From 340c7e3c78c6fbe0a6e26a625b33363d31f15bcf Mon Sep 17 00:00:00 2001 From: Aretha Foo <pfoo@ed.ac.uk> Date: Fri, 28 Mar 2025 16:12:25 +0000 Subject: [PATCH] Update notebook and solutions --- RBeginnersExercise2.Rmd | 18 ++++++++++-------- RBeginnersExercise2_Sol.Rmd | 21 +++++++++++---------- 2 files changed, 21 insertions(+), 18 deletions(-) diff --git a/RBeginnersExercise2.Rmd b/RBeginnersExercise2.Rmd index 9f4e61a..e6030a5 100644 --- a/RBeginnersExercise2.Rmd +++ b/RBeginnersExercise2.Rmd @@ -101,28 +101,30 @@ Try to find the datatype of all columns in the `students` table by using the `s ```{r} # Write your code below -sapply(students, class) + ``` -## 2.2.5 Summary of dataset -Use the `summary()` function to get a summary of all columns in the `menu` dataset. +## 2.2.5 Find unique values in a column + +The `unique()` function in R can be used to find all unique values in a specific column in a table, e.g., `unique(tableName$columnName)`. Use the `unique()` function to find all values in the `Price` column in the `menu` dataset, without duplication. ```{r} # Write your code below ``` -## 2.2.6 Find unique values in a column - -The `unique()` function in R can be used to find all unique values in a specific column in a table, e.g., `unique(tableName$columnName)`. Use the `unique()` function to find all values in the `Price` column in the `menu` dataset, without duplication. +By using the `sapply()` function, find the unique values in each column in the `menu` table. ```{r} # Write your code below ``` -By using the `sapply()` function, find the unique values in each column in the `menu` table. + +## 2.2.6 Summary of dataset + +Use the `summary()` function to get a summary of all columns in the `menu` dataset. ```{r} # Write your code below @@ -224,7 +226,7 @@ menu[3, 2] = 4.50 menu # Check to make sure the missing value is being replaced correctly. ``` -For a small dataset, the method above is plausible. For a larger dataset, the better way is to replace missing value(s) in a batch using the function `replace_na` in the `dbplyr` package. +For a small dataset, the method above is plausible. For a larger dataset, the better way is to replace missing value(s) in a batch using the function `replace_na` in the `tidyr` package. ```{r} library(tidyr) # The package which includes the replace_na function. diff --git a/RBeginnersExercise2_Sol.Rmd b/RBeginnersExercise2_Sol.Rmd index 3c84d07..8d36ba9 100644 --- a/RBeginnersExercise2_Sol.Rmd +++ b/RBeginnersExercise2_Sol.Rmd @@ -105,15 +105,6 @@ sapply(students, class) ``` -## 2.2.5 Summary of dataset - -Use the `summary()` function to get a summary of all columns in the `menu` dataset. - -```{r} -# Write your code below -summary(menu) -``` - ## 2.2.6 Find unique values in a column The `unique()` function in R can be used to find all unique values in a specific column in a table, e.g., `unique(tableName$columnName)`. Use the `unique()` function to find all values in the `Price` column in the `menu` dataset, without duplication. @@ -131,6 +122,16 @@ sapply(menu, unique) ``` +## 2.2.5 Summary of dataset + +Use the `summary()` function to get a summary of all columns in the `menu` dataset. + +```{r} +# Write your code below +summary(menu) +``` + + ## 2.2.7 Incomplete cases in dataset In R, incomplete cases are rows in dataset that have `Na` value(s). These incomplete cases can be viewed using the function `complete.cases`. @@ -226,7 +227,7 @@ menu[3, 2] = 4.50 menu # Check to make sure the missing value is being replaced correctly. ``` -For a small dataset, the method above is plausible. For a larger dataset, the better way is to replace missing value(s) in a batch using the function `replace_na` in the `dbplyr` package. +For a small dataset, the method above is plausible. For a larger dataset, the better way is to replace missing value(s) in a batch using the function `replace_na` in the `tidyr` package. ```{r} library(tidyr) # The package which includes the replace_na function. -- GitLab