{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Notebook 5 - pandas\n",
    "[pandas](http://pandas.pydata.org) provides high-level data structures and functions designed to make working with structured or tabular data fast, easy and expressive. The primary objects in pandas that we will be using are the `DataFrame`, a tabular, column-oriented data structure with both row and column labels, and the `Series`, a one-dimensional labeled array object.\n",
    "\n",
    "pandas blends the high-performance, array-computing ideas of NumPy with the flexible data manipulation capabilities of spreadsheets and relational databases. It provides sophisticated indexing functinoality to make it easy to reshape , slice and perform aggregations.\n",
    "\n",
    "While pandas adopts many coding idioms from NumPy, the biggest difference is that pandas is designed for working with tabular or heterogeneous data. NumPy, by contrast, is best suited for working with homogeneous numerical array data.\n",
    "<br>\n",
    "\n",
    "## Table of Contents:\n",
    "- Data Structures\n",
    "    - Series\n",
    "    - DataFrame\n",
    "- Essential Functionality\n",
    "    - Reindexing\n",
    "    - Dropping Entries\n",
    "    - Indexing, Slicing and Filtering\n",
    "    - Arithmetic Operations\n",
    "    - Sorting and ranking\n",
    "- Summarizing and Computing Descriptive Statistics\n",
    "    - Correlation and Covariance\n",
    "    - Unique values, value counts and Membership\n",
    "- Reading and storing data\n",
    "    - Text Format\n",
    "    - Text Format Writing\n",
    "    - XML and HTML Web Scraping\n",
    "    - Reading excel files\n",
    "    - mention that pandas allow interfacing with web APIs and SQL databases\n",
    "- Data Cleaning and preperation\n",
    "    - Missing data\n",
    "    - Data transformation\n",
    "    - String manipulation incl. regexp\n",
    "- Data wrangling\n",
    "- Plotting?\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Common pandas import statement\n",
    "import numpy as np\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Data Structures\n",
    "## Series\n",
    "a one-dimensional array-like object containing a sequence of values and an associated array of data labels, called its index.\n",
    "\n",
    "The easiest way to make a Series is from an array of data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = pd.Series([4, 7, -5, 3])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now try printing out data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The string representation of a Seires displayed interactively shows the index on the left and the values on the right. Because we didn't specify an index, the default on is simply integers 0 through N-1.\n",
    "\n",
    "You can output only the values of a Series using \n",
    "```python\n",
    "data.values\n",
    "```\n",
    "or you can get only the indeces using\n",
    "```python\n",
    "data.index\n",
    "```\n",
    "Try it out below!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can specify custom indeces when intialising the Series"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "data2 = pd.Series([4, 7, -5, 3], index=[\"a\", \"b\", \"c\", \"d\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now you can use these labels to access the data similar to a normal array"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data2[\"a\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Another way to think about Serieses is as a fixed-length ordered dictionary. Furthermore, you can actually define a Series in a similar manner to a dictionary"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "cities = {\"Glasgow\" : 599650, \"Edinburgh\" : 464990, \"Abardeen\" : 196670, \"Dundee\" : 147710}\n",
    "data3 = pd.Series(cities)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Glasgow      599650\n",
       "Edinburgh    464990\n",
       "Abardeen     196670\n",
       "Dundee       147710\n",
       "dtype: int64"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can do arithmetic operations between Serieses similar to NumPy arrays. Even if you have 2 datasets with different data, arithmetic operations will be aligned according to their indeces.\n",
    "\n",
    "Let's look at an example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "cities_uk = {\"Birmingham\" : 1092330, \"Leeds\": 751485, \"Glasgow\" : 599650,\n",
    "             \"Manchester\" : 503127, \"Edinburgh\" : 464990}\n",
    "data4 = pd.Series(cities_uk)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Abardeen            NaN\n",
       "Birmingham          NaN\n",
       "Dundee              NaN\n",
       "Edinburgh      929980.0\n",
       "Glasgow       1199300.0\n",
       "Leeds               NaN\n",
       "Manchester          NaN\n",
       "dtype: float64"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data3 + data4"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice how some of the results are NaN? Well that is because there were no instances of those cities within both of the datasets. You can usually extract NaNs from a Series with\n",
    "```python\n",
    "data4.isnull()\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## DataFrame\n",
    "A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type. The DataFrame has both row and column index and can be thought of as a dict of Series all sharing the same index.\n",
    "\n",
    "The most common way to create a DataFrame is with dicts"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = {\"cities\" : [\"Glasgow\", \"Edinburgh\", \"Abardeen\", \"Dundee\"],\n",
    "        \"population\" : [599650, 464990, 196670, 147710],\n",
    "        \"year\" : [2011, 2013, 2013, 2013]}\n",
    "frame = pd.DataFrame(data)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Try printing it out"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>cities</th>\n",
       "      <th>population</th>\n",
       "      <th>year</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Glasgow</td>\n",
       "      <td>599650</td>\n",
       "      <td>2011</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Edinburgh</td>\n",
       "      <td>464990</td>\n",
       "      <td>2013</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Abardeen</td>\n",
       "      <td>196670</td>\n",
       "      <td>2013</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Dundee</td>\n",
       "      <td>147710</td>\n",
       "      <td>2013</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "      cities  population  year\n",
       "0    Glasgow      599650  2011\n",
       "1  Edinburgh      464990  2013\n",
       "2   Abardeen      196670  2013\n",
       "3     Dundee      147710  2013"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Jupyter Notebooks prints it out in a nice table but the basic version of this is also just as readable!\n",
    "\n",
    "Additionally you can also specify the order of columns during initialisation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "frame2 = pd.DataFrame(data, columns=[\"year\", \"cities\", \"population\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can retrieve a particular column from a DataFrame with\n",
    "```python\n",
    "frame[\"cities\"]\n",
    "```\n",
    "The result is going to be a Series\n",
    "\n",
    "Additionally you can retrieve a row from the dataset using\n",
    "```python\n",
    "frame[1]\n",
    "```\n",
    "Try it out below"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It is also possible to add and modify the columns of a DataFrame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "frame2[\"size\"] = 100"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>year</th>\n",
       "      <th>cities</th>\n",
       "      <th>population</th>\n",
       "      <th>size</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2011</td>\n",
       "      <td>Glasgow</td>\n",
       "      <td>599650</td>\n",
       "      <td>100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2013</td>\n",
       "      <td>Edinburgh</td>\n",
       "      <td>464990</td>\n",
       "      <td>100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2013</td>\n",
       "      <td>Abardeen</td>\n",
       "      <td>196670</td>\n",
       "      <td>100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2013</td>\n",
       "      <td>Dundee</td>\n",
       "      <td>147710</td>\n",
       "      <td>100</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   year     cities  population  size\n",
       "0  2011    Glasgow      599650   100\n",
       "1  2013  Edinburgh      464990   100\n",
       "2  2013   Abardeen      196670   100\n",
       "3  2013     Dundee      147710   100"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "frame2[\"size\"] = [175, 264, 65.1, 60]  # in km^2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Similar to dicts, columns can be deleted using\n",
    "```python\n",
    "del frame2[\"size\"]\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Another common way of creating DataFrames is from a nested dict of dicts:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "ename": "SyntaxError",
     "evalue": "invalid syntax (<ipython-input-16-a08ab2dd9de2>, line 7)",
     "output_type": "error",
     "traceback": [
      "\u001b[0;36m  File \u001b[0;32m\"<ipython-input-16-a08ab2dd9de2>\"\u001b[0;36m, line \u001b[0;32m7\u001b[0m\n\u001b[0;31m    \"Abardeen\": }\u001b[0m\n\u001b[0m                ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
     ]
    }
   ],
   "source": [
    "data2 = {\"cities\" : [\"Glasgow\", \"Edinburgh\", \"Abardeen\", \"Dundee\"],\n",
    "        \"population\" : [599650, 464990, 196670, 147710],\n",
    "        \"year\" : [2011, 2013, 2013, 2013]}\n",
    "\n",
    "data2 = {\"Glasgow\": {2011: 599650},\n",
    "        \"Edinburgh\": {2013:464990},\n",
    "        \"Abardeen\": }\n",
    "\n",
    "frame3 = pd.DataFrame(data)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is a table of different ways of intialising a DataFrame for your reference\n",
    "\n",
    "| Type | Notes |\n",
    "| --- | --- |\n",
    "| 2D ndarray | A matrix of data; passing optional row and column labels |\n",
    "| dict of arrays, lists, or tuples | Each sequence becomes a column in the DataFrame; all sequences must be the same length |\n",
    "| NumPy structured/recorded array | Treated as with the \"dict of arrays, lists or tuples\" case |\n",
    "| dict of Serires | Each value becomes a column; indexes from each Series are unioned together to<br>form the result's row index if not explicit index is passed |\n",
    "| dict of dicts | Each inner dict becomes a column; keys are unioned to form the row<br>index as in the \"dict of Series\" case |\n",
    "| List of dicts or Series | Each item becomes a row in the DataFrame; union of dict keys or<br>Series indeces become the DataFrame's column labels |\n",
    "| List of lists or tuples | Treated as the \"2D ndarray\" case |\n",
    "| Another DataFrame | The DataFrame's indexes are used unless different ones are passed |\n",
    "| NumPy MaskedArray | Like the \"2D ndarray\" case except masked values become NA/missing in the DataFrame |"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Essential Functionality\n",
    "In this section we will go through the fundemental mechanics of interacting with the data contained in a Series or DaraFrame."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Reindexing\n",
    "With pandas it is easy to restructure the order of your columns and rows using the `reindex` function. Let's have a look at an example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    1\n",
       "b    2\n",
       "c    3\n",
       "d    4\n",
       "e    5\n",
       "dtype: int64"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# first define a new Series\n",
    "s = pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])\n",
    "s"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "d    4\n",
       "b    2\n",
       "a    1\n",
       "c    3\n",
       "e    5\n",
       "dtype: int64"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Now you can reshuffle the indices\n",
    "s = s.reindex(['d', 'b', 'a', 'c', 'e'])\n",
    "s"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Easy as that! This can also be extended for DataFrames, where you can reorder both the columns and indices at the same time!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Edinburgh</th>\n",
       "      <th>Glasgow</th>\n",
       "      <th>Aberdeen</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>3</td>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Edinburgh  Glasgow  Aberdeen\n",
       "a          0        1         2\n",
       "b          3        4         5\n",
       "c          6        7         8"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# first define a new Dataframe\n",
    "data = np.reshape(np.arange(9), (3,3))\n",
    "df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
    "                  columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Now we can restructure it with reindex\n",
    "df = df.reindex(index=[\"a\", \"d\", \"c\", \"b\"],\n",
    "          columns=[\"Aberdeen\", \"Glasgow\", \"Edinburgh\", \"Dundee\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice something interesting? We can actually add new indices and columns using the `reindex` method. This results in the new slots in our table to be filled in with `NaN` values."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Removing columns/indices\n",
    "Similarl to above, it is easy to remove entries. This is done with the `drop` method and can be applied to both columns and indices:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Edinburgh</th>\n",
       "      <th>Glasgow</th>\n",
       "      <th>Aberdeen</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Edinburgh  Glasgow  Aberdeen\n",
       "a          0        1         2\n",
       "c          6        7         8"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# define new DataFrame\n",
    "data = np.reshape(np.arange(9), (3,3))\n",
    "df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
    "                  columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
    "\n",
    "df.drop(\"b\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Glasgow</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Glasgow\n",
       "a        1\n",
       "b        4\n",
       "c        7"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# You can also drop from a column\n",
    "df.drop([\"Aberdeen\", \"Edinburgh\"], axis=\"columns\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Indexing\n",
    "Series indexing works analogously to NumPy array indexing (ie. data[...]). You can also use the Serie's index values instead of only integers:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0\n",
       "b    1\n",
       "c    2\n",
       "d    3\n",
       "dtype: int64"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s = pd.Series(np.arange(4), index=['a', 'b', 'c', 'd'])\n",
    "s"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s[3]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "2"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s[\"c\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "b    1\n",
       "d    3\n",
       "dtype: int64"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s[[1,3]]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0\n",
       "b    1\n",
       "dtype: int64"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s[s<2]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A subtle difference when indexing in pandas is that unlike in normal Python, slicing here is inclusive at the end-point."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "b    1\n",
       "c    2\n",
       "dtype: int64"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s[\"b\":\"c\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "All of the above also apply to DataFrames:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Edinburgh</th>\n",
       "      <th>Glasgow</th>\n",
       "      <th>Aberdeen</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>3</td>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Edinburgh  Glasgow  Aberdeen\n",
       "a          0        1         2\n",
       "b          3        4         5\n",
       "c          6        7         8"
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = np.reshape(np.arange(9), (3,3))\n",
    "df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
    "                  columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
    "\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Edinburgh</th>\n",
       "      <th>Glasgow</th>\n",
       "      <th>Aberdeen</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>3</td>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Edinburgh  Glasgow  Aberdeen\n",
       "a          0        1         2\n",
       "b          3        4         5"
      ]
     },
     "execution_count": 31,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df[:2]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    1\n",
       "b    4\n",
       "c    7\n",
       "Name: Glasgow, dtype: int64"
      ]
     },
     "execution_count": 32,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df[\"Glasgow\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## loc and iloc\n",
    "For DataFrame label-indexing on the rows, you can use `loc` for labels and `iloc` for integer-indexing."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Edinburgh    3\n",
       "Glasgow      4\n",
       "Aberdeen     5\n",
       "Name: b, dtype: int64"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.loc[\"b\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Glasgow     4\n",
       "Aberdeen    5\n",
       "Name: b, dtype: int64"
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.loc[\"b\", [\"Glasgow\", \"Aberdeen\"]]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now let's try `iloc`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Edinburgh    3\n",
       "Glasgow      4\n",
       "Aberdeen     5\n",
       "Name: b, dtype: int64"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.iloc[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Glasgow     4\n",
       "Aberdeen    5\n",
       "Name: b, dtype: int64"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.iloc[1, [1,2]]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Edinburgh</th>\n",
       "      <th>Glasgow</th>\n",
       "      <th>Aberdeen</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>3</td>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Edinburgh  Glasgow  Aberdeen\n",
       "a          0        1         2\n",
       "b          3        4         5"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.iloc[:2]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [],
   "source": [
    "# TODO : add table summary"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Arithmetic\n",
    "When you are performing arithmetic operations between two objects, if any index pairs are not the same, the respective index in the result will be the union of the index pair. Let's have a look"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    NaN\n",
       "b    1.0\n",
       "c    3.0\n",
       "d    5.0\n",
       "e    NaN\n",
       "k    NaN\n",
       "dtype: float64"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s1 = pd.Series(np.arange(5), index=[\"a\", \"b\", \"c\", \"d\", \"e\"])\n",
    "s2 = pd.Series(np.arange(4), index=[\"b\", \"c\", \"d\", \"k\"])\n",
    "s1 + s2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The internal data alignment introduces missing values in the label locations that don't overlap. It is similar for DataFrames:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   a  b   c   d\n",
       "0  0  1   2   3\n",
       "1  4  5   6   7\n",
       "2  8  9  10  11"
      ]
     },
     "execution_count": 42,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1 = pd.DataFrame(np.arange(12).reshape((3,4)),\n",
    "                  columns=list(\"abcd\"))\n",
    "df1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "      <th>f</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    c   d   e   f\n",
       "0   0   1   2   3\n",
       "1   4   5   6   7\n",
       "2   8   9  10  11\n",
       "3  12  13  14  15"
      ]
     },
     "execution_count": 47,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df2 = pd.DataFrame(np.arange(16).reshape((4,4)),\n",
    "                  columns=list(\"cdef\"))\n",
    "df2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "      <th>f</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>2.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>10.0</td>\n",
       "      <td>12.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>18.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    a   b     c     d   e   f\n",
       "0 NaN NaN   2.0   4.0 NaN NaN\n",
       "1 NaN NaN  10.0  12.0 NaN NaN\n",
       "2 NaN NaN  18.0  20.0 NaN NaN\n",
       "3 NaN NaN   NaN   NaN NaN NaN"
      ]
     },
     "execution_count": 48,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# adding the two\n",
    "df1+df2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice how where we don't have matching values from `df1` and `df2` the output of the addition opretion is `NaN`, since there are no two numbers to add.\n",
    "\n",
    "Well, we can \"fix\" that by filling in the `NaN` values. This effectively tells pandas where there are no two values to add, assume that the missing value is just zero."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "      <th>f</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>12.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>7.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>11.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>12.0</td>\n",
       "      <td>13.0</td>\n",
       "      <td>14.0</td>\n",
       "      <td>15.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     a    b     c     d     e     f\n",
       "0  0.0  1.0   2.0   4.0   2.0   3.0\n",
       "1  4.0  5.0  10.0  12.0   6.0   7.0\n",
       "2  8.0  9.0  18.0  20.0  10.0  11.0\n",
       "3  NaN  NaN  12.0  13.0  14.0  15.0"
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1.add(df2, fill_value=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Another important point here is although the normal arithmetic operations work here, there also exist dedicated methods like `DataFrame.add()` which achieve the same functionality + a bit extra.\n",
    "\n",
    "Here's a list of all arithmetic operations within pandas:\n",
    "\n",
    "| Operator | Method | Description |\n",
    "| -- | -- | -- |\n",
    "| + | add, radd | Addition |\n",
    "| - | sub, rsub | Subtraction |\n",
    "| / | div, rdiv | Division |\n",
    "| // | floordiv, rfloordiv | Floor division |\n",
    "| * | mul, rmul | Multiplication |\n",
    "| ** | pow, rpow | Exponentiation |\n",
    "\n",
    "Notice how some of the methods have `r` in front of them? That stands for reversed and effectively reverses the operands. For example\n",
    "\n",
    "```python\n",
    "df1.div(df2)\n",
    "```\n",
    "would be the same as\n",
    "```python\n",
    "df2/df1\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Broadcasting\n",
    "Similar to numpy, in pandas you can also broadcast data structures. Let's consider a simple example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    0   1   2   3\n",
       "0   0   1   2   3\n",
       "1   4   5   6   7\n",
       "2   8   9  10  11\n",
       "3  12  13  14  15"
      ]
     },
     "execution_count": 59,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1 = pd.DataFrame(np.arange(16).reshape((4,4)))\n",
    "df1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    0\n",
       "1    1\n",
       "2    2\n",
       "3    3\n",
       "dtype: int64"
      ]
     },
     "execution_count": 60,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df2 = pd.Series(np.arange(4))\n",
    "df2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4</td>\n",
       "      <td>4</td>\n",
       "      <td>4</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8</td>\n",
       "      <td>8</td>\n",
       "      <td>8</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>12</td>\n",
       "      <td>12</td>\n",
       "      <td>12</td>\n",
       "      <td>12</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    0   1   2   3\n",
       "0   0   0   0   0\n",
       "1   4   4   4   4\n",
       "2   8   8   8   8\n",
       "3  12  12  12  12"
      ]
     },
     "execution_count": 61,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1 - df2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice how the Series of [0, 1, 2, 3] got removed from each row? That is called broadcasting.\n",
    "\n",
    "It can also be used for columns but for that you have to use the method arirthmetic operations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>3</td>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "      <td>12</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   0   1   2   3\n",
       "0  0   1   2   3\n",
       "1  3   4   5   6\n",
       "2  6   7   8   9\n",
       "3  9  10  11  12"
      ]
     },
     "execution_count": 62,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1.sub(df2, axis=\"index\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Sorting\n",
    "Sorting is an important built-in operation of pandas. Let's have a look at how you can do it:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>d</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    0   1   2   3\n",
       "b   0   1   2   3\n",
       "a   4   5   6   7\n",
       "d   8   9  10  11\n",
       "c  12  13  14  15"
      ]
     },
     "execution_count": 68,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1 = pd.DataFrame(np.arange(16).reshape((4,4)), index=[\"b\", \"a\", \"d\", \"c\"])\n",
    "df1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>d</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    0   1   2   3\n",
       "a   4   5   6   7\n",
       "b   0   1   2   3\n",
       "c  12  13  14  15\n",
       "d   8   9  10  11"
      ]
     },
     "execution_count": 71,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df2 = df1.sort_index()\n",
    "df2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Easy as that. Furthremore, you can also sort along the column axis with\n",
    "```python\n",
    "df1.sort_index(axis=1)\n",
    "```\n",
    "\n",
    "You can also sort by the actual values inside but you have to give the column by which you want to sort."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   a\n",
       "0  4\n",
       "1  3\n",
       "2  6\n",
       "3  1\n",
       "4  3\n",
       "5  5"
      ]
     },
     "execution_count": 81,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1 = pd.DataFrame([4, 3, 6, 1, 3, 5], columns=[\"a\"])\n",
    "df1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 82,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   a\n",
       "3  1\n",
       "1  3\n",
       "4  3\n",
       "0  4\n",
       "5  5\n",
       "2  6"
      ]
     },
     "execution_count": 82,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1.sort_values(by=\"a\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Summarizing and computing descriptive stats\n",
    "`pandas` is equipped with common mathematical and statistical methods. Most of which fall into the category of reductions or summary statistics. These are mthods that extract a single value from a list of values. For example, you can extract the mean of a `Series` object like this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>16</td>\n",
       "      <td>17</td>\n",
       "      <td>18</td>\n",
       "      <td>19</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    a   b   c   d\n",
       "0   0   1   2   3\n",
       "1   4   5   6   7\n",
       "2   8   9  10  11\n",
       "3  12  13  14  15\n",
       "4  16  17  18  19"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df = pd.DataFrame(np.arange(20).reshape(5,4),\n",
    "                 columns=[\"a\", \"b\", \"c\", \"d\"])\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    40\n",
       "b    45\n",
       "c    50\n",
       "d    55\n",
       "dtype: int64"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.sum()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice how that created the sum of each column?\n",
    "\n",
    "Well you can actually make that the other way around by adding an extra option to `sum()`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0     6\n",
       "1    22\n",
       "2    38\n",
       "3    54\n",
       "4    70\n",
       "dtype: int64"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.sum(axis=\"columns\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A similar method also exists for obtaining the mean of data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a     8.0\n",
       "b     9.0\n",
       "c    10.0\n",
       "d    11.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, the mother of the methods we discussed here is `describe()` "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>count</th>\n",
       "      <td>5.000000</td>\n",
       "      <td>5.000000</td>\n",
       "      <td>5.000000</td>\n",
       "      <td>5.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>mean</th>\n",
       "      <td>8.000000</td>\n",
       "      <td>9.000000</td>\n",
       "      <td>10.000000</td>\n",
       "      <td>11.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>std</th>\n",
       "      <td>6.324555</td>\n",
       "      <td>6.324555</td>\n",
       "      <td>6.324555</td>\n",
       "      <td>6.324555</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>min</th>\n",
       "      <td>0.000000</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>2.000000</td>\n",
       "      <td>3.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25%</th>\n",
       "      <td>4.000000</td>\n",
       "      <td>5.000000</td>\n",
       "      <td>6.000000</td>\n",
       "      <td>7.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>50%</th>\n",
       "      <td>8.000000</td>\n",
       "      <td>9.000000</td>\n",
       "      <td>10.000000</td>\n",
       "      <td>11.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>75%</th>\n",
       "      <td>12.000000</td>\n",
       "      <td>13.000000</td>\n",
       "      <td>14.000000</td>\n",
       "      <td>15.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>max</th>\n",
       "      <td>16.000000</td>\n",
       "      <td>17.000000</td>\n",
       "      <td>18.000000</td>\n",
       "      <td>19.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "               a          b          c          d\n",
       "count   5.000000   5.000000   5.000000   5.000000\n",
       "mean    8.000000   9.000000  10.000000  11.000000\n",
       "std     6.324555   6.324555   6.324555   6.324555\n",
       "min     0.000000   1.000000   2.000000   3.000000\n",
       "25%     4.000000   5.000000   6.000000   7.000000\n",
       "50%     8.000000   9.000000  10.000000  11.000000\n",
       "75%    12.000000  13.000000  14.000000  15.000000\n",
       "max    16.000000  17.000000  18.000000  19.000000"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.describe()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here are all of the summary methods:\n",
    "\n",
    "| Method | Description |\n",
    "| -- | -- |\n",
    "| count          | Number of non-NA values |\n",
    "| describe       | Set of summary statistics |\n",
    "| min, max       | Minimum, maximum values |\n",
    "| argmin, argmax | Index locations at which the minimum or maximum value is obtained | \n",
    "| quantile       | Compute sample quantile ranging from 0 to 1 |\n",
    "| sum            | Sum of values |\n",
    "| mean           | Mean of values |\n",
    "| median         | Arithmetic median of values |\n",
    "| mad            | Mean absolute deviation from mean value |\n",
    "| prod           | Product of all values |\n",
    "| var            | Sample variance of values\n",
    "| std            | Sample standard deviation of values\n",
    "| cumsum         | Cumulative sum of values |\n",
    "| cummin, cummax | Cumulative minimum or maximum of values, respectively |\n",
    "| cumprod        | Cumulative product of values |"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Data Loading and Storing\n",
    "Accessing data is a necessary first step for data science. In this section the focus will be on data input and output in various formats using `pandas`\n",
    "\n",
    "Data usually fall into these categories:\n",
    "- text files\n",
    "- binary files (more efficient space-wise)\n",
    "- web data\n",
    "\n",
    "## Text formats\n",
    "The most comman format in this category is by far `.csv`. This is an easy to read file format which is usually visualised like a spreadsheet. The data itself is usually seperated with a `,` which is called the **delimiter**.\n",
    "\n",
    "Here is an example of a `.csv` file:\n",
    "\n",
    "```\n",
    "\"Sell\", \"List\", \"Living\", \"Rooms\", \"Beds\", \"Baths\", \"Age\", \"Acres\", \"Taxes\"\n",
    "142, 160, 28, 10, 5, 3,  60, 0.28,  3167\n",
    "175, 180, 18,  8, 4, 1,  12, 0.43,  4033\n",
    "129, 132, 13,  6, 3, 1,  41, 0.33,  1471\n",
    "138, 140, 17,  7, 3, 1,  22, 0.46,  3204\n",
    "232, 240, 25,  8, 4, 3,   5, 2.05,  3613\n",
    "135, 140, 18,  7, 4, 3,   9, 0.57,  3028\n",
    "150, 160, 20,  8, 4, 3,  18, 4.00,  3131\n",
    "207, 225, 22,  8, 4, 2,  16, 2.22,  5158\n",
    "271, 285, 30, 10, 5, 2,  30, 0.53,  5702\n",
    " 89,  90, 10,  5, 3, 1,  43, 0.30,  2054\n",
    " ```\n",
    "\n",
    "It detailed home sale statistics. The first line is called the header, and you can imagine that it is the name of the columns of a spreadsheet.\n",
    "\n",
    "Let's now see how we can load this data and analyse it. The file is located in the folder `data` and is called `homes.csv`. We can read it like this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "homes = pd.read_csv(\"data/homes.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Sell</th>\n",
       "      <th>List</th>\n",
       "      <th>Living</th>\n",
       "      <th>Rooms</th>\n",
       "      <th>Beds</th>\n",
       "      <th>Baths</th>\n",
       "      <th>Age</th>\n",
       "      <th>Acres</th>\n",
       "      <th>Taxes</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>142</td>\n",
       "      <td>160</td>\n",
       "      <td>28</td>\n",
       "      <td>10</td>\n",
       "      <td>5</td>\n",
       "      <td>3</td>\n",
       "      <td>60</td>\n",
       "      <td>0.28</td>\n",
       "      <td>3167</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>175</td>\n",
       "      <td>180</td>\n",
       "      <td>18</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>1</td>\n",
       "      <td>12</td>\n",
       "      <td>0.43</td>\n",
       "      <td>4033</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>129</td>\n",
       "      <td>132</td>\n",
       "      <td>13</td>\n",
       "      <td>6</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "      <td>41</td>\n",
       "      <td>0.33</td>\n",
       "      <td>1471</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>138</td>\n",
       "      <td>140</td>\n",
       "      <td>17</td>\n",
       "      <td>7</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "      <td>22</td>\n",
       "      <td>0.46</td>\n",
       "      <td>3204</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>232</td>\n",
       "      <td>240</td>\n",
       "      <td>25</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>3</td>\n",
       "      <td>5</td>\n",
       "      <td>2.05</td>\n",
       "      <td>3613</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>135</td>\n",
       "      <td>140</td>\n",
       "      <td>18</td>\n",
       "      <td>7</td>\n",
       "      <td>4</td>\n",
       "      <td>3</td>\n",
       "      <td>9</td>\n",
       "      <td>0.57</td>\n",
       "      <td>3028</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>150</td>\n",
       "      <td>160</td>\n",
       "      <td>20</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>3</td>\n",
       "      <td>18</td>\n",
       "      <td>4.00</td>\n",
       "      <td>3131</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>207</td>\n",
       "      <td>225</td>\n",
       "      <td>22</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>16</td>\n",
       "      <td>2.22</td>\n",
       "      <td>5158</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>271</td>\n",
       "      <td>285</td>\n",
       "      <td>30</td>\n",
       "      <td>10</td>\n",
       "      <td>5</td>\n",
       "      <td>2</td>\n",
       "      <td>30</td>\n",
       "      <td>0.53</td>\n",
       "      <td>5702</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>89</td>\n",
       "      <td>90</td>\n",
       "      <td>10</td>\n",
       "      <td>5</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "      <td>43</td>\n",
       "      <td>0.30</td>\n",
       "      <td>2054</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>153</td>\n",
       "      <td>157</td>\n",
       "      <td>22</td>\n",
       "      <td>8</td>\n",
       "      <td>3</td>\n",
       "      <td>3</td>\n",
       "      <td>18</td>\n",
       "      <td>0.38</td>\n",
       "      <td>4127</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>87</td>\n",
       "      <td>90</td>\n",
       "      <td>16</td>\n",
       "      <td>7</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "      <td>50</td>\n",
       "      <td>0.65</td>\n",
       "      <td>1445</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>234</td>\n",
       "      <td>238</td>\n",
       "      <td>25</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>1.61</td>\n",
       "      <td>2087</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>106</td>\n",
       "      <td>116</td>\n",
       "      <td>20</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>1</td>\n",
       "      <td>13</td>\n",
       "      <td>0.22</td>\n",
       "      <td>2818</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>175</td>\n",
       "      <td>180</td>\n",
       "      <td>22</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>15</td>\n",
       "      <td>2.06</td>\n",
       "      <td>3917</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>165</td>\n",
       "      <td>170</td>\n",
       "      <td>17</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>33</td>\n",
       "      <td>0.46</td>\n",
       "      <td>2220</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>166</td>\n",
       "      <td>170</td>\n",
       "      <td>23</td>\n",
       "      <td>9</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>37</td>\n",
       "      <td>0.27</td>\n",
       "      <td>3498</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>136</td>\n",
       "      <td>140</td>\n",
       "      <td>19</td>\n",
       "      <td>7</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "      <td>22</td>\n",
       "      <td>0.63</td>\n",
       "      <td>3607</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>148</td>\n",
       "      <td>160</td>\n",
       "      <td>17</td>\n",
       "      <td>7</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>13</td>\n",
       "      <td>0.36</td>\n",
       "      <td>3648</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>151</td>\n",
       "      <td>153</td>\n",
       "      <td>19</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>24</td>\n",
       "      <td>0.34</td>\n",
       "      <td>3561</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>180</td>\n",
       "      <td>190</td>\n",
       "      <td>24</td>\n",
       "      <td>9</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>10</td>\n",
       "      <td>1.55</td>\n",
       "      <td>4681</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>293</td>\n",
       "      <td>305</td>\n",
       "      <td>26</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>3</td>\n",
       "      <td>6</td>\n",
       "      <td>0.46</td>\n",
       "      <td>7088</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>167</td>\n",
       "      <td>170</td>\n",
       "      <td>20</td>\n",
       "      <td>9</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>46</td>\n",
       "      <td>0.46</td>\n",
       "      <td>3482</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>190</td>\n",
       "      <td>193</td>\n",
       "      <td>22</td>\n",
       "      <td>9</td>\n",
       "      <td>5</td>\n",
       "      <td>2</td>\n",
       "      <td>37</td>\n",
       "      <td>0.48</td>\n",
       "      <td>3920</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>184</td>\n",
       "      <td>190</td>\n",
       "      <td>21</td>\n",
       "      <td>9</td>\n",
       "      <td>5</td>\n",
       "      <td>2</td>\n",
       "      <td>27</td>\n",
       "      <td>1.30</td>\n",
       "      <td>4162</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>157</td>\n",
       "      <td>165</td>\n",
       "      <td>20</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>7</td>\n",
       "      <td>0.30</td>\n",
       "      <td>3785</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>26</th>\n",
       "      <td>110</td>\n",
       "      <td>115</td>\n",
       "      <td>16</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>1</td>\n",
       "      <td>26</td>\n",
       "      <td>0.29</td>\n",
       "      <td>3103</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>27</th>\n",
       "      <td>135</td>\n",
       "      <td>145</td>\n",
       "      <td>18</td>\n",
       "      <td>7</td>\n",
       "      <td>4</td>\n",
       "      <td>1</td>\n",
       "      <td>35</td>\n",
       "      <td>0.43</td>\n",
       "      <td>3363</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>567</td>\n",
       "      <td>625</td>\n",
       "      <td>64</td>\n",
       "      <td>11</td>\n",
       "      <td>4</td>\n",
       "      <td>4</td>\n",
       "      <td>4</td>\n",
       "      <td>0.85</td>\n",
       "      <td>12192</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>180</td>\n",
       "      <td>185</td>\n",
       "      <td>20</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>11</td>\n",
       "      <td>1.00</td>\n",
       "      <td>3831</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>30</th>\n",
       "      <td>183</td>\n",
       "      <td>188</td>\n",
       "      <td>17</td>\n",
       "      <td>7</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>16</td>\n",
       "      <td>3.00</td>\n",
       "      <td>3564</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>31</th>\n",
       "      <td>185</td>\n",
       "      <td>193</td>\n",
       "      <td>20</td>\n",
       "      <td>9</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>56</td>\n",
       "      <td>6.49</td>\n",
       "      <td>3765</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>32</th>\n",
       "      <td>152</td>\n",
       "      <td>155</td>\n",
       "      <td>17</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>1</td>\n",
       "      <td>33</td>\n",
       "      <td>0.70</td>\n",
       "      <td>3361</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>33</th>\n",
       "      <td>148</td>\n",
       "      <td>153</td>\n",
       "      <td>13</td>\n",
       "      <td>6</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>22</td>\n",
       "      <td>0.39</td>\n",
       "      <td>3950</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>34</th>\n",
       "      <td>152</td>\n",
       "      <td>159</td>\n",
       "      <td>15</td>\n",
       "      <td>7</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "      <td>25</td>\n",
       "      <td>0.59</td>\n",
       "      <td>3055</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>35</th>\n",
       "      <td>146</td>\n",
       "      <td>150</td>\n",
       "      <td>16</td>\n",
       "      <td>7</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "      <td>31</td>\n",
       "      <td>0.36</td>\n",
       "      <td>2950</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>36</th>\n",
       "      <td>170</td>\n",
       "      <td>190</td>\n",
       "      <td>24</td>\n",
       "      <td>10</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>33</td>\n",
       "      <td>0.57</td>\n",
       "      <td>3346</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>37</th>\n",
       "      <td>127</td>\n",
       "      <td>130</td>\n",
       "      <td>20</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>1</td>\n",
       "      <td>65</td>\n",
       "      <td>0.40</td>\n",
       "      <td>3334</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>38</th>\n",
       "      <td>265</td>\n",
       "      <td>270</td>\n",
       "      <td>36</td>\n",
       "      <td>10</td>\n",
       "      <td>6</td>\n",
       "      <td>3</td>\n",
       "      <td>33</td>\n",
       "      <td>1.20</td>\n",
       "      <td>5853</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39</th>\n",
       "      <td>157</td>\n",
       "      <td>163</td>\n",
       "      <td>18</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>12</td>\n",
       "      <td>1.13</td>\n",
       "      <td>3982</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>40</th>\n",
       "      <td>128</td>\n",
       "      <td>135</td>\n",
       "      <td>17</td>\n",
       "      <td>9</td>\n",
       "      <td>4</td>\n",
       "      <td>1</td>\n",
       "      <td>25</td>\n",
       "      <td>0.52</td>\n",
       "      <td>3374</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>41</th>\n",
       "      <td>110</td>\n",
       "      <td>120</td>\n",
       "      <td>15</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>11</td>\n",
       "      <td>0.59</td>\n",
       "      <td>3119</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>42</th>\n",
       "      <td>123</td>\n",
       "      <td>130</td>\n",
       "      <td>18</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>43</td>\n",
       "      <td>0.39</td>\n",
       "      <td>3268</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>43</th>\n",
       "      <td>212</td>\n",
       "      <td>230</td>\n",
       "      <td>39</td>\n",
       "      <td>12</td>\n",
       "      <td>5</td>\n",
       "      <td>3</td>\n",
       "      <td>202</td>\n",
       "      <td>4.29</td>\n",
       "      <td>3648</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>44</th>\n",
       "      <td>145</td>\n",
       "      <td>145</td>\n",
       "      <td>18</td>\n",
       "      <td>8</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>44</td>\n",
       "      <td>0.22</td>\n",
       "      <td>2783</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>45</th>\n",
       "      <td>129</td>\n",
       "      <td>135</td>\n",
       "      <td>10</td>\n",
       "      <td>6</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "      <td>15</td>\n",
       "      <td>1.00</td>\n",
       "      <td>2438</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>46</th>\n",
       "      <td>143</td>\n",
       "      <td>145</td>\n",
       "      <td>21</td>\n",
       "      <td>7</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>10</td>\n",
       "      <td>1.20</td>\n",
       "      <td>3529</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>47</th>\n",
       "      <td>247</td>\n",
       "      <td>252</td>\n",
       "      <td>29</td>\n",
       "      <td>9</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>4</td>\n",
       "      <td>1.25</td>\n",
       "      <td>4626</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>48</th>\n",
       "      <td>111</td>\n",
       "      <td>120</td>\n",
       "      <td>15</td>\n",
       "      <td>8</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "      <td>97</td>\n",
       "      <td>1.11</td>\n",
       "      <td>3205</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49</th>\n",
       "      <td>133</td>\n",
       "      <td>145</td>\n",
       "      <td>26</td>\n",
       "      <td>7</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "      <td>42</td>\n",
       "      <td>0.36</td>\n",
       "      <td>3059</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    Sell   List   Living   Rooms   Beds   Baths   Age   Acres   Taxes\n",
       "0    142    160       28      10      5       3    60    0.28    3167\n",
       "1    175    180       18       8      4       1    12    0.43    4033\n",
       "2    129    132       13       6      3       1    41    0.33    1471\n",
       "3    138    140       17       7      3       1    22    0.46    3204\n",
       "4    232    240       25       8      4       3     5    2.05    3613\n",
       "5    135    140       18       7      4       3     9    0.57    3028\n",
       "6    150    160       20       8      4       3    18    4.00    3131\n",
       "7    207    225       22       8      4       2    16    2.22    5158\n",
       "8    271    285       30      10      5       2    30    0.53    5702\n",
       "9     89     90       10       5      3       1    43    0.30    2054\n",
       "10   153    157       22       8      3       3    18    0.38    4127\n",
       "11    87     90       16       7      3       1    50    0.65    1445\n",
       "12   234    238       25       8      4       2     2    1.61    2087\n",
       "13   106    116       20       8      4       1    13    0.22    2818\n",
       "14   175    180       22       8      4       2    15    2.06    3917\n",
       "15   165    170       17       8      4       2    33    0.46    2220\n",
       "16   166    170       23       9      4       2    37    0.27    3498\n",
       "17   136    140       19       7      3       1    22    0.63    3607\n",
       "18   148    160       17       7      3       2    13    0.36    3648\n",
       "19   151    153       19       8      4       2    24    0.34    3561\n",
       "20   180    190       24       9      4       2    10    1.55    4681\n",
       "21   293    305       26       8      4       3     6    0.46    7088\n",
       "22   167    170       20       9      4       2    46    0.46    3482\n",
       "23   190    193       22       9      5       2    37    0.48    3920\n",
       "24   184    190       21       9      5       2    27    1.30    4162\n",
       "25   157    165       20       8      4       2     7    0.30    3785\n",
       "26   110    115       16       8      4       1    26    0.29    3103\n",
       "27   135    145       18       7      4       1    35    0.43    3363\n",
       "28   567    625       64      11      4       4     4    0.85   12192\n",
       "29   180    185       20       8      4       2    11    1.00    3831\n",
       "30   183    188       17       7      3       2    16    3.00    3564\n",
       "31   185    193       20       9      3       2    56    6.49    3765\n",
       "32   152    155       17       8      4       1    33    0.70    3361\n",
       "33   148    153       13       6      3       2    22    0.39    3950\n",
       "34   152    159       15       7      3       1    25    0.59    3055\n",
       "35   146    150       16       7      3       1    31    0.36    2950\n",
       "36   170    190       24      10      3       2    33    0.57    3346\n",
       "37   127    130       20       8      4       1    65    0.40    3334\n",
       "38   265    270       36      10      6       3    33    1.20    5853\n",
       "39   157    163       18       8      4       2    12    1.13    3982\n",
       "40   128    135       17       9      4       1    25    0.52    3374\n",
       "41   110    120       15       8      4       2    11    0.59    3119\n",
       "42   123    130       18       8      4       2    43    0.39    3268\n",
       "43   212    230       39      12      5       3   202    4.29    3648\n",
       "44   145    145       18       8      4       2    44    0.22    2783\n",
       "45   129    135       10       6      3       1    15    1.00    2438\n",
       "46   143    145       21       7      4       2    10    1.20    3529\n",
       "47   247    252       29       9      4       2     4    1.25    4626\n",
       "48   111    120       15       8      3       1    97    1.11    3205\n",
       "49   133    145       26       7      3       1    42    0.36    3059"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "homes"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Easy right?"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise\n",
    "Find the mean selling price of the homes in `data/homes.csv`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `read_csv` function has a lot of optional arguments (more than 50). It's impossible to memorise all of them - it's usually best just to look up the particular functionality when you need it. \n",
    "\n",
    "You can search `pandas read_csv` online and find all of the documentation.\n",
    "\n",
    "There's also many other functions that can read textual data. Here are some of them:\n",
    "\n",
    "| Function | Description\n",
    "| -- | -- |\n",
    "| read_csv       | Load delimited data from a file, URL, or file-like object. Default delimiter is comma `,` |\n",
    "| read_table     | Load delimited data from a file, URL, or file-like object. Default delimiter is tab `\\t` |\n",
    "| read_fwf       | Read data in fixed0width column format (i.e. no delimiters |\n",
    "| read_clipboard | Reads the last object you have copied (Ctrl-C) |\n",
    "| read_excel     | Read tabular data from Excel XLS or XLSX file |\n",
    "| read_hdf       | Read HDF5 file written by pandas |\n",
    "| read_html      | Read all tables found in the given HTML document |\n",
    "| read_json      | Read dara from a JSON string representation |\n",
    "| read_sql       | Read the results of a SQL query |\n",
    "\n",
    "*Note: there are also other loading functions which are not touched upon here*"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise\n",
    "There is another file in the data folder called `homes.xlsx`. Can you read it? Can you spot anythin different?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Sell</th>\n",
       "      <th>List</th>\n",
       "      <th>Living</th>\n",
       "      <th>Rooms</th>\n",
       "      <th>Beds</th>\n",
       "      <th>Baths</th>\n",
       "      <th>Age</th>\n",
       "      <th>Acres</th>\n",
       "      <th>Taxes</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>142</td>\n",
       "      <td>160.0</td>\n",
       "      <td>28.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>60.0</td>\n",
       "      <td>0.28</td>\n",
       "      <td>3167.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>175</td>\n",
       "      <td>180.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>12.0</td>\n",
       "      <td>0.43</td>\n",
       "      <td>4033.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>129</td>\n",
       "      <td>132.0</td>\n",
       "      <td>13.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>41.0</td>\n",
       "      <td>0.33</td>\n",
       "      <td>1471.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>138</td>\n",
       "      <td>140.0</td>\n",
       "      <td>17.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>0.46</td>\n",
       "      <td>3204.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>232</td>\n",
       "      <td>240.0</td>\n",
       "      <td>25.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>2.05</td>\n",
       "      <td>3613.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>135</td>\n",
       "      <td>140.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>0.57</td>\n",
       "      <td>3028.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>150</td>\n",
       "      <td>160.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>4.00</td>\n",
       "      <td>3131.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>207</td>\n",
       "      <td>225.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>16.0</td>\n",
       "      <td>2.22</td>\n",
       "      <td>5158.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>271</td>\n",
       "      <td>285.0</td>\n",
       "      <td>30.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>30.0</td>\n",
       "      <td>0.53</td>\n",
       "      <td>5702.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>89</td>\n",
       "      <td>90.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>43.0</td>\n",
       "      <td>0.30</td>\n",
       "      <td>2054.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>153</td>\n",
       "      <td>157.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>0.38</td>\n",
       "      <td>4127.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>87</td>\n",
       "      <td>90.0</td>\n",
       "      <td>16.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>50.0</td>\n",
       "      <td>0.65</td>\n",
       "      <td>1445.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>234</td>\n",
       "      <td>238.0</td>\n",
       "      <td>25.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>1.61</td>\n",
       "      <td>2087.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>106</td>\n",
       "      <td>116.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>13.0</td>\n",
       "      <td>0.22</td>\n",
       "      <td>2818.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>175</td>\n",
       "      <td>180.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>2.06</td>\n",
       "      <td>3917.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>165</td>\n",
       "      <td>170.0</td>\n",
       "      <td>17.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>33.0</td>\n",
       "      <td>0.46</td>\n",
       "      <td>2220.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>166</td>\n",
       "      <td>170.0</td>\n",
       "      <td>23.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>37.0</td>\n",
       "      <td>0.27</td>\n",
       "      <td>3498.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>136</td>\n",
       "      <td>140.0</td>\n",
       "      <td>19.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>0.63</td>\n",
       "      <td>3607.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>148</td>\n",
       "      <td>160.0</td>\n",
       "      <td>17.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>13.0</td>\n",
       "      <td>0.36</td>\n",
       "      <td>3648.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>151</td>\n",
       "      <td>153.0</td>\n",
       "      <td>19.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>24.0</td>\n",
       "      <td>0.34</td>\n",
       "      <td>3561.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>180</td>\n",
       "      <td>190.0</td>\n",
       "      <td>24.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>1.55</td>\n",
       "      <td>4681.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>293</td>\n",
       "      <td>305.0</td>\n",
       "      <td>26.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>0.46</td>\n",
       "      <td>7088.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>167</td>\n",
       "      <td>170.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>46.0</td>\n",
       "      <td>0.46</td>\n",
       "      <td>3482.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>190</td>\n",
       "      <td>193.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>37.0</td>\n",
       "      <td>0.48</td>\n",
       "      <td>3920.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>184</td>\n",
       "      <td>190.0</td>\n",
       "      <td>21.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>27.0</td>\n",
       "      <td>1.30</td>\n",
       "      <td>4162.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>157</td>\n",
       "      <td>165.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>0.30</td>\n",
       "      <td>3785.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>26</th>\n",
       "      <td>110</td>\n",
       "      <td>115.0</td>\n",
       "      <td>16.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>26.0</td>\n",
       "      <td>0.29</td>\n",
       "      <td>3103.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>27</th>\n",
       "      <td>135</td>\n",
       "      <td>145.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>35.0</td>\n",
       "      <td>0.43</td>\n",
       "      <td>3363.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>567</td>\n",
       "      <td>625.0</td>\n",
       "      <td>64.0</td>\n",
       "      <td>11.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>0.85</td>\n",
       "      <td>12192.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>180</td>\n",
       "      <td>185.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>11.0</td>\n",
       "      <td>1.00</td>\n",
       "      <td>3831.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>30</th>\n",
       "      <td>183</td>\n",
       "      <td>188.0</td>\n",
       "      <td>17.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>16.0</td>\n",
       "      <td>3.00</td>\n",
       "      <td>3564.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>31</th>\n",
       "      <td>185</td>\n",
       "      <td>193.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>56.0</td>\n",
       "      <td>6.49</td>\n",
       "      <td>3765.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>32</th>\n",
       "      <td>152</td>\n",
       "      <td>155.0</td>\n",
       "      <td>17.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>33.0</td>\n",
       "      <td>0.70</td>\n",
       "      <td>3361.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>33</th>\n",
       "      <td>148</td>\n",
       "      <td>153.0</td>\n",
       "      <td>13.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>0.39</td>\n",
       "      <td>3950.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>34</th>\n",
       "      <td>152</td>\n",
       "      <td>159.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>25.0</td>\n",
       "      <td>0.59</td>\n",
       "      <td>3055.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>35</th>\n",
       "      <td>146</td>\n",
       "      <td>150.0</td>\n",
       "      <td>16.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>31.0</td>\n",
       "      <td>0.36</td>\n",
       "      <td>2950.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>36</th>\n",
       "      <td>170</td>\n",
       "      <td>190.0</td>\n",
       "      <td>24.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>33.0</td>\n",
       "      <td>0.57</td>\n",
       "      <td>3346.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>37</th>\n",
       "      <td>127</td>\n",
       "      <td>130.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>65.0</td>\n",
       "      <td>0.40</td>\n",
       "      <td>3334.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>38</th>\n",
       "      <td>265</td>\n",
       "      <td>270.0</td>\n",
       "      <td>36.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>33.0</td>\n",
       "      <td>1.20</td>\n",
       "      <td>5853.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39</th>\n",
       "      <td>157</td>\n",
       "      <td>163.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>12.0</td>\n",
       "      <td>1.13</td>\n",
       "      <td>3982.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>40</th>\n",
       "      <td>128</td>\n",
       "      <td>135.0</td>\n",
       "      <td>17.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>25.0</td>\n",
       "      <td>0.52</td>\n",
       "      <td>3374.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>41</th>\n",
       "      <td>110</td>\n",
       "      <td>120.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>11.0</td>\n",
       "      <td>0.59</td>\n",
       "      <td>3119.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>42</th>\n",
       "      <td>123</td>\n",
       "      <td>130.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>43.0</td>\n",
       "      <td>0.39</td>\n",
       "      <td>3268.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>43</th>\n",
       "      <td>212</td>\n",
       "      <td>230.0</td>\n",
       "      <td>39.0</td>\n",
       "      <td>12.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>202.0</td>\n",
       "      <td>4.29</td>\n",
       "      <td>3648.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>44</th>\n",
       "      <td>145</td>\n",
       "      <td>145.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>44.0</td>\n",
       "      <td>0.22</td>\n",
       "      <td>2783.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>45</th>\n",
       "      <td>129</td>\n",
       "      <td>135.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>1.00</td>\n",
       "      <td>2438.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>46</th>\n",
       "      <td>143</td>\n",
       "      <td>145.0</td>\n",
       "      <td>21.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>1.20</td>\n",
       "      <td>3529.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>47</th>\n",
       "      <td>247</td>\n",
       "      <td>252.0</td>\n",
       "      <td>29.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>1.25</td>\n",
       "      <td>4626.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>48</th>\n",
       "      <td>111</td>\n",
       "      <td>120.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>97.0</td>\n",
       "      <td>1.11</td>\n",
       "      <td>3205.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49</th>\n",
       "      <td>133</td>\n",
       "      <td>145.0</td>\n",
       "      <td>26.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>42.0</td>\n",
       "      <td>0.36</td>\n",
       "      <td>3059.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>50</th>\n",
       "      <td></td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Sell   List   Living   Rooms   Beds   Baths    Age   Acres    Taxes\n",
       "0   142  160.0     28.0    10.0    5.0     3.0   60.0    0.28   3167.0\n",
       "1   175  180.0     18.0     8.0    4.0     1.0   12.0    0.43   4033.0\n",
       "2   129  132.0     13.0     6.0    3.0     1.0   41.0    0.33   1471.0\n",
       "3   138  140.0     17.0     7.0    3.0     1.0   22.0    0.46   3204.0\n",
       "4   232  240.0     25.0     8.0    4.0     3.0    5.0    2.05   3613.0\n",
       "5   135  140.0     18.0     7.0    4.0     3.0    9.0    0.57   3028.0\n",
       "6   150  160.0     20.0     8.0    4.0     3.0   18.0    4.00   3131.0\n",
       "7   207  225.0     22.0     8.0    4.0     2.0   16.0    2.22   5158.0\n",
       "8   271  285.0     30.0    10.0    5.0     2.0   30.0    0.53   5702.0\n",
       "9    89   90.0     10.0     5.0    3.0     1.0   43.0    0.30   2054.0\n",
       "10  153  157.0     22.0     8.0    3.0     3.0   18.0    0.38   4127.0\n",
       "11   87   90.0     16.0     7.0    3.0     1.0   50.0    0.65   1445.0\n",
       "12  234  238.0     25.0     8.0    4.0     2.0    2.0    1.61   2087.0\n",
       "13  106  116.0     20.0     8.0    4.0     1.0   13.0    0.22   2818.0\n",
       "14  175  180.0     22.0     8.0    4.0     2.0   15.0    2.06   3917.0\n",
       "15  165  170.0     17.0     8.0    4.0     2.0   33.0    0.46   2220.0\n",
       "16  166  170.0     23.0     9.0    4.0     2.0   37.0    0.27   3498.0\n",
       "17  136  140.0     19.0     7.0    3.0     1.0   22.0    0.63   3607.0\n",
       "18  148  160.0     17.0     7.0    3.0     2.0   13.0    0.36   3648.0\n",
       "19  151  153.0     19.0     8.0    4.0     2.0   24.0    0.34   3561.0\n",
       "20  180  190.0     24.0     9.0    4.0     2.0   10.0    1.55   4681.0\n",
       "21  293  305.0     26.0     8.0    4.0     3.0    6.0    0.46   7088.0\n",
       "22  167  170.0     20.0     9.0    4.0     2.0   46.0    0.46   3482.0\n",
       "23  190  193.0     22.0     9.0    5.0     2.0   37.0    0.48   3920.0\n",
       "24  184  190.0     21.0     9.0    5.0     2.0   27.0    1.30   4162.0\n",
       "25  157  165.0     20.0     8.0    4.0     2.0    7.0    0.30   3785.0\n",
       "26  110  115.0     16.0     8.0    4.0     1.0   26.0    0.29   3103.0\n",
       "27  135  145.0     18.0     7.0    4.0     1.0   35.0    0.43   3363.0\n",
       "28  567  625.0     64.0    11.0    4.0     4.0    4.0    0.85  12192.0\n",
       "29  180  185.0     20.0     8.0    4.0     2.0   11.0    1.00   3831.0\n",
       "30  183  188.0     17.0     7.0    3.0     2.0   16.0    3.00   3564.0\n",
       "31  185  193.0     20.0     9.0    3.0     2.0   56.0    6.49   3765.0\n",
       "32  152  155.0     17.0     8.0    4.0     1.0   33.0    0.70   3361.0\n",
       "33  148  153.0     13.0     6.0    3.0     2.0   22.0    0.39   3950.0\n",
       "34  152  159.0     15.0     7.0    3.0     1.0   25.0    0.59   3055.0\n",
       "35  146  150.0     16.0     7.0    3.0     1.0   31.0    0.36   2950.0\n",
       "36  170  190.0     24.0    10.0    3.0     2.0   33.0    0.57   3346.0\n",
       "37  127  130.0     20.0     8.0    4.0     1.0   65.0    0.40   3334.0\n",
       "38  265  270.0     36.0    10.0    6.0     3.0   33.0    1.20   5853.0\n",
       "39  157  163.0     18.0     8.0    4.0     2.0   12.0    1.13   3982.0\n",
       "40  128  135.0     17.0     9.0    4.0     1.0   25.0    0.52   3374.0\n",
       "41  110  120.0     15.0     8.0    4.0     2.0   11.0    0.59   3119.0\n",
       "42  123  130.0     18.0     8.0    4.0     2.0   43.0    0.39   3268.0\n",
       "43  212  230.0     39.0    12.0    5.0     3.0  202.0    4.29   3648.0\n",
       "44  145  145.0     18.0     8.0    4.0     2.0   44.0    0.22   2783.0\n",
       "45  129  135.0     10.0     6.0    3.0     1.0   15.0    1.00   2438.0\n",
       "46  143  145.0     21.0     7.0    4.0     2.0   10.0    1.20   3529.0\n",
       "47  247  252.0     29.0     9.0    4.0     2.0    4.0    1.25   4626.0\n",
       "48  111  120.0     15.0     8.0    3.0     1.0   97.0    1.11   3205.0\n",
       "49  133  145.0     26.0     7.0    3.0     1.0   42.0    0.36   3059.0\n",
       "50         NaN      NaN     NaN    NaN     NaN    NaN     NaN      NaN"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pd.read_excel(\"data/homes.xlsx\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Writing CSV files\n",
    "Easy!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "homes.to_csv(\"test.csv\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise \n",
    "Create a DataFrame which consists of all numbers 0 to 1000. Reshape it into 50 rows and save it to a `.csv` file. How many columns did you end up with?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Web scraping\n",
    "It is also very easy to scrape webpages and extract tables from them.\n",
    "\n",
    "For example, let's consdier extracting the table of failed American banks."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = \"https://www.fdic.gov/bank/individual/failed/banklist.html\"\n",
    "banks = pd.read_html(url)\n",
    "banks = banks[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Bank Name</th>\n",
       "      <th>City</th>\n",
       "      <th>ST</th>\n",
       "      <th>CERT</th>\n",
       "      <th>Acquiring Institution</th>\n",
       "      <th>Closing Date</th>\n",
       "      <th>Updated Date</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Washington Federal Bank for Savings</td>\n",
       "      <td>Chicago</td>\n",
       "      <td>IL</td>\n",
       "      <td>30570</td>\n",
       "      <td>Royal Savings Bank</td>\n",
       "      <td>December 15, 2017</td>\n",
       "      <td>February 21, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>The Farmers and Merchants State Bank of Argonia</td>\n",
       "      <td>Argonia</td>\n",
       "      <td>KS</td>\n",
       "      <td>17719</td>\n",
       "      <td>Conway Bank</td>\n",
       "      <td>October 13, 2017</td>\n",
       "      <td>February 21, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Fayette County Bank</td>\n",
       "      <td>Saint Elmo</td>\n",
       "      <td>IL</td>\n",
       "      <td>1802</td>\n",
       "      <td>United Fidelity Bank, fsb</td>\n",
       "      <td>May 26, 2017</td>\n",
       "      <td>July 26, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Guaranty Bank, (d/b/a BestBank in Georgia &amp; Mi...</td>\n",
       "      <td>Milwaukee</td>\n",
       "      <td>WI</td>\n",
       "      <td>30003</td>\n",
       "      <td>First-Citizens Bank &amp; Trust Company</td>\n",
       "      <td>May 5, 2017</td>\n",
       "      <td>March 22, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>First NBC Bank</td>\n",
       "      <td>New Orleans</td>\n",
       "      <td>LA</td>\n",
       "      <td>58302</td>\n",
       "      <td>Whitney Bank</td>\n",
       "      <td>April 28, 2017</td>\n",
       "      <td>December 5, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Proficio Bank</td>\n",
       "      <td>Cottonwood Heights</td>\n",
       "      <td>UT</td>\n",
       "      <td>35495</td>\n",
       "      <td>Cache Valley Bank</td>\n",
       "      <td>March 3, 2017</td>\n",
       "      <td>March 7, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>Seaway Bank and Trust Company</td>\n",
       "      <td>Chicago</td>\n",
       "      <td>IL</td>\n",
       "      <td>19328</td>\n",
       "      <td>State Bank of Texas</td>\n",
       "      <td>January 27, 2017</td>\n",
       "      <td>May 18, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>Harvest Community Bank</td>\n",
       "      <td>Pennsville</td>\n",
       "      <td>NJ</td>\n",
       "      <td>34951</td>\n",
       "      <td>First-Citizens Bank &amp; Trust Company</td>\n",
       "      <td>January 13, 2017</td>\n",
       "      <td>May 18, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>Allied Bank</td>\n",
       "      <td>Mulberry</td>\n",
       "      <td>AR</td>\n",
       "      <td>91</td>\n",
       "      <td>Today's Bank</td>\n",
       "      <td>September 23, 2016</td>\n",
       "      <td>September 25, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>The Woodbury Banking Company</td>\n",
       "      <td>Woodbury</td>\n",
       "      <td>GA</td>\n",
       "      <td>11297</td>\n",
       "      <td>United Bank</td>\n",
       "      <td>August 19, 2016</td>\n",
       "      <td>June 1, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>First CornerStone Bank</td>\n",
       "      <td>King of Prussia</td>\n",
       "      <td>PA</td>\n",
       "      <td>35312</td>\n",
       "      <td>First-Citizens Bank &amp; Trust Company</td>\n",
       "      <td>May 6, 2016</td>\n",
       "      <td>November 13, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>Trust Company Bank</td>\n",
       "      <td>Memphis</td>\n",
       "      <td>TN</td>\n",
       "      <td>9956</td>\n",
       "      <td>The Bank of Fayette County</td>\n",
       "      <td>April 29, 2016</td>\n",
       "      <td>September 6, 2016</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>North Milwaukee State Bank</td>\n",
       "      <td>Milwaukee</td>\n",
       "      <td>WI</td>\n",
       "      <td>20364</td>\n",
       "      <td>First-Citizens Bank &amp; Trust Company</td>\n",
       "      <td>March 11, 2016</td>\n",
       "      <td>March 13, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>Hometown National Bank</td>\n",
       "      <td>Longview</td>\n",
       "      <td>WA</td>\n",
       "      <td>35156</td>\n",
       "      <td>Twin City Bank</td>\n",
       "      <td>October 2, 2015</td>\n",
       "      <td>February 19, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>The Bank of Georgia</td>\n",
       "      <td>Peachtree City</td>\n",
       "      <td>GA</td>\n",
       "      <td>35259</td>\n",
       "      <td>Fidelity Bank</td>\n",
       "      <td>October 2, 2015</td>\n",
       "      <td>July 9, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>Premier Bank</td>\n",
       "      <td>Denver</td>\n",
       "      <td>CO</td>\n",
       "      <td>34112</td>\n",
       "      <td>United Fidelity Bank, fsb</td>\n",
       "      <td>July 10, 2015</td>\n",
       "      <td>February 20, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>Edgebrook Bank</td>\n",
       "      <td>Chicago</td>\n",
       "      <td>IL</td>\n",
       "      <td>57772</td>\n",
       "      <td>Republic Bank of Chicago</td>\n",
       "      <td>May 8, 2015</td>\n",
       "      <td>July 12, 2016</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>Doral Bank  En Espanol</td>\n",
       "      <td>San Juan</td>\n",
       "      <td>PR</td>\n",
       "      <td>32102</td>\n",
       "      <td>Banco Popular de Puerto Rico</td>\n",
       "      <td>February 27, 2015</td>\n",
       "      <td>May 13, 2015</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>Capitol City Bank &amp; Trust Company</td>\n",
       "      <td>Atlanta</td>\n",
       "      <td>GA</td>\n",
       "      <td>33938</td>\n",
       "      <td>First-Citizens Bank &amp; Trust Company</td>\n",
       "      <td>February 13, 2015</td>\n",
       "      <td>April 21, 2015</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>Highland Community Bank</td>\n",
       "      <td>Chicago</td>\n",
       "      <td>IL</td>\n",
       "      <td>20290</td>\n",
       "      <td>United Fidelity Bank, fsb</td>\n",
       "      <td>January 23, 2015</td>\n",
       "      <td>November 15, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>First National Bank of Crestview</td>\n",
       "      <td>Crestview</td>\n",
       "      <td>FL</td>\n",
       "      <td>17557</td>\n",
       "      <td>First NBC Bank</td>\n",
       "      <td>January 16, 2015</td>\n",
       "      <td>November 15, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>Northern Star Bank</td>\n",
       "      <td>Mankato</td>\n",
       "      <td>MN</td>\n",
       "      <td>34983</td>\n",
       "      <td>BankVista</td>\n",
       "      <td>December 19, 2014</td>\n",
       "      <td>January 3, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>Frontier Bank, FSB D/B/A El Paseo Bank</td>\n",
       "      <td>Palm Desert</td>\n",
       "      <td>CA</td>\n",
       "      <td>34738</td>\n",
       "      <td>Bank of Southern California, N.A.</td>\n",
       "      <td>November 7, 2014</td>\n",
       "      <td>November 10, 2016</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>The National Republic Bank of Chicago</td>\n",
       "      <td>Chicago</td>\n",
       "      <td>IL</td>\n",
       "      <td>916</td>\n",
       "      <td>State Bank of Texas</td>\n",
       "      <td>October 24, 2014</td>\n",
       "      <td>January 6, 2016</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>NBRS Financial</td>\n",
       "      <td>Rising Sun</td>\n",
       "      <td>MD</td>\n",
       "      <td>4862</td>\n",
       "      <td>Howard Bank</td>\n",
       "      <td>October 17, 2014</td>\n",
       "      <td>February 19, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>GreenChoice Bank, fsb</td>\n",
       "      <td>Chicago</td>\n",
       "      <td>IL</td>\n",
       "      <td>28462</td>\n",
       "      <td>Providence Bank, LLC</td>\n",
       "      <td>July 25, 2014</td>\n",
       "      <td>December 12, 2016</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>26</th>\n",
       "      <td>Eastside Commercial Bank</td>\n",
       "      <td>Conyers</td>\n",
       "      <td>GA</td>\n",
       "      <td>58125</td>\n",
       "      <td>Community &amp; Southern Bank</td>\n",
       "      <td>July 18, 2014</td>\n",
       "      <td>October 6, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>27</th>\n",
       "      <td>The Freedom State Bank</td>\n",
       "      <td>Freedom</td>\n",
       "      <td>OK</td>\n",
       "      <td>12483</td>\n",
       "      <td>Alva State Bank &amp; Trust Company</td>\n",
       "      <td>June 27, 2014</td>\n",
       "      <td>February 21, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>Valley Bank</td>\n",
       "      <td>Fort Lauderdale</td>\n",
       "      <td>FL</td>\n",
       "      <td>21793</td>\n",
       "      <td>Landmark Bank, National Association</td>\n",
       "      <td>June 20, 2014</td>\n",
       "      <td>February 14, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>Valley Bank</td>\n",
       "      <td>Moline</td>\n",
       "      <td>IL</td>\n",
       "      <td>10450</td>\n",
       "      <td>Great Southern Bank</td>\n",
       "      <td>June 20, 2014</td>\n",
       "      <td>June 26, 2015</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>525</th>\n",
       "      <td>ANB Financial, NA</td>\n",
       "      <td>Bentonville</td>\n",
       "      <td>AR</td>\n",
       "      <td>33901</td>\n",
       "      <td>Pulaski Bank and Trust Company</td>\n",
       "      <td>May 9, 2008</td>\n",
       "      <td>August 28, 2012</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>526</th>\n",
       "      <td>Hume Bank</td>\n",
       "      <td>Hume</td>\n",
       "      <td>MO</td>\n",
       "      <td>1971</td>\n",
       "      <td>Security Bank</td>\n",
       "      <td>March 7, 2008</td>\n",
       "      <td>August 28, 2012</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>527</th>\n",
       "      <td>Douglass National Bank</td>\n",
       "      <td>Kansas City</td>\n",
       "      <td>MO</td>\n",
       "      <td>24660</td>\n",
       "      <td>Liberty Bank and Trust Company</td>\n",
       "      <td>January 25, 2008</td>\n",
       "      <td>October 26, 2012</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>528</th>\n",
       "      <td>Miami Valley Bank</td>\n",
       "      <td>Lakeview</td>\n",
       "      <td>OH</td>\n",
       "      <td>16848</td>\n",
       "      <td>The Citizens Banking Company</td>\n",
       "      <td>October 4, 2007</td>\n",
       "      <td>September 12, 2016</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>529</th>\n",
       "      <td>NetBank</td>\n",
       "      <td>Alpharetta</td>\n",
       "      <td>GA</td>\n",
       "      <td>32575</td>\n",
       "      <td>ING DIRECT</td>\n",
       "      <td>September 28, 2007</td>\n",
       "      <td>August 28, 2012</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>530</th>\n",
       "      <td>Metropolitan Savings Bank</td>\n",
       "      <td>Pittsburgh</td>\n",
       "      <td>PA</td>\n",
       "      <td>35353</td>\n",
       "      <td>Allegheny Valley Bank of Pittsburgh</td>\n",
       "      <td>February 2, 2007</td>\n",
       "      <td>October 27, 2010</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>531</th>\n",
       "      <td>Bank of Ephraim</td>\n",
       "      <td>Ephraim</td>\n",
       "      <td>UT</td>\n",
       "      <td>1249</td>\n",
       "      <td>Far West Bank</td>\n",
       "      <td>June 25, 2004</td>\n",
       "      <td>April 9, 2008</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>532</th>\n",
       "      <td>Reliance Bank</td>\n",
       "      <td>White Plains</td>\n",
       "      <td>NY</td>\n",
       "      <td>26778</td>\n",
       "      <td>Union State Bank</td>\n",
       "      <td>March 19, 2004</td>\n",
       "      <td>April 9, 2008</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>533</th>\n",
       "      <td>Guaranty National Bank of Tallahassee</td>\n",
       "      <td>Tallahassee</td>\n",
       "      <td>FL</td>\n",
       "      <td>26838</td>\n",
       "      <td>Hancock Bank of Florida</td>\n",
       "      <td>March 12, 2004</td>\n",
       "      <td>April 17, 2018</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>534</th>\n",
       "      <td>Dollar Savings Bank</td>\n",
       "      <td>Newark</td>\n",
       "      <td>NJ</td>\n",
       "      <td>31330</td>\n",
       "      <td>No Acquirer</td>\n",
       "      <td>February 14, 2004</td>\n",
       "      <td>April 9, 2008</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>535</th>\n",
       "      <td>Pulaski Savings Bank</td>\n",
       "      <td>Philadelphia</td>\n",
       "      <td>PA</td>\n",
       "      <td>27203</td>\n",
       "      <td>Earthstar Bank</td>\n",
       "      <td>November 14, 2003</td>\n",
       "      <td>October 6, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>536</th>\n",
       "      <td>First National Bank of Blanchardville</td>\n",
       "      <td>Blanchardville</td>\n",
       "      <td>WI</td>\n",
       "      <td>11639</td>\n",
       "      <td>The Park Bank</td>\n",
       "      <td>May 9, 2003</td>\n",
       "      <td>June 5, 2012</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>537</th>\n",
       "      <td>Southern Pacific Bank</td>\n",
       "      <td>Torrance</td>\n",
       "      <td>CA</td>\n",
       "      <td>27094</td>\n",
       "      <td>Beal Bank</td>\n",
       "      <td>February 7, 2003</td>\n",
       "      <td>October 20, 2008</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>538</th>\n",
       "      <td>Farmers Bank of Cheneyville</td>\n",
       "      <td>Cheneyville</td>\n",
       "      <td>LA</td>\n",
       "      <td>16445</td>\n",
       "      <td>Sabine State Bank &amp; Trust</td>\n",
       "      <td>December 17, 2002</td>\n",
       "      <td>October 20, 2004</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>539</th>\n",
       "      <td>Bank of Alamo</td>\n",
       "      <td>Alamo</td>\n",
       "      <td>TN</td>\n",
       "      <td>9961</td>\n",
       "      <td>No Acquirer</td>\n",
       "      <td>November 8, 2002</td>\n",
       "      <td>March 18, 2005</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>540</th>\n",
       "      <td>AmTrade International Bank  En Espanol</td>\n",
       "      <td>Atlanta</td>\n",
       "      <td>GA</td>\n",
       "      <td>33784</td>\n",
       "      <td>No Acquirer</td>\n",
       "      <td>September 30, 2002</td>\n",
       "      <td>September 11, 2006</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>541</th>\n",
       "      <td>Universal Federal Savings Bank</td>\n",
       "      <td>Chicago</td>\n",
       "      <td>IL</td>\n",
       "      <td>29355</td>\n",
       "      <td>Chicago Community Bank</td>\n",
       "      <td>June 27, 2002</td>\n",
       "      <td>October 6, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>542</th>\n",
       "      <td>Connecticut Bank of Commerce</td>\n",
       "      <td>Stamford</td>\n",
       "      <td>CT</td>\n",
       "      <td>19183</td>\n",
       "      <td>Hudson United Bank</td>\n",
       "      <td>June 26, 2002</td>\n",
       "      <td>February 14, 2012</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>543</th>\n",
       "      <td>New Century Bank</td>\n",
       "      <td>Shelby Township</td>\n",
       "      <td>MI</td>\n",
       "      <td>34979</td>\n",
       "      <td>No Acquirer</td>\n",
       "      <td>March 28, 2002</td>\n",
       "      <td>March 18, 2005</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>544</th>\n",
       "      <td>Net 1st National Bank</td>\n",
       "      <td>Boca Raton</td>\n",
       "      <td>FL</td>\n",
       "      <td>26652</td>\n",
       "      <td>Bank Leumi USA</td>\n",
       "      <td>March 1, 2002</td>\n",
       "      <td>April 9, 2008</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>545</th>\n",
       "      <td>NextBank, NA</td>\n",
       "      <td>Phoenix</td>\n",
       "      <td>AZ</td>\n",
       "      <td>22314</td>\n",
       "      <td>No Acquirer</td>\n",
       "      <td>February 7, 2002</td>\n",
       "      <td>February 5, 2015</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>546</th>\n",
       "      <td>Oakwood Deposit Bank Co.</td>\n",
       "      <td>Oakwood</td>\n",
       "      <td>OH</td>\n",
       "      <td>8966</td>\n",
       "      <td>The State Bank &amp; Trust Company</td>\n",
       "      <td>February 1, 2002</td>\n",
       "      <td>October 25, 2012</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>547</th>\n",
       "      <td>Bank of Sierra Blanca</td>\n",
       "      <td>Sierra Blanca</td>\n",
       "      <td>TX</td>\n",
       "      <td>22002</td>\n",
       "      <td>The Security State Bank of Pecos</td>\n",
       "      <td>January 18, 2002</td>\n",
       "      <td>November 6, 2003</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>548</th>\n",
       "      <td>Hamilton Bank, NA  En Espanol</td>\n",
       "      <td>Miami</td>\n",
       "      <td>FL</td>\n",
       "      <td>24382</td>\n",
       "      <td>Israel Discount Bank of New York</td>\n",
       "      <td>January 11, 2002</td>\n",
       "      <td>September 21, 2015</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>549</th>\n",
       "      <td>Sinclair National Bank</td>\n",
       "      <td>Gravette</td>\n",
       "      <td>AR</td>\n",
       "      <td>34248</td>\n",
       "      <td>Delta Trust &amp; Bank</td>\n",
       "      <td>September 7, 2001</td>\n",
       "      <td>October 6, 2017</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>550</th>\n",
       "      <td>Superior Bank, FSB</td>\n",
       "      <td>Hinsdale</td>\n",
       "      <td>IL</td>\n",
       "      <td>32646</td>\n",
       "      <td>Superior Federal, FSB</td>\n",
       "      <td>July 27, 2001</td>\n",
       "      <td>August 19, 2014</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>551</th>\n",
       "      <td>Malta National Bank</td>\n",
       "      <td>Malta</td>\n",
       "      <td>OH</td>\n",
       "      <td>6629</td>\n",
       "      <td>North Valley Bank</td>\n",
       "      <td>May 3, 2001</td>\n",
       "      <td>November 18, 2002</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>552</th>\n",
       "      <td>First Alliance Bank &amp; Trust Co.</td>\n",
       "      <td>Manchester</td>\n",
       "      <td>NH</td>\n",
       "      <td>34264</td>\n",
       "      <td>Southern New Hampshire Bank &amp; Trust</td>\n",
       "      <td>February 2, 2001</td>\n",
       "      <td>February 18, 2003</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>553</th>\n",
       "      <td>National State Bank of Metropolis</td>\n",
       "      <td>Metropolis</td>\n",
       "      <td>IL</td>\n",
       "      <td>3815</td>\n",
       "      <td>Banterra Bank of Marion</td>\n",
       "      <td>December 14, 2000</td>\n",
       "      <td>March 17, 2005</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>554</th>\n",
       "      <td>Bank of Honolulu</td>\n",
       "      <td>Honolulu</td>\n",
       "      <td>HI</td>\n",
       "      <td>21029</td>\n",
       "      <td>Bank of the Orient</td>\n",
       "      <td>October 13, 2000</td>\n",
       "      <td>March 17, 2005</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>555 rows × 7 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                                             Bank Name                City  \\\n",
       "0                  Washington Federal Bank for Savings             Chicago   \n",
       "1      The Farmers and Merchants State Bank of Argonia             Argonia   \n",
       "2                                  Fayette County Bank          Saint Elmo   \n",
       "3    Guaranty Bank, (d/b/a BestBank in Georgia & Mi...           Milwaukee   \n",
       "4                                       First NBC Bank         New Orleans   \n",
       "5                                        Proficio Bank  Cottonwood Heights   \n",
       "6                        Seaway Bank and Trust Company             Chicago   \n",
       "7                               Harvest Community Bank          Pennsville   \n",
       "8                                          Allied Bank            Mulberry   \n",
       "9                         The Woodbury Banking Company            Woodbury   \n",
       "10                              First CornerStone Bank     King of Prussia   \n",
       "11                                  Trust Company Bank             Memphis   \n",
       "12                          North Milwaukee State Bank           Milwaukee   \n",
       "13                              Hometown National Bank            Longview   \n",
       "14                                 The Bank of Georgia      Peachtree City   \n",
       "15                                        Premier Bank              Denver   \n",
       "16                                      Edgebrook Bank             Chicago   \n",
       "17                              Doral Bank  En Espanol            San Juan   \n",
       "18                   Capitol City Bank & Trust Company             Atlanta   \n",
       "19                             Highland Community Bank             Chicago   \n",
       "20                    First National Bank of Crestview           Crestview   \n",
       "21                                  Northern Star Bank             Mankato   \n",
       "22              Frontier Bank, FSB D/B/A El Paseo Bank         Palm Desert   \n",
       "23               The National Republic Bank of Chicago             Chicago   \n",
       "24                                      NBRS Financial          Rising Sun   \n",
       "25                               GreenChoice Bank, fsb             Chicago   \n",
       "26                            Eastside Commercial Bank             Conyers   \n",
       "27                              The Freedom State Bank             Freedom   \n",
       "28                                         Valley Bank     Fort Lauderdale   \n",
       "29                                         Valley Bank              Moline   \n",
       "..                                                 ...                 ...   \n",
       "525                                  ANB Financial, NA         Bentonville   \n",
       "526                                          Hume Bank                Hume   \n",
       "527                             Douglass National Bank         Kansas City   \n",
       "528                                  Miami Valley Bank            Lakeview   \n",
       "529                                            NetBank          Alpharetta   \n",
       "530                          Metropolitan Savings Bank          Pittsburgh   \n",
       "531                                    Bank of Ephraim             Ephraim   \n",
       "532                                      Reliance Bank        White Plains   \n",
       "533              Guaranty National Bank of Tallahassee         Tallahassee   \n",
       "534                                Dollar Savings Bank              Newark   \n",
       "535                               Pulaski Savings Bank        Philadelphia   \n",
       "536              First National Bank of Blanchardville      Blanchardville   \n",
       "537                              Southern Pacific Bank            Torrance   \n",
       "538                        Farmers Bank of Cheneyville         Cheneyville   \n",
       "539                                      Bank of Alamo               Alamo   \n",
       "540             AmTrade International Bank  En Espanol             Atlanta   \n",
       "541                     Universal Federal Savings Bank             Chicago   \n",
       "542                       Connecticut Bank of Commerce            Stamford   \n",
       "543                                   New Century Bank     Shelby Township   \n",
       "544                              Net 1st National Bank          Boca Raton   \n",
       "545                                       NextBank, NA             Phoenix   \n",
       "546                           Oakwood Deposit Bank Co.             Oakwood   \n",
       "547                              Bank of Sierra Blanca       Sierra Blanca   \n",
       "548                      Hamilton Bank, NA  En Espanol               Miami   \n",
       "549                             Sinclair National Bank            Gravette   \n",
       "550                                 Superior Bank, FSB            Hinsdale   \n",
       "551                                Malta National Bank               Malta   \n",
       "552                    First Alliance Bank & Trust Co.          Manchester   \n",
       "553                  National State Bank of Metropolis          Metropolis   \n",
       "554                                   Bank of Honolulu            Honolulu   \n",
       "\n",
       "     ST   CERT                Acquiring Institution        Closing Date  \\\n",
       "0    IL  30570                   Royal Savings Bank   December 15, 2017   \n",
       "1    KS  17719                          Conway Bank    October 13, 2017   \n",
       "2    IL   1802            United Fidelity Bank, fsb        May 26, 2017   \n",
       "3    WI  30003  First-Citizens Bank & Trust Company         May 5, 2017   \n",
       "4    LA  58302                         Whitney Bank      April 28, 2017   \n",
       "5    UT  35495                    Cache Valley Bank       March 3, 2017   \n",
       "6    IL  19328                  State Bank of Texas    January 27, 2017   \n",
       "7    NJ  34951  First-Citizens Bank & Trust Company    January 13, 2017   \n",
       "8    AR     91                         Today's Bank  September 23, 2016   \n",
       "9    GA  11297                          United Bank     August 19, 2016   \n",
       "10   PA  35312  First-Citizens Bank & Trust Company         May 6, 2016   \n",
       "11   TN   9956           The Bank of Fayette County      April 29, 2016   \n",
       "12   WI  20364  First-Citizens Bank & Trust Company      March 11, 2016   \n",
       "13   WA  35156                       Twin City Bank     October 2, 2015   \n",
       "14   GA  35259                        Fidelity Bank     October 2, 2015   \n",
       "15   CO  34112            United Fidelity Bank, fsb       July 10, 2015   \n",
       "16   IL  57772             Republic Bank of Chicago         May 8, 2015   \n",
       "17   PR  32102         Banco Popular de Puerto Rico   February 27, 2015   \n",
       "18   GA  33938  First-Citizens Bank & Trust Company   February 13, 2015   \n",
       "19   IL  20290            United Fidelity Bank, fsb    January 23, 2015   \n",
       "20   FL  17557                       First NBC Bank    January 16, 2015   \n",
       "21   MN  34983                            BankVista   December 19, 2014   \n",
       "22   CA  34738    Bank of Southern California, N.A.    November 7, 2014   \n",
       "23   IL    916                  State Bank of Texas    October 24, 2014   \n",
       "24   MD   4862                          Howard Bank    October 17, 2014   \n",
       "25   IL  28462                 Providence Bank, LLC       July 25, 2014   \n",
       "26   GA  58125            Community & Southern Bank       July 18, 2014   \n",
       "27   OK  12483      Alva State Bank & Trust Company       June 27, 2014   \n",
       "28   FL  21793  Landmark Bank, National Association       June 20, 2014   \n",
       "29   IL  10450                  Great Southern Bank       June 20, 2014   \n",
       "..   ..    ...                                  ...                 ...   \n",
       "525  AR  33901       Pulaski Bank and Trust Company         May 9, 2008   \n",
       "526  MO   1971                        Security Bank       March 7, 2008   \n",
       "527  MO  24660       Liberty Bank and Trust Company    January 25, 2008   \n",
       "528  OH  16848         The Citizens Banking Company     October 4, 2007   \n",
       "529  GA  32575                           ING DIRECT  September 28, 2007   \n",
       "530  PA  35353  Allegheny Valley Bank of Pittsburgh    February 2, 2007   \n",
       "531  UT   1249                        Far West Bank       June 25, 2004   \n",
       "532  NY  26778                     Union State Bank      March 19, 2004   \n",
       "533  FL  26838              Hancock Bank of Florida      March 12, 2004   \n",
       "534  NJ  31330                          No Acquirer   February 14, 2004   \n",
       "535  PA  27203                       Earthstar Bank   November 14, 2003   \n",
       "536  WI  11639                        The Park Bank         May 9, 2003   \n",
       "537  CA  27094                            Beal Bank    February 7, 2003   \n",
       "538  LA  16445            Sabine State Bank & Trust   December 17, 2002   \n",
       "539  TN   9961                          No Acquirer    November 8, 2002   \n",
       "540  GA  33784                          No Acquirer  September 30, 2002   \n",
       "541  IL  29355               Chicago Community Bank       June 27, 2002   \n",
       "542  CT  19183                   Hudson United Bank       June 26, 2002   \n",
       "543  MI  34979                          No Acquirer      March 28, 2002   \n",
       "544  FL  26652                       Bank Leumi USA       March 1, 2002   \n",
       "545  AZ  22314                          No Acquirer    February 7, 2002   \n",
       "546  OH   8966       The State Bank & Trust Company    February 1, 2002   \n",
       "547  TX  22002     The Security State Bank of Pecos    January 18, 2002   \n",
       "548  FL  24382     Israel Discount Bank of New York    January 11, 2002   \n",
       "549  AR  34248                   Delta Trust & Bank   September 7, 2001   \n",
       "550  IL  32646                Superior Federal, FSB       July 27, 2001   \n",
       "551  OH   6629                    North Valley Bank         May 3, 2001   \n",
       "552  NH  34264  Southern New Hampshire Bank & Trust    February 2, 2001   \n",
       "553  IL   3815              Banterra Bank of Marion   December 14, 2000   \n",
       "554  HI  21029                   Bank of the Orient    October 13, 2000   \n",
       "\n",
       "           Updated Date  \n",
       "0     February 21, 2018  \n",
       "1     February 21, 2018  \n",
       "2         July 26, 2017  \n",
       "3        March 22, 2018  \n",
       "4      December 5, 2017  \n",
       "5         March 7, 2018  \n",
       "6          May 18, 2017  \n",
       "7          May 18, 2017  \n",
       "8    September 25, 2017  \n",
       "9          June 1, 2017  \n",
       "10    November 13, 2018  \n",
       "11    September 6, 2016  \n",
       "12       March 13, 2017  \n",
       "13    February 19, 2018  \n",
       "14         July 9, 2018  \n",
       "15    February 20, 2018  \n",
       "16        July 12, 2016  \n",
       "17         May 13, 2015  \n",
       "18       April 21, 2015  \n",
       "19    November 15, 2017  \n",
       "20    November 15, 2017  \n",
       "21      January 3, 2018  \n",
       "22    November 10, 2016  \n",
       "23      January 6, 2016  \n",
       "24    February 19, 2018  \n",
       "25    December 12, 2016  \n",
       "26      October 6, 2017  \n",
       "27    February 21, 2018  \n",
       "28    February 14, 2018  \n",
       "29        June 26, 2015  \n",
       "..                  ...  \n",
       "525     August 28, 2012  \n",
       "526     August 28, 2012  \n",
       "527    October 26, 2012  \n",
       "528  September 12, 2016  \n",
       "529     August 28, 2012  \n",
       "530    October 27, 2010  \n",
       "531       April 9, 2008  \n",
       "532       April 9, 2008  \n",
       "533      April 17, 2018  \n",
       "534       April 9, 2008  \n",
       "535     October 6, 2017  \n",
       "536        June 5, 2012  \n",
       "537    October 20, 2008  \n",
       "538    October 20, 2004  \n",
       "539      March 18, 2005  \n",
       "540  September 11, 2006  \n",
       "541     October 6, 2017  \n",
       "542   February 14, 2012  \n",
       "543      March 18, 2005  \n",
       "544       April 9, 2008  \n",
       "545    February 5, 2015  \n",
       "546    October 25, 2012  \n",
       "547    November 6, 2003  \n",
       "548  September 21, 2015  \n",
       "549     October 6, 2017  \n",
       "550     August 19, 2014  \n",
       "551   November 18, 2002  \n",
       "552   February 18, 2003  \n",
       "553      March 17, 2005  \n",
       "554      March 17, 2005  \n",
       "\n",
       "[555 rows x 7 columns]"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "banks"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Powerful no? Now let's turn that into an exercise.\n",
    "\n",
    "### Exercise\n",
    "Given the data you just extracted above, can you analyse how many banks have failed per state?\n",
    "\n",
    "Georgia (GA) should be the state with the most failed banks!\n",
    "\n",
    "*Hint: try searching the web for pandas counting occurances* "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Data Cleaning\n",
    "During the course of doing data analysis and modeling, a significant amount of time is spent on data preparation: loading, cleaning, transofrming and rearranging. Such tasks are often reported to take **up to 80%** or more of a data analyst's time. Often the way the data is stored in files isn't in the correct format and needs to be modified. Reseraches usually do this on an ad-hoc basis using programming languages like Python.\n",
    "\n",
    "In this chapter we will discuss tools for handling missing data, duplicate data, string manipulation, and some other analytical data transformations.\n",
    "\n",
    "## Handling missing data\n",
    "Mussing data occurs commonly in many data analysis applications. One of the goals of pandas is to make working with missing data as painless as possible.\n",
    "\n",
    "In pandas, missing numberic data is represented by `NaN` (Not a Number) and can easily be handled:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0     orange\n",
       "1     tomato\n",
       "2        NaN\n",
       "3    avocado\n",
       "dtype: object"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "string_data = pd.Series(['orange', 'tomato', np.nan, 'avocado'])\n",
    "string_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    False\n",
       "1    False\n",
       "2     True\n",
       "3    False\n",
       "dtype: bool"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "string_data.isnull()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Furthermore, the pandas `NaN` is functionally equlevant to the standard Python type `NoneType` which can be defined with `x = None`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0       None\n",
       "1     tomato\n",
       "2        NaN\n",
       "3    avocado\n",
       "dtype: object"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "string_data[0] = None\n",
    "string_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0     True\n",
       "1    False\n",
       "2     True\n",
       "3    False\n",
       "dtype: bool"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "string_data.isnull()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here are some other methods which you can find useful:\n",
    "    \n",
    "| Method | Decription |\n",
    "| -- | -- |\n",
    "| dropna | Filter axis labels based on whether values of each label have missing data|\n",
    "| fillna | Fill in missing data with some vallue |\n",
    "| isnull | Return boolean values indicating which vallues are missin |\n",
    "| notnull | Negation of isnull |\n",
    "\n",
    "### Exercise\n",
    "Remove the missing data below using the appropriate method"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    1.0\n",
       "2    3.0\n",
       "3    4.0\n",
       "5    6.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.Series([1, None, 3, 4, None, 6])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`dropna()` by default removes any row/column that has a missing value. What if we want to remove only rows in which all of the data is missing though?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1.0</td>\n",
       "      <td>6.5</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>NaN</td>\n",
       "      <td>6.5</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     0    1    2\n",
       "0  1.0  6.5  3.0\n",
       "1  1.0  NaN  NaN\n",
       "2  NaN  NaN  NaN\n",
       "3  NaN  6.5  3.0"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.DataFrame([[1., 6.5, 3.], [1., None, None],\n",
    "                    [None, None, None], [None, 6.5, 3.]])\n",
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1.0</td>\n",
       "      <td>6.5</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     0    1    2\n",
       "0  1.0  6.5  3.0"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.dropna()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1.0</td>\n",
       "      <td>6.5</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>NaN</td>\n",
       "      <td>6.5</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     0    1    2\n",
       "0  1.0  6.5  3.0\n",
       "1  1.0  NaN  NaN\n",
       "3  NaN  6.5  3.0"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.dropna(how=\"all\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Exercise\n",
    "That's fine if we want to remove missing data, what if we want to fill in missing data? Do you know of a way? Try to fill in all of the missing values from the data below with **0s**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = pd.DataFrame([[1., 6.5, 3.], [2., None, None],\n",
    "                    [None, None, None], [None, 1.5, 9.]])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "pandas also allows us to interpolate the data instead of just filling it with a constant. The easiest way to do that is shown below, but there are more complex ones that are not covered in this course."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1.0</td>\n",
       "      <td>6.5</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2.0</td>\n",
       "      <td>6.5</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2.0</td>\n",
       "      <td>6.5</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2.0</td>\n",
       "      <td>1.5</td>\n",
       "      <td>9.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     0    1    2\n",
       "0  1.0  6.5  3.0\n",
       "1  2.0  6.5  3.0\n",
       "2  2.0  6.5  3.0\n",
       "3  2.0  1.5  9.0"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.fillna(method=\"ffill\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you want you can explore the other capabilities of [`fillna`](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Data Transformation\n",
    "### Removing duplicates\n",
    "Duplicate data can be a serious issue, luckily pandas offers a simple way to remove duplicates"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   0\n",
       "0  1\n",
       "1  2\n",
       "2  3\n",
       "3  4\n",
       "4  3\n",
       "5  2\n",
       "6  1"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.DataFrame([1, 2, 3, 4, 3, 2, 1])\n",
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   0\n",
       "0  1\n",
       "1  2\n",
       "2  3\n",
       "3  4"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.drop_duplicates()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can also select which rows to keep"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   0\n",
       "3  4\n",
       "4  3\n",
       "5  2\n",
       "6  1"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.drop_duplicates(keep=\"last\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Replacing data\n",
    "You've already seen how you can fill in missing data with `fillna`. That is actually a special case of more general value replacement. That is done via the `replace` method.\n",
    "\n",
    "Let's consider an example where the dataset given to us had `-999` as sentinel values for missing data instead of `NaN`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>-999.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>-999.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>4.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>-999.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>-999.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>7.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       0\n",
       "0    1.0\n",
       "1 -999.0\n",
       "2    2.0\n",
       "3 -999.0\n",
       "4    3.0\n",
       "5    4.0\n",
       "6 -999.0\n",
       "7 -999.0\n",
       "8    7.0"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.DataFrame([1., -999., 2., -999., 3., 4., -999, -999, 7.])\n",
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>4.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>7.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     0\n",
       "0  1.0\n",
       "1  NaN\n",
       "2  2.0\n",
       "3  NaN\n",
       "4  3.0\n",
       "5  4.0\n",
       "6  NaN\n",
       "7  NaN\n",
       "8  7.0"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.replace(-999, np.nan)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Renaming axis indexes\n",
    "Similar to `replace` you can also rename the labels of your axis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Edinburgh</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Glasgow</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Aberdeen</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "           0  1   2   3\n",
       "Edinburgh  0  1   2   3\n",
       "Glasgow    4  5   6   7\n",
       "Aberdeen   8  9  10  11"
      ]
     },
     "execution_count": 31,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.DataFrame(np.arange(12).reshape((3, 4)),\n",
    "                    index=['Edinburgh', 'Glasgow', 'Aberdeen'])\n",
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "      <th>three</th>\n",
       "      <th>four</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Edinburgh</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Glasgow</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Aberdeen</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "           one  two  three  four\n",
       "Edinburgh    0    1      2     3\n",
       "Glasgow      4    5      6     7\n",
       "Aberdeen     8    9     10    11"
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# create a map using a standard Python dictionary\n",
    "mapping = { 0 : \"one\",\n",
    "            1 : \"two\",\n",
    "            2 : \"three\",\n",
    "            3 : \"four\"}\n",
    "\n",
    "# now rename the columns\n",
    "data.rename(columns=mapping)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Rows can be renamed in a similar fashion"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Detection and Filtering Outliers\n",
    "Filtering or transforming outliers is largely a matter of applying array operations. Consider a DataFrame with some normally distributed data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>count</th>\n",
       "      <td>1000.000000</td>\n",
       "      <td>1000.000000</td>\n",
       "      <td>1000.000000</td>\n",
       "      <td>1000.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>mean</th>\n",
       "      <td>0.010460</td>\n",
       "      <td>0.007875</td>\n",
       "      <td>-0.032370</td>\n",
       "      <td>-0.004241</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>std</th>\n",
       "      <td>0.972291</td>\n",
       "      <td>1.001179</td>\n",
       "      <td>1.008105</td>\n",
       "      <td>1.025515</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>min</th>\n",
       "      <td>-3.144009</td>\n",
       "      <td>-3.090688</td>\n",
       "      <td>-3.085149</td>\n",
       "      <td>-3.287256</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25%</th>\n",
       "      <td>-0.610280</td>\n",
       "      <td>-0.662137</td>\n",
       "      <td>-0.625019</td>\n",
       "      <td>-0.701817</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>50%</th>\n",
       "      <td>0.041220</td>\n",
       "      <td>0.069653</td>\n",
       "      <td>-0.047272</td>\n",
       "      <td>0.014475</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>75%</th>\n",
       "      <td>0.678561</td>\n",
       "      <td>0.721522</td>\n",
       "      <td>0.621929</td>\n",
       "      <td>0.728463</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>max</th>\n",
       "      <td>2.978960</td>\n",
       "      <td>3.103928</td>\n",
       "      <td>3.185358</td>\n",
       "      <td>3.081887</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                 0            1            2            3\n",
       "count  1000.000000  1000.000000  1000.000000  1000.000000\n",
       "mean      0.010460     0.007875    -0.032370    -0.004241\n",
       "std       0.972291     1.001179     1.008105     1.025515\n",
       "min      -3.144009    -3.090688    -3.085149    -3.287256\n",
       "25%      -0.610280    -0.662137    -0.625019    -0.701817\n",
       "50%       0.041220     0.069653    -0.047272     0.014475\n",
       "75%       0.678561     0.721522     0.621929     0.728463\n",
       "max       2.978960     3.103928     3.185358     3.081887"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.DataFrame(np.random.randn(1000, 4))\n",
    "data.describe()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Suppose you now want to lower all absolute values exseeding 3 from one of the columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "151    3.185358\n",
       "808   -3.085149\n",
       "Name: 2, dtype: float64"
      ]
     },
     "execution_count": 47,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "col = data[2]\n",
    "col[np.abs(col) > 3]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>count</th>\n",
       "      <td>1000.000000</td>\n",
       "      <td>1000.000000</td>\n",
       "      <td>1000.000000</td>\n",
       "      <td>1000.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>mean</th>\n",
       "      <td>0.010674</td>\n",
       "      <td>0.007862</td>\n",
       "      <td>-0.032470</td>\n",
       "      <td>-0.004035</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>std</th>\n",
       "      <td>0.971615</td>\n",
       "      <td>1.000586</td>\n",
       "      <td>1.007275</td>\n",
       "      <td>1.024391</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>min</th>\n",
       "      <td>-3.000000</td>\n",
       "      <td>-3.000000</td>\n",
       "      <td>-3.000000</td>\n",
       "      <td>-3.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25%</th>\n",
       "      <td>-0.610280</td>\n",
       "      <td>-0.662137</td>\n",
       "      <td>-0.625019</td>\n",
       "      <td>-0.701817</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>50%</th>\n",
       "      <td>0.041220</td>\n",
       "      <td>0.069653</td>\n",
       "      <td>-0.047272</td>\n",
       "      <td>0.014475</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>75%</th>\n",
       "      <td>0.678561</td>\n",
       "      <td>0.721522</td>\n",
       "      <td>0.621929</td>\n",
       "      <td>0.728463</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>max</th>\n",
       "      <td>2.978960</td>\n",
       "      <td>3.000000</td>\n",
       "      <td>3.000000</td>\n",
       "      <td>3.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                 0            1            2            3\n",
       "count  1000.000000  1000.000000  1000.000000  1000.000000\n",
       "mean      0.010674     0.007862    -0.032470    -0.004035\n",
       "std       0.971615     1.000586     1.007275     1.024391\n",
       "min      -3.000000    -3.000000    -3.000000    -3.000000\n",
       "25%      -0.610280    -0.662137    -0.625019    -0.701817\n",
       "50%       0.041220     0.069653    -0.047272     0.014475\n",
       "75%       0.678561     0.721522     0.621929     0.728463\n",
       "max       2.978960     3.000000     3.000000     3.000000"
      ]
     },
     "execution_count": 48,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[np.abs(data) > 3] = np.sign(data) * 3\n",
    "data.describe()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Permutation and Random Sampling"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Permuting (randomly reordering) of rows in pandas is easy to do using the `numpy.random.permutation` function. Calling permutation with the length of the axis you want to permute produces an array of integers indicating the new ordering:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>16</td>\n",
       "      <td>17</td>\n",
       "      <td>18</td>\n",
       "      <td>19</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    0   1   2   3\n",
       "0   0   1   2   3\n",
       "1   4   5   6   7\n",
       "2   8   9  10  11\n",
       "3  12  13  14  15\n",
       "4  16  17  18  19"
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df = pd.DataFrame(np.arange(5 * 4).reshape((5, 4)))\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([3, 0, 2, 1, 4])"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# generate random order\n",
    "sampler = np.random.permutation(5)\n",
    "sampler"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>16</td>\n",
       "      <td>17</td>\n",
       "      <td>18</td>\n",
       "      <td>19</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    0   1   2   3\n",
       "3  12  13  14  15\n",
       "0   0   1   2   3\n",
       "2   8   9  10  11\n",
       "1   4   5   6   7\n",
       "4  16  17  18  19"
      ]
     },
     "execution_count": 52,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.take(sampler)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To select a random subset without replacement, you can use the sample method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "      <th>3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>16</td>\n",
       "      <td>17</td>\n",
       "      <td>18</td>\n",
       "      <td>19</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    0   1   2   3\n",
       "4  16  17  18  19\n",
       "2   8   9  10  11\n",
       "0   0   1   2   3"
      ]
     },
     "execution_count": 54,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.sample(n=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## String manipulation\n",
    "Python has long been popular for its raw data manipulation in part due to its ease of use for string and text processing. Most text operations are made simple with the string object's built-in methods. For more complex pattern mathcing and text manipulations, regular expressions may be needed."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Basics\n",
    "Let's refresh what normal `str` (String objects) are capable of in Python"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Edinburgh', 'is', 'great']"
      ]
     },
     "execution_count": 55,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# complex strings can be broken into small bits\n",
    "val = \"Edinburgh is great\"\n",
    "val.split(\" \")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'Edinburgh::is::great'"
      ]
     },
     "execution_count": 56,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# substrings can be concatinated together with +\n",
    "first, second, last = val.split(\" \")\n",
    "first + \"::\" + second + \"::\" + last"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Remember that Strings are just lists of individual charecters"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "E\n",
      "d\n",
      "i\n",
      "n\n",
      "b\n",
      "u\n",
      "r\n",
      "g\n",
      "h\n"
     ]
    }
   ],
   "source": [
    "val = \"Edinburgh\"\n",
    "for each in val:\n",
    "    print(each)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can use standard list operations with them"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3"
      ]
     },
     "execution_count": 58,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "val.find(\"n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "-1"
      ]
     },
     "execution_count": 60,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "val.find(\"x\")  # -1 means that there is no such element"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'EDINBURGH'"
      ]
     },
     "execution_count": 61,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# and of course remember about upper() and lower()\n",
    "val.upper()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you want to learn more about strings you can always refer to the [Python manual](https://docs.python.org/2/library/string.html)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Regular expressions\n",
    "provide a flexible way to search or match (often more complex) string patterns in text. A single expression, commonly called *regex*, is a string formed according to the regular expression language. Python's built-on module is responsible for applying regular expression of strings via the `re` package"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'foo    bar\\t baz   \\tqux'"
      ]
     },
     "execution_count": 62,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import re\n",
    "text = \"foo    bar\\t baz   \\tqux\"\n",
    "text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['foo', 'bar', 'baz', 'qux']"
      ]
     },
     "execution_count": 67,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "re.split(\"\\s+\", text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "this expression effectively removed all whitespaces and tab charecters (`\\t`) which was stated with the `\\s` regex and then the `+` after it means remove any number of sequential occurances of that charecter.\n",
    "\n",
    "Let's have a look at a more complex example - identifying email addresses in a textfile:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "metadata": {},
   "outputs": [],
   "source": [
    "text = \"\"\"Dave dave@google.com\n",
    "Steve steve@gmail.com\n",
    "Rob rob@gmail.com\n",
    "Ryan ryan@yahoo.com\n",
    "\"\"\"\n",
    "\n",
    "# pattern to be used for searching\n",
    "pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,4}'\n",
    "\n",
    "# re.IGNORECASE makes the regex case-insensitive\n",
    "regex = re.compile(pattern, flags=re.IGNORECASE)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['dave@google.com', 'steve@gmail.com', 'rob@gmail.com', 'ryan@yahoo.com']"
      ]
     },
     "execution_count": 69,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "regex.findall(text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's dissect the regex part by part:\n",
    "```\n",
    "pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,4}'\n",
    "```\n",
    "\n",
    "- the `r` prefix before the string signals that the string should keep special charecters such as the newline charecter `\\n`. Otherwise Python would just treat it as a newline\n",
    "- `A-Z` means all letters from A to Z including lowercase and uppercse\n",
    "- `0-9` similarly means all charecters from 0 to 9\n",
    "- the concatenation `._%+-` menas just include those charecters\n",
    "- the square brackets [ ] means to combine all of the regular expressions inside. For example `[A-Z0-9._%+-]` would mean include all letters A to Z, all numbers 0 to 9, and the charecters ._%+-\n",
    "- `+` means concatenate the strings patterns\n",
    "- `{2,4}` means consider only 2 to 4 charecter strings\n",
    "\n",
    "To summarise the pattern above searches for any combination of letters and numbers, followed by a `@`, then any combination of letters and numbers followed by a `.` with only 2 to 4 letters after it."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Regular expressions and pandas\n",
    "Let's see how they can be combined. Replicating the example above"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Dave      Daves email dave@google.com\n",
       "Steve    Steves email steve@gmail.com\n",
       "Rob                Robs rob@gmail.com\n",
       "Wes                               NaN\n",
       "dtype: object"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.Series({'Dave': 'Daves email dave@google.com', 'Steve': 'Steves email steve@gmail.com',\n",
    "        'Rob': 'Robs rob@gmail.com', 'Wes': np.nan})\n",
    "data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can reuse the same `pattern` variable from above"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Dave     [dave@google.com]\n",
       "Steve    [steve@gmail.com]\n",
       "Rob        [rob@gmail.com]\n",
       "Wes                    NaN\n",
       "dtype: object"
      ]
     },
     "execution_count": 77,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.str.findall(pattern, flags=re.IGNORECASE)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "pandas also offers more standard string operations. For example we can check if a string is contained within a data row:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Dave     False\n",
       "Steve     True\n",
       "Rob       True\n",
       "Wes        NaN\n",
       "dtype: object"
      ]
     },
     "execution_count": 78,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.str.contains(\"gmail\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Many more of these methods exist:\n",
    "    \n",
    "    \n",
    "| Mehods | Description |\n",
    "| -- | -- |\n",
    "| cat | Concatenate strings element-wise with optional delimiter |\n",
    "| contains | Return boolean array if each string contains pattern/regex |\n",
    "| count | Count occurances of a pattern |\n",
    "| extract | Use a regex with groups to extract one or more strings from a Series |\n",
    "| findall | Computer list of all occurrances of pattern/regex for each string |\n",
    "| get | Index into each element |\n",
    "| isdecimal | Checks if the string is a decimal number |\n",
    "| isdigit | Checks if the string is a digit |\n",
    "| islower | Checks if the string is in lower case |\n",
    "| isupper | Checks if the string is in upper case |\n",
    "| join | Join strings in each element of the Series with passed seperator |\n",
    "| len | Compute length of each string |\n",
    "| lower, upper | Convert cases |\n",
    "| match | Returns matched groups as a list |\n",
    "| pad | Adds whitespace to left, right or both sides of strings |\n",
    "| repeat | Duplicate string values |\n",
    "| slice | Slice each string in the Series |\n",
    "| split | S"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}