{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Extra Notebook\n", "Containing exercises to test your new data science skills\n", "\n", "## Exercise 1\n", "Create a 8x8 matrix with a checkboard pattern of 1s and 0s" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise 2\n", "Obtain the determinant of a [Cauchy matrix](https://en.wikipedia.org/wiki/Cauchy_matrix) from two arrays.\n", "\n", "Remember the cauchy formula:\n", "$$ C_{{ij}}={\\frac {1}{x_{i}-y_{j}}} $$" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise 3\n", "Remember the canvas exercises? Can you use slicing with a skip of 5 to get the image below?\n", "\n", "Remember how you can add a step to slicing in the Python built-in data types? Well, you can do that in NumyPy as well!\n", "\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise 4\n", "Consider a random vector with shape (100, 2) representing coordinates, find the maximum euclidian distance between 2 points.\n", "\n", "Recall the Euclidean distance formula: the distance from $(x_1, y_1)$ to $(x_2, y_2)$ is\n", "\n", "$$ \\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Execise 5\n", "Generate a generic 2D Gaussian-like array, centered around 0,0\n", "\n", "You might want to recall the gaussian formula:\n", "\n", "$$ P(x) = \\frac{1}{\\sigma \\sqrt{2\\pi}} e^{\\frac{-(x - \\mu)^2}{2\\sigma^2}} $$\n", "\n", "You can use $$ \\mu = 0 \\quad \\sigma = 1 $$\n", "\n", "*Hint: You can find the [np.meshgrid](https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.meshgrid.html) function helpful here.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise 6\n", "The file `data/soft_survey.csv` conta" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }