48aN05QpUxQZGamwsDBNnjxZycnJ7julfhhgzp075z7ejdwtBQAA7OWVcCNJK1eu1KRJk5SSkiI/Pz+lp6fr9ddfd+8vKyvTkSNHdPnyZXfba6+95u5bUlKitLQ0vfXWW94qEQAAWMgrz7lp7HjODQAAvqdBn3MDAADQUAg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCoBDV1AQzDGSJKKi4sbuBIAAFBble/ble/j13NbhpsLFy5IkmJiYhq4EgAAcKMuXLig8PDw6+53mB+LPxaqqKjQ6dOn1bx5czkcjoYup8EVFxcrJiZGJ0+eVFhYWEOXYy3WuX6wzvWDda4frLMnY4wuXLig6Oho+fld/8qa2/LMjZ+fn9q3b9/QZTQ6YWFh/MtTD1jn+sE61w/WuX6wzn9X0xmbSlxQDAAArEK4AQAAViHcQMHBwZo7d66Cg4MbuhSrsc71g3WuH6xz/WCdb85teUExAACwF2duAACAVQg3AADAKoQbAABgFcINAACwCuHmNnD+/HllZmYqLCxMERERGjdunC5evFjjmKtXr2rixIlq2bKlmjVrpvT0dOXn51fb99tvv1X79u3lcDhUWFjohRn4Bm+s85dffqmMjAzFxMQoNDRUXbt21aJFi7w9lUZn8eLF6tixo0JCQpSUlKRdu3bV2H/t2rWKj49XSEiIevTooU2bNnnsN8Zozpw5atu2rUJDQ5WamqqvvvrKm1PwCXW5zmVlZZo+fbp69Oihpk2bKjo6WiNHjtTp06e9PY1Gr65/n//RhAkT5HA4tHDhwjqu2scYWG/AgAGmZ8+e5vPPPzfbt283Xbp0MRkZGTWOmTBhgomJiTE5OTlmz549pm/fvqZfv37V9h08eLC5//77jSTz3XffeWEGvsEb67x06VLz1FNPmb/85S/m66+/Nv/5n/9pQkNDzRtvvOHt6TQaq1evNkFBQSY7O9scOHDAPP744yYiIsLk5+dX2/+zzz4z/v7+5pVXXjEHDx40s2bNMoGBgWbfvn3uPv/+7/9uwsPDzfr1682XX35pHnroIdOpUydz5cqV+ppWo1PX61xYWGhSU1PNmjVrzOHDh01ubq5JTEw0vXr1qs9pNTre+H2u9P7775uePXua6Oho89prr3l5Jo0b4cZyBw8eNJLM7t273W1/+tOfjMPhMKdOnap2TGFhoQkMDDRr1651tx06dMhIMrm5uR5933rrLdO/f3+Tk5NzW4cbb6/zP3ryySfNvffeW3fFN3KJiYlm4sSJ7p/Ly8tNdHS0ycrKqrb/o48+agYOHOjRlpSUZJ544gljjDEVFRXG6XSa+fPnu/cXFhaa4OBg895773lhBr6hrte5Ort27TKSzPHjx+umaB/krXX+5ptvTLt27cz+/ftNhw4dbvtww8dSlsvNzVVERIR69+7tbktNTZWfn5927txZ7Zi8vDyVlZUpNTXV3RYfH6/Y2Fjl5ua62w4ePKh58+ZpxYoVNX6B2e3Am+v8Q0VFRYqMjKy74hux0tJS5eXleayRn5+fUlNTr7tGubm5Hv0lKS0tzd3/6NGjcrlcHn3Cw8OVlJRU47rbzBvrXJ2ioiI5HA5FRETUSd2+xlvrXFFRoREjRujZZ59Vt27dvFO8j7m935FuAy6XS23atPFoCwgIUGRkpFwu13XHBAUFVfkPUFRUlHtMSUmJMjIyNH/+fMXGxnqldl/irXX+oR07dmjNmjUaP358ndTd2J07d07l5eWKioryaK9pjVwuV439K/+8kde0nTfW+YeuXr2q6dOnKyMj47b9AkhvrfNvf/tbBQQE6Kmnnqr7on0U4cZHzZgxQw6Ho8bt8OHDXjv+zJkz1bVrVw0fPtxrx2gMGnqd/9H+/fs1ePBgzZ07Vz/72c/q5ZhAXSgrK9Ojjz4qY4zefvvthi7HKnl5eVq0aJGWL18uh8PR0OU0GgENXQBuztSpUzV69Oga+9xxxx1yOp0qKCjwaL927ZrOnz8vp9NZ7Tin06nS0lIVFhZ6nFXIz893j9m6dav27dundevWSfr+7hNJatWqlZ5//nm98MILNzmzxqWh17nSwYMHlZKSovHjx2vWrFk3NRdf1KpVK/n7+1e5U6+6NarkdDpr7F/5Z35+vtq2bevRJyEhoQ6r9x3eWOdKlcHm+PHj2rp162171kbyzjpv375dBQUFHmfQy8vLNXXqVC1cuFDHjh2r20n4ioa+6AfeVXmh6549e9xtf/7zn2t1oeu6devcbYcPH/a40PVvf/ub2bdvn3vLzs42ksyOHTuue9W/zby1zsYYs3//ftOmTRvz7LPPem8CjVhiYqKZNGmS++fy8nLTrl27Gi/AfPDBBz3akpOTq1xQvGDBAvf+oqIiLiiu43U2xpjS0lIzZMgQ061bN1NQUOCdwn1MXa/zuXPnPP5bvG/fPhMdHW2mT59uDh8+7L2JNHKEm9vAgAEDzD//8z+bnTt3mk8//dTExcV53KL8zTffmDvvvNPs3LnT3TZhwgQTGxtrtm7davbs2WOSk5NNcnLydY/x8ccf39Z3SxnjnXXet2+fad26tRk+fLg5c+aMe7ud3ihWr15tgoODzfLly83BgwfN+PHjTUREhHG5XMYYY0aMGGFmzJjh7v/ZZ5+ZgIAAs2DBAnPo0CEzd+7cam8Fj4iIMP/93/9t/vd//9cMHjyYW8HreJ1LS0vNQw89ZNq3b2/++te/evz+lpSUNMgcGwNv/D7/EHdLEW5uC99++63JyMgwzZo1M2FhYWbMmDHmwoUL7v1Hjx41kszHH3/sbrty5Yp58sknTYsWLUyTJk3Mww8/bM6cOXPdYxBuvLPOc+fONZKqbB06dKjHmTW8N954w8TGxpqgoCCTmJhoPv/8c/e+/v37m1GjRnn0/8Mf/mD+6Z/+yQQFBZlu3bqZjRs3euyvqKgws2fPNlFRUSY4ONikpKSYI0eO1MdUGrW6XOfK3/fqtn/8d+B2VNe/zz9EuDHGYcz/v1gCAADAAtwtBQAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBV/h/KrmaEItaIiQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "metrics" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 383 + }, + "id": "qZ0XV5e2jYXR", + "outputId": "ce1b9f10-d929-4db9-ace9-4c2801731f3b" + }, + "execution_count": 42, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " epoch step train_MAE train_RMSE train_Total_Loss val_MAE val_RMSE \\\n", + "0 0 140 NaN NaN NaN NaN NaN \n", + "1 0 140 NaN NaN NaN NaN NaN \n", + "2 1 281 NaN NaN NaN NaN NaN \n", + "3 1 281 NaN NaN NaN NaN NaN \n", + "4 2 422 NaN NaN NaN NaN NaN \n", + "5 2 422 NaN NaN NaN NaN NaN \n", + "6 3 563 NaN NaN NaN NaN NaN \n", + "7 3 563 NaN NaN NaN NaN NaN \n", + "8 4 704 NaN NaN NaN NaN NaN \n", + "9 4 704 NaN NaN NaN NaN NaN \n", + "\n", + " val_Total_Loss \n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "5 NaN \n", + "6 NaN \n", + "7 NaN \n", + "8 NaN \n", + "9 NaN " + ], + "text/html": [ + "\n", + " <div id=\"df-3f3f3a66-fe27-47d9-8a3b-a4d6fae45b02\" class=\"colab-df-container\">\n", + " <div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>epoch</th>\n", + " <th>step</th>\n", + " <th>train_MAE</th>\n", + " <th>train_RMSE</th>\n", + " <th>train_Total_Loss</th>\n", + " <th>val_MAE</th>\n", + " <th>val_RMSE</th>\n", + " <th>val_Total_Loss</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>140</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>0</td>\n", + " <td>140</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>1</td>\n", + " <td>281</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>1</td>\n", + " <td>281</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>2</td>\n", + " <td>422</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>2</td>\n", + " <td>422</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>3</td>\n", + " <td>563</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>3</td>\n", + " <td>563</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>4</td>\n", + " <td>704</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>4</td>\n", + " <td>704</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>\n", + " <div class=\"colab-df-buttons\">\n", + "\n", + " <div class=\"colab-df-container\">\n", + " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-3f3f3a66-fe27-47d9-8a3b-a4d6fae45b02')\"\n", + " title=\"Convert this dataframe to an interactive table.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", + " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", + " </svg>\n", + " </button>\n", + "\n", + " <style>\n", + " .colab-df-container {\n", + " display:flex;\n", + " gap: 12px;\n", + " }\n", + "\n", + " .colab-df-convert {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-convert:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " .colab-df-buttons div {\n", + " margin-bottom: 4px;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + "\n", + " <script>\n", + " const buttonEl =\n", + " document.querySelector('#df-3f3f3a66-fe27-47d9-8a3b-a4d6fae45b02 button.colab-df-convert');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " async function convertToInteractive(key) {\n", + " const element = document.querySelector('#df-3f3f3a66-fe27-47d9-8a3b-a4d6fae45b02');\n", + " const dataTable =\n", + " await google.colab.kernel.invokeFunction('convertToInteractive',\n", + " [key], {});\n", + " if (!dataTable) return;\n", + "\n", + " const docLinkHtml = 'Like what you see? Visit the ' +\n", + " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", + " + ' to learn more about interactive tables.';\n", + " element.innerHTML = '';\n", + " dataTable['output_type'] = 'display_data';\n", + " await google.colab.output.renderOutput(dataTable, element);\n", + " const docLink = document.createElement('div');\n", + " docLink.innerHTML = docLinkHtml;\n", + " element.appendChild(docLink);\n", + " }\n", + " </script>\n", + " </div>\n", + "\n", + "\n", + "<div id=\"df-87ed75c9-b3bc-43d0-a0ee-4bc56bb39170\">\n", + " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-87ed75c9-b3bc-43d0-a0ee-4bc56bb39170')\"\n", + " title=\"Suggest charts\"\n", + " style=\"display:none;\">\n", + "\n", + "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", + " width=\"24px\">\n", + " <g>\n", + " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", + " </g>\n", + "</svg>\n", + " </button>\n", + "\n", + "<style>\n", + " .colab-df-quickchart {\n", + " --bg-color: #E8F0FE;\n", + " --fill-color: #1967D2;\n", + " --hover-bg-color: #E2EBFA;\n", + " --hover-fill-color: #174EA6;\n", + " --disabled-fill-color: #AAA;\n", + " --disabled-bg-color: #DDD;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-quickchart {\n", + " --bg-color: #3B4455;\n", + " --fill-color: #D2E3FC;\n", + " --hover-bg-color: #434B5C;\n", + " --hover-fill-color: #FFFFFF;\n", + " --disabled-bg-color: #3B4455;\n", + " --disabled-fill-color: #666;\n", + " }\n", + "\n", + " .colab-df-quickchart {\n", + " background-color: var(--bg-color);\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: var(--fill-color);\n", + " height: 32px;\n", + " padding: 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-quickchart:hover {\n", + " background-color: var(--hover-bg-color);\n", + " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: var(--button-hover-fill-color);\n", + " }\n", + "\n", + " .colab-df-quickchart-complete:disabled,\n", + " .colab-df-quickchart-complete:disabled:hover {\n", + " background-color: var(--disabled-bg-color);\n", + " fill: var(--disabled-fill-color);\n", + " box-shadow: none;\n", + " }\n", + "\n", + " .colab-df-spinner {\n", + " border: 2px solid var(--fill-color);\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " animation:\n", + " spin 1s steps(1) infinite;\n", + " }\n", + "\n", + " @keyframes spin {\n", + " 0% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " border-left-color: var(--fill-color);\n", + " }\n", + " 20% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 30% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 40% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 60% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 80% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " 90% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " }\n", + "</style>\n", + "\n", + " <script>\n", + " async function quickchart(key) {\n", + " const quickchartButtonEl =\n", + " document.querySelector('#' + key + ' button');\n", + " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", + " quickchartButtonEl.classList.add('colab-df-spinner');\n", + " try {\n", + " const charts = await google.colab.kernel.invokeFunction(\n", + " 'suggestCharts', [key], {});\n", + " } catch (error) {\n", + " console.error('Error during call to suggestCharts:', error);\n", + " }\n", + " quickchartButtonEl.classList.remove('colab-df-spinner');\n", + " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", + " }\n", + " (() => {\n", + " let quickchartButtonEl =\n", + " document.querySelector('#df-87ed75c9-b3bc-43d0-a0ee-4bc56bb39170 button');\n", + " quickchartButtonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + " })();\n", + " </script>\n", + "</div>\n", + "\n", + " <div id=\"id_b784e831-0f56-432a-aa7e-2249f5c19941\">\n", + " <style>\n", + " .colab-df-generate {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-generate:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-generate {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-generate:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + " <button class=\"colab-df-generate\" onclick=\"generateWithVariable('metrics')\"\n", + " title=\"Generate code using this dataframe.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", + " width=\"24px\">\n", + " <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n", + " </svg>\n", + " </button>\n", + " <script>\n", + " (() => {\n", + " const buttonEl =\n", + " document.querySelector('#id_b784e831-0f56-432a-aa7e-2249f5c19941 button.colab-df-generate');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " buttonEl.onclick = () => {\n", + " google.colab.notebook.generateWithVariable('metrics');\n", + " }\n", + " })();\n", + " </script>\n", + " </div>\n", + "\n", + " </div>\n", + " </div>\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "metrics", + "summary": "{\n \"name\": \"metrics\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"epoch\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 4,\n \"num_unique_values\": 5,\n \"samples\": [\n 1,\n 4,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"step\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 210,\n \"min\": 140,\n \"max\": 704,\n \"num_unique_values\": 5,\n \"samples\": [\n 281,\n 704,\n 422\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"train_MAE\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"train_RMSE\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"train_Total_Loss\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"val_MAE\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"val_RMSE\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"val_Total_Loss\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "i=0\n", + "prediction=np.zeros(len(test_data))\n", + "for i in range(len(structures_test)):\n", + " prediction[i]=model.predict_structure(structures_test[i])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 233 + }, + "id": "XUzf_WX5jZb5", + "outputId": "be203ece-03f9-43e1-d66d-3f2213753479" + }, + "execution_count": 43, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "name 'structures_test' is not defined", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-43-2431dbd08dbf>\u001b[0m in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprediction\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstructures_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mprediction\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict_structure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstructures_test\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'structures_test' is not defined" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "txs3tg93kQfr" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file