From 37201beda545bcd04419d07971e78548b6378ed1 Mon Sep 17 00:00:00 2001
From: pmla <pete.mahler.larsen@gmail.com>
Date: Thu, 20 Sep 2018 00:04:07 -0400
Subject: [PATCH] Fixed folder structure

---
 src/PTM/compute_ptm_atom.cpp                  |  307 ---
 src/PTM/compute_ptm_atom.h                    |   48 -
 src/PTM/ptm_constants.h                       |  174 --
 src/PTM/ptm_functions.h                       |   27 -
 src/USER-PTM/alloy_types.cpp                  |  101 -
 src/USER-PTM/alloy_types.h                    |    9 -
 src/USER-PTM/canonical_coloured.cpp           |  167 --
 src/USER-PTM/canonical_coloured.h             |    9 -
 src/USER-PTM/cell.cpp                         | 1368 -----------
 src/USER-PTM/cell.h                           |  324 ---
 src/USER-PTM/config.h                         |  129 --
 src/USER-PTM/convex_hull_incremental.cpp      |  363 ---
 src/USER-PTM/convex_hull_incremental.h        |   27 -
 src/USER-PTM/deformation_gradient.cpp         |   37 -
 src/USER-PTM/deformation_gradient.h           |  142 --
 src/USER-PTM/fundamental_mappings.h           |  180 --
 src/USER-PTM/graph_data.cpp                   | 2059 -----------------
 src/USER-PTM/graph_data.h                     |   37 -
 src/USER-PTM/graph_tools.cpp                  |   52 -
 src/USER-PTM/graph_tools.h                    |   11 -
 src/USER-PTM/index_ptm.cpp                    |  218 --
 src/USER-PTM/initialize_data.cpp              |   71 -
 src/USER-PTM/initialize_data.h                |   61 -
 src/USER-PTM/neighbour_ordering.cpp           |  203 --
 src/USER-PTM/neighbour_ordering.h             |   13 -
 src/USER-PTM/normalize_vertices.cpp           |   55 -
 src/USER-PTM/normalize_vertices.h             |    8 -
 src/USER-PTM/polar.cpp                        |  337 ---
 src/USER-PTM/polar.h                          |   12 -
 src/{PTM => USER-PTM}/ptm_alloy_types.cpp     |    0
 src/{PTM => USER-PTM}/ptm_alloy_types.h       |    0
 .../ptm_canonical_coloured.cpp                |    0
 .../ptm_canonical_coloured.h                  |    0
 .../ptm_convex_hull_incremental.cpp           |    0
 .../ptm_convex_hull_incremental.h             |    0
 .../ptm_deformation_gradient.cpp              |    0
 .../ptm_deformation_gradient.h                |    0
 src/USER-PTM/ptm_functions.h                  |    2 +-
 .../ptm_fundamental_mappings.h                |    0
 src/{PTM => USER-PTM}/ptm_graph_data.cpp      |    0
 src/{PTM => USER-PTM}/ptm_graph_data.h        |    0
 src/{PTM => USER-PTM}/ptm_graph_tools.cpp     |    0
 src/{PTM => USER-PTM}/ptm_graph_tools.h       |    0
 src/{PTM => USER-PTM}/ptm_index.cpp           |    0
 src/{PTM => USER-PTM}/ptm_initialize_data.cpp |    0
 src/{PTM => USER-PTM}/ptm_initialize_data.h   |    0
 .../ptm_neighbour_ordering.cpp                |    0
 .../ptm_neighbour_ordering.h                  |    0
 .../ptm_normalize_vertices.cpp                |    0
 .../ptm_normalize_vertices.h                  |    0
 src/{PTM => USER-PTM}/ptm_polar.cpp           |    0
 src/{PTM => USER-PTM}/ptm_polar.h             |    0
 src/{PTM => USER-PTM}/ptm_quat.cpp            |    0
 src/{PTM => USER-PTM}/ptm_quat.h              |    0
 .../ptm_structure_matcher.cpp                 |    0
 src/{PTM => USER-PTM}/ptm_structure_matcher.h |    0
 src/{PTM => USER-PTM}/ptm_voronoi_cell.cpp    |    0
 src/{PTM => USER-PTM}/ptm_voronoi_cell.h      |    0
 src/{PTM => USER-PTM}/ptm_voronoi_config.h    |    0
 src/USER-PTM/quat.cpp                         |  396 ----
 src/USER-PTM/quat.h                           |   32 -
 src/USER-PTM/structure_matcher.cpp            |  294 ---
 src/USER-PTM/structure_matcher.h              |   21 -
 63 files changed, 1 insertion(+), 7293 deletions(-)
 delete mode 100644 src/PTM/compute_ptm_atom.cpp
 delete mode 100644 src/PTM/compute_ptm_atom.h
 delete mode 100644 src/PTM/ptm_constants.h
 delete mode 100644 src/PTM/ptm_functions.h
 delete mode 100644 src/USER-PTM/alloy_types.cpp
 delete mode 100644 src/USER-PTM/alloy_types.h
 delete mode 100644 src/USER-PTM/canonical_coloured.cpp
 delete mode 100644 src/USER-PTM/canonical_coloured.h
 delete mode 100644 src/USER-PTM/cell.cpp
 delete mode 100644 src/USER-PTM/cell.h
 delete mode 100644 src/USER-PTM/config.h
 delete mode 100644 src/USER-PTM/convex_hull_incremental.cpp
 delete mode 100644 src/USER-PTM/convex_hull_incremental.h
 delete mode 100644 src/USER-PTM/deformation_gradient.cpp
 delete mode 100644 src/USER-PTM/deformation_gradient.h
 delete mode 100644 src/USER-PTM/fundamental_mappings.h
 delete mode 100644 src/USER-PTM/graph_data.cpp
 delete mode 100644 src/USER-PTM/graph_data.h
 delete mode 100644 src/USER-PTM/graph_tools.cpp
 delete mode 100644 src/USER-PTM/graph_tools.h
 delete mode 100644 src/USER-PTM/index_ptm.cpp
 delete mode 100644 src/USER-PTM/initialize_data.cpp
 delete mode 100644 src/USER-PTM/initialize_data.h
 delete mode 100644 src/USER-PTM/neighbour_ordering.cpp
 delete mode 100644 src/USER-PTM/neighbour_ordering.h
 delete mode 100644 src/USER-PTM/normalize_vertices.cpp
 delete mode 100644 src/USER-PTM/normalize_vertices.h
 delete mode 100644 src/USER-PTM/polar.cpp
 delete mode 100644 src/USER-PTM/polar.h
 rename src/{PTM => USER-PTM}/ptm_alloy_types.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_alloy_types.h (100%)
 rename src/{PTM => USER-PTM}/ptm_canonical_coloured.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_canonical_coloured.h (100%)
 rename src/{PTM => USER-PTM}/ptm_convex_hull_incremental.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_convex_hull_incremental.h (100%)
 rename src/{PTM => USER-PTM}/ptm_deformation_gradient.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_deformation_gradient.h (100%)
 rename src/{PTM => USER-PTM}/ptm_fundamental_mappings.h (100%)
 rename src/{PTM => USER-PTM}/ptm_graph_data.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_graph_data.h (100%)
 rename src/{PTM => USER-PTM}/ptm_graph_tools.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_graph_tools.h (100%)
 rename src/{PTM => USER-PTM}/ptm_index.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_initialize_data.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_initialize_data.h (100%)
 rename src/{PTM => USER-PTM}/ptm_neighbour_ordering.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_neighbour_ordering.h (100%)
 rename src/{PTM => USER-PTM}/ptm_normalize_vertices.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_normalize_vertices.h (100%)
 rename src/{PTM => USER-PTM}/ptm_polar.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_polar.h (100%)
 rename src/{PTM => USER-PTM}/ptm_quat.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_quat.h (100%)
 rename src/{PTM => USER-PTM}/ptm_structure_matcher.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_structure_matcher.h (100%)
 rename src/{PTM => USER-PTM}/ptm_voronoi_cell.cpp (100%)
 rename src/{PTM => USER-PTM}/ptm_voronoi_cell.h (100%)
 rename src/{PTM => USER-PTM}/ptm_voronoi_config.h (100%)
 delete mode 100644 src/USER-PTM/quat.cpp
 delete mode 100644 src/USER-PTM/quat.h
 delete mode 100644 src/USER-PTM/structure_matcher.cpp
 delete mode 100644 src/USER-PTM/structure_matcher.h

diff --git a/src/PTM/compute_ptm_atom.cpp b/src/PTM/compute_ptm_atom.cpp
deleted file mode 100644
index b6b4a9786c..0000000000
--- a/src/PTM/compute_ptm_atom.cpp
+++ /dev/null
@@ -1,307 +0,0 @@
-/* ----------------------------------------------------------------------
-         LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
-         http://lammps.sandia.gov, Sandia National Laboratories
-         Steve Plimpton, sjplimp@sandia.gov
-
-         Copyright (2003) Sandia Corporation.	Under the terms of Contract
-         DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
-         certain rights in this software.	This software is distributed
-under
-         the GNU General Public License.
-
-         See the README file in the top-level LAMMPS directory.
-------------------------------------------------------------------------- */
-
-/* ----------------------------------------------------------------------
-         Contributing author: PM Larsen (MIT)
-------------------------------------------------------------------------- */
-
-#include <algorithm>
-#include <cmath>
-#include <cstdlib>
-#include <cstring>
-
-#include "atom.h"
-#include "comm.h"
-#include "compute_ptm_atom.h"
-#include "error.h"
-#include "force.h"
-#include "memory.h"
-#include "modify.h"
-#include "neigh_list.h"
-#include "neigh_request.h"
-#include "neighbor.h"
-#include "pair.h"
-#include "update.h"
-
-#include "ptm_functions.h"
-
-#define MAX_NEIGHBORS 30
-#define NUM_COLUMNS 7
-#define UNKNOWN 0
-#define OTHER 8
-
-using namespace LAMMPS_NS;
-
-static const char cite_user_ptm_package[] =
-    "USER-PTM package:\n\n"
-    "@Article{larsen2016ptm,\n"
-    " author={Larsen, Peter Mahler and Schmidt, S{\o}ren and Schi{\o}tz, "
-    "Jakob},\n"
-    " title={Robust structural identification via polyhedral template "
-    "matching},\n"
-    " journal={Modelling~Simul.~Mater.~Sci.~Eng.},\n"
-    " year={2016},\n"
-    " number={5},\n"
-    " volume={24},\n"
-    " pages={055007},\n"
-    " DOI = {10.1088/0965-0393/24/5/055007}"
-    "}\n\n";
-
-/* ---------------------------------------------------------------------- */
-
-ComputePTMAtom::ComputePTMAtom(LAMMPS *lmp, int narg, char **arg)
-    : Compute(lmp, narg, arg), list(NULL), output(NULL) {
-  if (narg != 5)
-    error->all(FLERR, "Illegal compute ptm/atom command");
-
-  char *structures = arg[3];
-  char *ptr = structures;
-
-  const char *strings[] = {"fcc",  "hcp",  "bcc", "ico",    "sc",
-                           "dcub", "dhex", "all", "default"};
-  int32_t flags[] = {
-      PTM_CHECK_FCC,
-      PTM_CHECK_HCP,
-      PTM_CHECK_BCC,
-      PTM_CHECK_ICO,
-      PTM_CHECK_SC,
-      PTM_CHECK_DCUB,
-      PTM_CHECK_DHEX,
-      PTM_CHECK_ALL,
-      PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_BCC | PTM_CHECK_ICO};
-
-  input_flags = 0;
-  while (*ptr != '\0') {
-
-    bool found = false;
-    for (int i = 0; i < 9; i++) {
-      int len = strlen(strings[i]);
-      if (strncmp(ptr, strings[i], len) == 0) {
-        input_flags |= flags[i];
-        ptr += len;
-        found = true;
-        break;
-      }
-    }
-
-    if (!found)
-      error->all(FLERR,
-                 "Illegal compute ptm/atom command (invalid structure type)");
-
-    if (*ptr == '\0')
-      break;
-
-    if (*ptr != '-')
-      error->all(FLERR,
-                 "Illegal compute ptm/atom command (invalid structure type)");
-
-    ptr++;
-  }
-
-  double threshold = force->numeric(FLERR, arg[4]);
-  if (threshold < 0.0)
-    error->all(FLERR,
-               "Illegal compute ptm/atom command (threshold is negative)");
-  rmsd_threshold = threshold;
-  if (rmsd_threshold == 0)
-    rmsd_threshold = INFINITY;
-
-  peratom_flag = 1;
-  size_peratom_cols = NUM_COLUMNS;
-  create_attribute = 1;
-  nmax = 0;
-}
-
-/* ---------------------------------------------------------------------- */
-
-ComputePTMAtom::~ComputePTMAtom() { memory->destroy(output); }
-
-/* ---------------------------------------------------------------------- */
-
-void ComputePTMAtom::init() {
-  if (force->pair == NULL)
-    error->all(FLERR, "Compute ptm/atom requires a pair style be defined");
-
-  int count = 0;
-  for (int i = 0; i < modify->ncompute; i++)
-    if (strcmp(modify->compute[i]->style, "ptm/atom") == 0)
-      count++;
-  if (count > 1 && comm->me == 0)
-    error->warning(FLERR, "More than one compute ptm/atom defined");
-
-  // need an occasional full neighbor list
-
-  int irequest = neighbor->request(this, instance_me);
-  neighbor->requests[irequest]->pair = 0;
-  neighbor->requests[irequest]->compute = 1;
-  neighbor->requests[irequest]->half = 0;
-  neighbor->requests[irequest]->full = 1;
-  neighbor->requests[irequest]->occasional = 1;
-}
-
-/* ---------------------------------------------------------------------- */
-
-void ComputePTMAtom::init_list(int id, NeighList *ptr) { list = ptr; }
-
-/* ---------------------------------------------------------------------- */
-
-typedef struct {
-  int index;
-  double d;
-} ptmnbr_t;
-
-static bool sorthelper_compare(ptmnbr_t const &a, ptmnbr_t const &b) {
-  return a.d < b.d;
-}
-
-static int get_neighbors(double *pos, int jnum, int *jlist, double **x,
-                         double (*nbr)[3]) {
-
-  ptmnbr_t *nbr_order = new ptmnbr_t[jnum];
-
-  for (int jj = 0; jj < jnum; jj++) {
-    int j = jlist[jj];
-    j &= NEIGHMASK;
-
-    double dx = pos[0] - x[j][0];
-    double dy = pos[1] - x[j][1];
-    double dz = pos[2] - x[j][2];
-    double rsq = dx * dx + dy * dy + dz * dz;
-
-    nbr_order[jj].index = j;
-    nbr_order[jj].d = rsq;
-  }
-
-  std::sort(nbr_order, nbr_order + jnum, &sorthelper_compare);
-  int num_nbrs = std::min(MAX_NEIGHBORS, jnum);
-
-  nbr[0][0] = nbr[0][1] = nbr[0][2] = 0;
-  for (int jj = 0; jj < num_nbrs; jj++) {
-
-    int j = nbr_order[jj].index;
-    nbr[jj + 1][0] = x[j][0] - pos[0];
-    nbr[jj + 1][1] = x[j][1] - pos[1];
-    nbr[jj + 1][2] = x[j][2] - pos[2];
-  }
-
-  delete[] nbr_order;
-  return num_nbrs;
-}
-
-void ComputePTMAtom::compute_peratom() {
-  // PTM global initialization.  If already initialized this function does
-  // nothing.
-  ptm_initialize_global();
-
-  // initialize PTM local storage
-  ptm_local_handle_t local_handle = ptm_initialize_local();
-
-  invoked_peratom = update->ntimestep;
-
-  // grow arrays if necessary
-  if (atom->nmax > nmax) {
-    memory->destroy(output);
-    nmax = atom->nmax;
-
-    memory->create(output, nmax, NUM_COLUMNS, "ptm:ptm_output");
-    array_atom = output;
-  }
-
-  // invoke full neighbor list (will copy or build if necessary)
-  neighbor->build_one(list);
-
-  int inum = list->inum;
-  int *ilist = list->ilist;
-  int *numneigh = list->numneigh;
-  int **firstneigh = list->firstneigh;
-
-  double **x = atom->x;
-  int *mask = atom->mask;
-  int nlocal = atom->nlocal;
-
-  for (int ii = 0; ii < inum; ii++) {
-
-    int i = ilist[ii];
-    output[i][0] = UNKNOWN;
-    if (!(mask[i] & groupbit))
-      continue;
-
-    double *pos = x[i];
-
-    int *jlist = firstneigh[i];
-    int jnum = numneigh[i];
-    if (jnum <= 0)
-      continue;
-
-    // get neighbours ordered by increasing distance
-    double nbr[MAX_NEIGHBORS + 1][3];
-    int num_nbrs = get_neighbors(pos, jnum, jlist, x, nbr);
-
-    // check that we have enough neighbours for the desired structure types
-    int32_t flags = 0;
-    if (num_nbrs >= PTM_NUM_NBRS_SC && (input_flags & PTM_CHECK_SC))
-      flags |= PTM_CHECK_SC;
-    if (num_nbrs >= PTM_NUM_NBRS_FCC && (input_flags & PTM_CHECK_FCC))
-      flags |= PTM_CHECK_FCC;
-    if (num_nbrs >= PTM_NUM_NBRS_HCP && (input_flags & PTM_CHECK_HCP))
-      flags |= PTM_CHECK_HCP;
-    if (num_nbrs >= PTM_NUM_NBRS_ICO && (input_flags & PTM_CHECK_ICO))
-      flags |= PTM_CHECK_ICO;
-    if (num_nbrs >= PTM_NUM_NBRS_BCC && (input_flags & PTM_CHECK_BCC))
-      flags |= PTM_CHECK_BCC;
-    if (num_nbrs >= PTM_NUM_NBRS_DCUB && (input_flags & PTM_CHECK_DCUB))
-      flags |= PTM_CHECK_DCUB;
-    if (num_nbrs >= PTM_NUM_NBRS_DHEX && (input_flags & PTM_CHECK_DHEX))
-      flags |= PTM_CHECK_DHEX;
-
-    // now run PTM
-    int8_t mapping[MAX_NEIGHBORS + 1];
-    int32_t type, alloy_type;
-    double scale, rmsd, interatomic_distance, lattice_constant;
-    double q[4], F[9], F_res[3], U[9], P[9];
-    ptm_index(local_handle, flags, num_nbrs + 1, nbr, NULL, true, &type,
-              &alloy_type, &scale, &rmsd, q, F, F_res, U, P, mapping,
-              &interatomic_distance, &lattice_constant);
-
-    if (rmsd > rmsd_threshold) {
-      type = PTM_MATCH_NONE;
-    }
-
-    // printf("%d type=%d rmsd=%f\n", i, type, rmsd);
-
-    if (type == PTM_MATCH_NONE)
-      type = OTHER;
-
-    output[i][0] = type;
-    output[i][1] = rmsd;
-    output[i][2] = interatomic_distance;
-    output[i][3] = q[0];
-    output[i][4] = q[1];
-    output[i][5] = q[2];
-    output[i][6] = q[3];
-  }
-
-  // printf("finished ptm analysis\n");
-  ptm_uninitialize_local(local_handle);
-}
-
-/* ----------------------------------------------------------------------
-         memory usage of local atom-based array
-------------------------------------------------------------------------- */
-
-double ComputePTMAtom::memory_usage() {
-  double bytes = nmax * NUM_COLUMNS * sizeof(double);
-  bytes += nmax * sizeof(double);
-  return bytes;
-}
diff --git a/src/PTM/compute_ptm_atom.h b/src/PTM/compute_ptm_atom.h
deleted file mode 100644
index 5c10e0c443..0000000000
--- a/src/PTM/compute_ptm_atom.h
+++ /dev/null
@@ -1,48 +0,0 @@
-/* -*- c++ -*- ----------------------------------------------------------
-   LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
-   http://lammps.sandia.gov, Sandia National Laboratories
-   Steve Plimpton, sjplimp@sandia.gov
-
-   Copyright (2003) Sandia Corporation.  Under the terms of Contract
-   DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
-   certain rights in this software.  This software is distributed under
-   the GNU General Public License.
-
-   See the README file in the top-level LAMMPS directory.
-------------------------------------------------------------------------- */
-
-#ifdef COMPUTE_CLASS
-
-ComputeStyle(ptm/atom,ComputePTMAtom)
-
-#else
-
-#ifndef LMP_COMPUTE_PTM_ATOM_H
-#define LMP_COMPUTE_PTM_ATOM_H
-
-#include "compute.h"
-
-namespace LAMMPS_NS {
-
-class ComputePTMAtom : public Compute {
- public:
-  ComputePTMAtom(class LAMMPS *, int, char **);
-  ~ComputePTMAtom();
-  void init();
-  void init_list(int, class NeighList *);
-  void compute_peratom();
-  double memory_usage();
-
- private:
-  int nmax;
-  int32_t input_flags;
-  double rmsd_threshold;
-  class NeighList *list;
-  double **output;
-};
-
-}
-
-#endif
-#endif
-
diff --git a/src/PTM/ptm_constants.h b/src/PTM/ptm_constants.h
deleted file mode 100644
index f868f51e84..0000000000
--- a/src/PTM/ptm_constants.h
+++ /dev/null
@@ -1,174 +0,0 @@
-#ifndef PTM_CONSTANTS_H
-#define PTM_CONSTANTS_H
-
-//------------------------------------
-//    definitions
-//------------------------------------
-#define PTM_NO_ERROR	0
-
-
-#define PTM_CHECK_FCC	(1 << 0)
-#define PTM_CHECK_HCP	(1 << 1)
-#define PTM_CHECK_BCC	(1 << 2)
-#define PTM_CHECK_ICO	(1 << 3)
-#define PTM_CHECK_SC	(1 << 4)
-#define PTM_CHECK_DCUB	(1 << 5)
-#define PTM_CHECK_DHEX	(1 << 6)
-#define PTM_CHECK_NONDIAMOND	(PTM_CHECK_SC | PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO | PTM_CHECK_BCC)
-#define PTM_CHECK_ALL	(PTM_CHECK_SC | PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO | PTM_CHECK_BCC | PTM_CHECK_DCUB | PTM_CHECK_DHEX)
-
-#define PTM_MATCH_NONE	0
-#define PTM_MATCH_FCC	1
-#define PTM_MATCH_HCP	2
-#define PTM_MATCH_BCC	3
-#define PTM_MATCH_ICO	4
-#define PTM_MATCH_SC	5
-#define PTM_MATCH_DCUB	6
-#define PTM_MATCH_DHEX	7
-
-#define PTM_ALLOY_NONE		0
-#define PTM_ALLOY_PURE		1
-#define PTM_ALLOY_L10		2
-#define PTM_ALLOY_L12_CU	3
-#define PTM_ALLOY_L12_AU	4
-#define PTM_ALLOY_B2		5
-#define PTM_ALLOY_SIC		6
-
-
-#define PTM_MAX_INPUT_POINTS 35
-#define PTM_MAX_NBRS	16
-#define PTM_MAX_POINTS	(PTM_MAX_NBRS + 1)
-#define PTM_MAX_FACETS	28	//2 * PTM_MAX_NBRS - 4
-#define PTM_MAX_EDGES   42	//3 * PTM_MAX_NBRS - 6
-
-
-//------------------------------------
-//    number of neighbours
-//------------------------------------
-#define PTM_NUM_NBRS_FCC 12
-#define PTM_NUM_NBRS_HCP 12
-#define PTM_NUM_NBRS_BCC 14
-#define PTM_NUM_NBRS_ICO 12
-#define PTM_NUM_NBRS_SC  6
-#define PTM_NUM_NBRS_DCUB  16
-#define PTM_NUM_NBRS_DHEX  16
-
-#define PTM_NUM_POINTS_FCC  (PTM_NUM_NBRS_FCC + 1)
-#define PTM_NUM_POINTS_HCP  (PTM_NUM_NBRS_HCP + 1)
-#define PTM_NUM_POINTS_BCC  (PTM_NUM_NBRS_BCC + 1)
-#define PTM_NUM_POINTS_ICO  (PTM_NUM_NBRS_ICO + 1)
-#define PTM_NUM_POINTS_SC   (PTM_NUM_NBRS_SC  + 1)
-#define PTM_NUM_POINTS_DCUB (PTM_NUM_NBRS_DCUB  + 1)
-#define PTM_NUM_POINTS_DHEX (PTM_NUM_NBRS_DHEX  + 1)
-
-const int ptm_num_nbrs[8] = {0, PTM_NUM_NBRS_FCC, PTM_NUM_NBRS_HCP, PTM_NUM_NBRS_BCC, PTM_NUM_NBRS_ICO, PTM_NUM_NBRS_SC, PTM_NUM_NBRS_DCUB, PTM_NUM_NBRS_DHEX};
-
-//------------------------------------
-//    template structures
-//------------------------------------
-
-//these point sets have barycentre {0, 0, 0} and are scaled such that the mean neighbour distance is 1
-
-const double ptm_template_fcc[PTM_NUM_POINTS_FCC][3] = {	{  0.            ,  0.            ,  0.             },
-								{  0.            ,  0.707106781187,  0.707106781187 },
-								{  0.            , -0.707106781187, -0.707106781187 },
-								{  0.            ,  0.707106781187, -0.707106781187 },
-								{  0.            , -0.707106781187,  0.707106781187 },
-								{  0.707106781187,  0.            ,  0.707106781187 },
-								{ -0.707106781187,  0.            , -0.707106781187 },
-								{  0.707106781187,  0.            , -0.707106781187 },
-								{ -0.707106781187,  0.            ,  0.707106781187 },
-								{  0.707106781187,  0.707106781187,  0.             },
-								{ -0.707106781187, -0.707106781187,  0.             },
-								{  0.707106781187, -0.707106781187,  0.             },
-								{ -0.707106781187,  0.707106781187,  0.             }	};
-
-const double ptm_template_hcp[PTM_NUM_POINTS_HCP][3] = {	{  0.            ,  0.            ,  0.             },
-								{  0.707106781186,  0.            ,  0.707106781186 },
-								{ -0.235702260395, -0.942809041583, -0.235702260395 },
-								{  0.707106781186,  0.707106781186,  0.             },
-								{ -0.235702260395, -0.235702260395, -0.942809041583 },
-								{  0.            ,  0.707106781186,  0.707106781186 },
-								{ -0.942809041583, -0.235702260395, -0.235702260395 },
-								{ -0.707106781186,  0.707106781186,  0.             },
-								{  0.            ,  0.707106781186, -0.707106781186 },
-								{  0.707106781186,  0.            , -0.707106781186 },
-								{  0.707106781186, -0.707106781186,  0.             },
-								{ -0.707106781186,  0.            ,  0.707106781186 },
-								{  0.            , -0.707106781186,  0.707106781186 }	};
-
-const double ptm_template_bcc[PTM_NUM_POINTS_BCC][3] = {	{  0.            ,  0.            ,  0.             },
-								{ -0.541451884327, -0.541451884327, -0.541451884327 },
-								{  0.541451884327,  0.541451884327,  0.541451884327 },
-								{  0.541451884327, -0.541451884327, -0.541451884327 },
-								{ -0.541451884327,  0.541451884327,  0.541451884327 },
-								{ -0.541451884327,  0.541451884327, -0.541451884327 },
-								{  0.541451884327, -0.541451884327,  0.541451884327 },
-								{ -0.541451884327, -0.541451884327,  0.541451884327 },
-								{  0.541451884327,  0.541451884327, -0.541451884327 },
-								{  0.            ,  0.            , -1.082903768655 },
-								{  0.            ,  0.            ,  1.082903768655 },
-								{  0.            , -1.082903768655,  0.             },
-								{  0.            ,  1.082903768655,  0.             },
-								{ -1.082903768655,  0.            ,  0.             },
-								{  1.082903768655,  0.            ,  0.             }	};
-
-const double ptm_template_ico[PTM_NUM_POINTS_ICO][3] = {	{  0.            ,  0.            ,  0.             },
-								{  0.            ,  0.525731112119,  0.850650808352 },
-								{  0.            , -0.525731112119, -0.850650808352 },
-								{  0.            ,  0.525731112119, -0.850650808352 },
-								{  0.            , -0.525731112119,  0.850650808352 },
-								{ -0.525731112119, -0.850650808352,  0.             },
-								{  0.525731112119,  0.850650808352,  0.             },
-								{  0.525731112119, -0.850650808352,  0.             },
-								{ -0.525731112119,  0.850650808352,  0.             },
-								{ -0.850650808352,  0.            , -0.525731112119 },
-								{  0.850650808352,  0.            ,  0.525731112119 },
-								{  0.850650808352,  0.            , -0.525731112119 },
-								{ -0.850650808352,  0.            ,  0.525731112119 }	};
-
-const double ptm_template_sc[PTM_NUM_POINTS_SC][3] = {		{  0.            ,  0.            ,  0.             },
-								{  0.            ,  0.            , -1.             },
-								{  0.            ,  0.            ,  1.             },
-								{  0.            , -1.            ,  0.             },
-								{  0.            ,  1.            ,  0.             },
-								{ -1.            ,  0.            ,  0.             },
-								{  1.            ,  0.            ,  0.             }	};
-
-const double ptm_template_dcub[PTM_NUM_POINTS_DCUB][3] = {	{  0.            ,  0.            ,  0.             },
-								{ -0.391491627053,  0.391491627053,  0.391491627053 },
-								{ -0.391491627053, -0.391491627053, -0.391491627053 },
-								{  0.391491627053, -0.391491627053,  0.391491627053 },
-								{  0.391491627053,  0.391491627053, -0.391491627053 },
-								{ -0.782983254107,  0.            ,  0.782983254107 },
-								{ -0.782983254107,  0.782983254107,  0.             },
-								{  0.            ,  0.782983254107,  0.782983254107 },
-								{ -0.782983254107, -0.782983254107,  0.             },
-								{ -0.782983254107,  0.            , -0.782983254107 },
-								{  0.            , -0.782983254107, -0.782983254107 },
-								{  0.            , -0.782983254107,  0.782983254107 },
-								{  0.782983254107, -0.782983254107,  0.             },
-								{  0.782983254107,  0.            ,  0.782983254107 },
-								{  0.            ,  0.782983254107, -0.782983254107 },
-								{  0.782983254107,  0.            , -0.782983254107 },
-								{  0.782983254107,  0.782983254107,  0.             }	};
-
-const double ptm_template_dhex[PTM_NUM_POINTS_DHEX][3] = {	{  0.            ,  0.            ,  0.             },
-								{ -0.391491627053, -0.391491627053, -0.391491627053 },
-								{  0.391491627053, -0.391491627053,  0.391491627053 },
-								{ -0.391491627053,  0.391491627053,  0.391491627053 },
-								{  0.391491627053,  0.391491627053, -0.391491627053 },
-								{ -0.260994418036, -1.043977672142, -0.260994418036 },
-								{ -1.043977672142, -0.260994418036, -0.260994418036 },
-								{ -0.260994418036, -0.260994418036, -1.043977672142 },
-								{  0.782983254107,  0.            ,  0.782983254107 },
-								{  0.782983254107, -0.782983254107,  0.             },
-								{  0.            , -0.782983254107,  0.782983254107 },
-								{  0.            ,  0.782983254107,  0.782983254107 },
-								{ -0.782983254107,  0.782983254107,  0.             },
-								{ -0.782983254107,  0.            ,  0.782983254107 },
-								{  0.782983254107,  0.782983254107,  0.             },
-								{  0.            ,  0.782983254107, -0.782983254107 },
-								{  0.782983254107,  0.            , -0.782983254107 }	};
-#endif
-
diff --git a/src/PTM/ptm_functions.h b/src/PTM/ptm_functions.h
deleted file mode 100644
index cd67d4940d..0000000000
--- a/src/PTM/ptm_functions.h
+++ /dev/null
@@ -1,27 +0,0 @@
-#ifndef PTM_FUNCTIONS_H
-#define PTM_FUNCTIONS_H
-
-#include <stdint.h>
-#include <stdbool.h>
-#include "ptm_initialize_data.h"
-#include "ptm_constants.h"
-
-
-//------------------------------------
-//    function declarations
-//------------------------------------
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-
-int ptm_index(	ptm_local_handle_t local_handle, int32_t flags, int num_points, double (*atomic_positions)[3], int32_t* atomic_numbers, bool topological_ordering,	//inputs
-		int32_t* p_type, int32_t* p_alloy_type, double* p_scale, double* p_rmsd, double* q, double* F, double* F_res, double* U, double* P, int8_t* mapping, double* p_interatomic_distance, double* p_lattice_constant);	//outputs
-
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/src/USER-PTM/alloy_types.cpp b/src/USER-PTM/alloy_types.cpp
deleted file mode 100644
index bde51c19b1..0000000000
--- a/src/USER-PTM/alloy_types.cpp
+++ /dev/null
@@ -1,101 +0,0 @@
-#include <algorithm>
-#include "ptm_constants.h"
-#include "initialize_data.h"
-
-
-#define NUM_ALLOY_TYPES 3
-static uint32_t typedata[NUM_ALLOY_TYPES][3] = {
-	{PTM_MATCH_FCC, PTM_ALLOY_L10,    0x000001fe},
-	{PTM_MATCH_FCC, PTM_ALLOY_L12_CU, 0x0000001e},
-	{PTM_MATCH_FCC, PTM_ALLOY_L12_AU, 0x00001ffe},
-};
-
-static bool test_pure(int num_nbrs, int32_t* numbers)
-{
-	for (int i=1;i<num_nbrs + 1;i++)
-		if (numbers[i] != numbers[0])
-			return false;
-	return true;
-}
-
-static bool test_binary(int num_nbrs, int32_t* numbers)
-{
-	int a = numbers[0], b = -1;
-	for (int i=1;i<num_nbrs + 1;i++)
-	{
-		if (numbers[i] != a)
-		{
-			if (b == -1)
-				b = numbers[i];
-			else if (numbers[i] != b)
-				return false;
-		}
-	}
-
-	return true;
-}
-
-static bool test_shell_structure(const refdata_t* ref, int8_t* mapping, int32_t* numbers, int num_inner)
-{
-	int8_t binary[PTM_MAX_POINTS];
-	for (int i=0;i<ref->num_nbrs+1;i++)
-		binary[i] = numbers[mapping[i]] == numbers[0] ? 0 : 1;
-
-	for (int i=1;i<num_inner + 1;i++)
-		if (binary[i] == binary[0])
-			return false;
-
-	for (int i=num_inner+1;i<ref->num_nbrs+1;i++)
-		if (binary[i] != binary[0])
-			return false;
-
-	return true;
-}
-
-static int32_t canonical_alloy_representation(const refdata_t* ref, int8_t* mapping, int32_t* numbers)
-{
-	int8_t binary[PTM_MAX_POINTS];
-	for (int i=0;i<ref->num_nbrs+1;i++)
-		binary[i] = numbers[mapping[i]] == numbers[0] ? 0 : 1;
-
-	int8_t temp[PTM_MAX_POINTS];
-	uint32_t best = 0xFFFFFFFF;
-	for (int j=0;j<ref->num_mappings;j++)
-	{
-		for (int i=0;i<ref->num_nbrs+1;i++)
-			temp[ref->mapping[j][i]] = binary[i];
-
-		uint32_t code = 0;
-		for (int i=0;i<ref->num_nbrs+1;i++)
-			code |= (temp[i] << i);
-
-		best = std::min(best, code);
-	}
-
-	return best;
-}
-
-int32_t find_alloy_type(const refdata_t* ref, int8_t* mapping, int32_t* numbers)
-{
-	if (test_pure(ref->num_nbrs, numbers))
-		return PTM_ALLOY_PURE;
-
-	if (!test_binary(ref->num_nbrs, numbers))
-		return PTM_ALLOY_NONE;
-
-	uint32_t code = canonical_alloy_representation(ref, mapping, numbers);
-	for (int i=0;i<NUM_ALLOY_TYPES;i++)
-		if ((uint32_t)ref->type == typedata[i][0] && code == typedata[i][2])
-			return typedata[i][1];
-
-	if (ref->type == PTM_MATCH_BCC)
-		if (test_shell_structure(ref, mapping, numbers, 8))
-			return PTM_ALLOY_B2;
-
-	if (ref->type == PTM_MATCH_DCUB || ref->type == PTM_MATCH_DHEX)
-		if (test_shell_structure(ref, mapping, numbers, 4))
-			return PTM_ALLOY_SIC;
-
-	return PTM_ALLOY_NONE;
-}
-
diff --git a/src/USER-PTM/alloy_types.h b/src/USER-PTM/alloy_types.h
deleted file mode 100644
index 1f2980593a..0000000000
--- a/src/USER-PTM/alloy_types.h
+++ /dev/null
@@ -1,9 +0,0 @@
-#ifndef ALLOY_TYPES_H
-#define ALLOY_TYPES_H
-
-#include "initialize_data.h"
-
-int32_t find_alloy_type(const refdata_t* ref, int8_t* mapping, int32_t* numbers);
-
-#endif
-
diff --git a/src/USER-PTM/canonical_coloured.cpp b/src/USER-PTM/canonical_coloured.cpp
deleted file mode 100644
index af446e1a95..0000000000
--- a/src/USER-PTM/canonical_coloured.cpp
+++ /dev/null
@@ -1,167 +0,0 @@
-#include <string.h>
-#include <climits>
-#include <algorithm>
-#include "graph_tools.h"
-#include "ptm_constants.h"
-
-
-static bool weinberg_coloured(int num_nodes, int num_edges, int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS], int8_t* colours, int8_t* best_code, int8_t* canonical_labelling, int a, int b)
-{
-	bool m[PTM_MAX_NBRS][PTM_MAX_NBRS];
-	memset(m, 0, sizeof(bool) * PTM_MAX_NBRS * PTM_MAX_NBRS);
-
-	int8_t index[PTM_MAX_NBRS];
-	memset(index, -1, sizeof(int8_t) * PTM_MAX_NBRS);
-
-
-	int n = 0;
-	index[a] = colours[a] * num_nodes + n++;
-	if (index[a] > best_code[0])
-		return false;
-
-	bool winning = false;
-	if (index[a] < best_code[0])
-	{
-		best_code[0] = index[a];
-		winning = true;
-	}
-
-	int c = -1;
-	for (int it=1;it<2*num_edges;it++)
-	{
-		bool newvertex = index[b] == -1;
-
-		if (newvertex)
-			index[b] = colours[b] * num_nodes + n++;
-
-		if (!winning && index[b] > best_code[it])
-			return false;
-
-		if (winning || index[b] < best_code[it])
-		{
-			winning = true;
-			best_code[it] = index[b];
-		}
-
-		if (newvertex)
-		{
-			//When a new vertex is reached, take the right-most edge
-			//relative to the edge on which the vertex is reached.
-
-			c = common[a][b];
-		}
-		else if (m[b][a] == false)
-		{
-			//When an old vertex is reached on a new path, go back
-			//in the opposite direction.
-
-			c = a;
-		}
-		else
-		{
-			//When an old vertex is reached on an old path, leave the
-			//vertex on the right-most edge that has not previously
-			//been traversed in that direction.
-
-			c = common[a][b];
-			while (m[b][c] == true)
-				c = common[c][b];
-		}
-
-		m[a][b] = true;
-		a = b;
-		b = c;
-	}
-
-	if (winning)
-	{
-		memcpy(canonical_labelling, index, sizeof(int8_t) * num_nodes);
-		return true;
-	}
-
-	return false;
-}
-
-int canonical_form_coloured(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree, int8_t* colours, int8_t* canonical_labelling, int8_t* best_code, uint64_t* p_hash)
-{
-	int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS] = {{0}};
-	int num_edges = 3 * num_facets / 2;
-	if (!build_facet_map(num_facets, facets, common))
-		return -1;
-
-	memset(best_code, SCHAR_MAX, sizeof(int8_t) * 2 * PTM_MAX_EDGES);
-
-	bool equal = true;
-	for (int i = 1;i<num_nodes;i++)
-		if (degree[i] != degree[0] || colours[i] != colours[0])
-			equal = false;
-
-	if (equal)
-	{
-		weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, facets[0][0], facets[0][1]);
-	}
-	else
-	{
-		uint32_t best_degree = 0;
-		for (int i = 0;i<num_facets;i++)
-		{
-			int a = facets[i][0];
-			int b = facets[i][1];
-			int c = facets[i][2];
-
-			//int da = colours[a] * num_nodes + degree[a];
-			//int db = colours[b] * num_nodes + degree[b];
-			//int dc = colours[c] * num_nodes + degree[c];
-
-			int da = degree[a];
-			int db = degree[b];
-			int dc = degree[c];
-
-			best_degree = std::max(best_degree, ((uint32_t)da << 16) | ((uint32_t)db << 8) | ((uint32_t)dc << 0));
-			best_degree = std::max(best_degree, ((uint32_t)da << 0) | ((uint32_t)db << 16) | ((uint32_t)dc << 8));
-			best_degree = std::max(best_degree, ((uint32_t)da << 8) | ((uint32_t)db << 0) | ((uint32_t)dc << 16));
-		}
-
-		for (int i = 0;i<num_facets;i++)
-		{
-			int a = facets[i][0];
-			int b = facets[i][1];
-			int c = facets[i][2];
-
-			//int da = colours[a] * num_nodes + degree[a];
-			//int db = colours[b] * num_nodes + degree[b];
-			//int dc = colours[c] * num_nodes + degree[c];
-
-			int da = degree[a];
-			int db = degree[b];
-			int dc = degree[c];
-
-			if (best_degree == (((uint32_t)da << 16) | ((uint32_t)db << 8) | ((uint32_t)dc << 0)))
-				weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, a, b);
-
-			if (best_degree == (((uint32_t)da << 0) | ((uint32_t)db << 16) | ((uint32_t)dc << 8)))
-				weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, b, c);
-
-			if (best_degree == (((uint32_t)da << 8) | ((uint32_t)db << 0) | ((uint32_t)dc << 16)))
-				weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, c, a);
-		}
-	}
-
-	for (int i = num_nodes-1;i>=0;i--)
-		canonical_labelling[i+1] = (canonical_labelling[i] % num_nodes) + 1;
-	canonical_labelling[0] = 0;
-
-	uint64_t hash = 0;
-	for (int i = 0;i<2 * num_edges;i++)
-	{
-		uint64_t e = best_code[i];
-		e += i % 8;
-		e &= 0xF;
-		e <<= (4 * i) % 64;
-		hash ^= e;
-	}
-
-	*p_hash = hash;
-	return PTM_NO_ERROR;
-}
-
diff --git a/src/USER-PTM/canonical_coloured.h b/src/USER-PTM/canonical_coloured.h
deleted file mode 100644
index 4a7b5f5a4a..0000000000
--- a/src/USER-PTM/canonical_coloured.h
+++ /dev/null
@@ -1,9 +0,0 @@
-#ifndef CANONICAL_COLOURED_H
-#define CANONICAL_COLOURED_H
-
-#include <stdint.h>
-
-int canonical_form_coloured(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree, int8_t* colours, int8_t* canonical_labelling, int8_t* best_code, uint64_t* p_hash);
-
-#endif
-
diff --git a/src/USER-PTM/cell.cpp b/src/USER-PTM/cell.cpp
deleted file mode 100644
index f88e310b74..0000000000
--- a/src/USER-PTM/cell.cpp
+++ /dev/null
@@ -1,1368 +0,0 @@
-// Voro++, a 3D cell-based Voronoi library
-//
-// Author   : Chris H. Rycroft (LBL / UC Berkeley)
-// Email    : chr@alum.mit.edu
-// Date     : August 30th 2011
-//
-// Modified by PM Larsen for use in Polyhedral Template Matching
-
-/** \file cell.cc
- * \brief Function implementations for the voronoicell and related classes. */
-
-#include <cmath>
-#include <cstring>
-#include <cstdlib>
-#include "config.h"
-#include "cell.h"
-
-namespace voro {
-
-inline void voro_fatal_error(const char *p,int status) {
-	fprintf(stderr,"voro++: %s\n",p);
-	exit(status);
-	//return -1;//status;
-}
-
-/** Constructs a Voronoi cell and sets up the initial memory. */
-voronoicell_base::voronoicell_base() :
-	current_vertices(init_vertices), current_vertex_order(init_vertex_order),
-	current_delete_size(init_delete_size), current_delete2_size(init_delete2_size),
-	ed(new int*[current_vertices]), nu(new int[current_vertices]),
-	pts(new double[3*current_vertices]), mem(new int[current_vertex_order]),
-	mec(new int[current_vertex_order]), mep(new int*[current_vertex_order]),
-	ds(new int[current_delete_size]), stacke(ds+current_delete_size),
-	ds2(new int[current_delete2_size]), stacke2(ds2+current_delete_size),
-	current_marginal(init_marginal), marg(new int[current_marginal]) {
-	int i;
-	for(i=0;i<3;i++) {
-		mem[i]=init_n_vertices;mec[i]=0;
-		mep[i]=new int[init_n_vertices*((i<<1)+1)];
-	}
-	mem[3]=init_3_vertices;mec[3]=0;
-	mep[3]=new int[init_3_vertices*7];
-	for(i=4;i<current_vertex_order;i++) {
-		mem[i]=init_n_vertices;mec[i]=0;
-		mep[i]=new int[init_n_vertices*((i<<1)+1)];
-	}
-}
-
-/** The voronoicell destructor deallocates all the dynamic memory. */
-voronoicell_base::~voronoicell_base() {
-	for(int i=current_vertex_order-1;i>=0;i--) if(mem[i]>0) delete [] mep[i];
-	delete [] marg;
-	delete [] ds2;delete [] ds;
-	delete [] mep;delete [] mec;
-	delete [] mem;delete [] pts;
-	delete [] nu;delete [] ed;
-}
-
-/** Ensures that enough memory is allocated prior to carrying out a copy.
- * \param[in] vc a reference to the specialized version of the calling class.
- * \param[in] vb a pointered to the class to be copied. */
-template<class vc_class>
-void voronoicell_base::check_memory_for_copy(vc_class &vc,voronoicell_base* vb) {
-	while(current_vertex_order<vb->current_vertex_order) add_memory_vorder(vc);
-	for(int i=0;i<current_vertex_order;i++) while(mem[i]<vb->mec[i]) add_memory(vc,i,ds2);
-	while(current_vertices<vb->p) add_memory_vertices(vc);
-}
-
-/** Increases the memory storage for a particular vertex order, by increasing
- * the size of the of the corresponding mep array. If the arrays already exist,
- * their size is doubled; if they don't exist, then new ones of size
- * init_n_vertices are allocated. The routine also ensures that the pointers in
- * the ed array are updated, by making use of the back pointers. For the cases
- * where the back pointer has been temporarily overwritten in the marginal
- * vertex code, the auxiliary delete stack is scanned to find out how to update
- * the ed value. If the template has been instantiated with the neighbor
- * tracking turned on, then the routine also reallocates the corresponding mne
- * array.
- * \param[in] i the order of the vertex memory to be increased. */
-template<class vc_class>
-void voronoicell_base::add_memory(vc_class &vc,int i,int *stackp2) {
-	int s=(i<<1)+1;
-	if(mem[i]==0) {
-		vc.n_allocate(i,init_n_vertices);
-		mep[i]=new int[init_n_vertices*s];
-		mem[i]=init_n_vertices;
-#if VOROPP_VERBOSE >=2
-		fprintf(stderr,"Order %d vertex memory created\n",i);
-#endif
-	} else {
-		int j=0,k,*l;
-		mem[i]<<=1;
-		if(mem[i]>max_n_vertices) voro_fatal_error("Point memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
-#if VOROPP_VERBOSE >=2
-		fprintf(stderr,"Order %d vertex memory scaled up to %d\n",i,mem[i]);
-#endif
-		l=new int[s*mem[i]];
-		int m=0;
-		vc.n_allocate_aux1(i);
-		while(j<s*mec[i]) {
-			k=mep[i][j+(i<<1)];
-			if(k>=0) {
-				ed[k]=l+j;
-				vc.n_set_to_aux1_offset(k,m);
-			} else {
-				int *dsp;
-				for(dsp=ds2;dsp<stackp2;dsp++) {
-					if(ed[*dsp]==mep[i]+j) {
-						ed[*dsp]=l+j;
-						vc.n_set_to_aux1_offset(*dsp,m);
-						break;
-					}
-				}
-				if(dsp==stackp2) voro_fatal_error("Couldn't relocate dangling pointer",VOROPP_INTERNAL_ERROR);
-#if VOROPP_VERBOSE >=3
-				fputs("Relocated dangling pointer",stderr);
-#endif
-			}
-			for(k=0;k<s;k++,j++) l[j]=mep[i][j];
-			for(k=0;k<i;k++,m++) vc.n_copy_to_aux1(i,m);
-		}
-		delete [] mep[i];
-		mep[i]=l;
-		vc.n_switch_to_aux1(i);
-	}
-}
-
-/** Doubles the maximum number of vertices allowed, by reallocating the ed, nu,
- * and pts arrays. If the allocation exceeds the absolute maximum set in
- * max_vertices, then the routine exits with a fatal error. If the template has
- * been instantiated with the neighbor tracking turned on, then the routine
- * also reallocates the ne array. */
-template<class vc_class>
-void voronoicell_base::add_memory_vertices(vc_class &vc) {
-
-printf("nope: %d\n", current_vertices);
-exit(3);
-
-	int i=(current_vertices<<1),j,**pp,*pnu;
-	if(i>max_vertices) voro_fatal_error("Vertex memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
-#if VOROPP_VERBOSE >=2
-	fprintf(stderr,"Vertex memory scaled up to %d\n",i);
-#endif
-	double *ppts;
-	pp=new int*[i];
-	for(j=0;j<current_vertices;j++) pp[j]=ed[j];
-	delete [] ed;ed=pp;
-	vc.n_add_memory_vertices(i);
-	pnu=new int[i];
-	for(j=0;j<current_vertices;j++) pnu[j]=nu[j];
-	delete [] nu;nu=pnu;
-	ppts=new double[3*i];
-	for(j=0;j<3*current_vertices;j++) ppts[j]=pts[j];
-	delete [] pts;pts=ppts;
-	current_vertices=i;
-}
-
-/** Doubles the maximum allowed vertex order, by reallocating mem, mep, and mec
- * arrays. If the allocation exceeds the absolute maximum set in
- * max_vertex_order, then the routine causes a fatal error. If the template has
- * been instantiated with the neighbor tracking turned on, then the routine
- * also reallocates the mne array. */
-template<class vc_class>
-void voronoicell_base::add_memory_vorder(vc_class &vc) {
-	int i=(current_vertex_order<<1),j,*p1,**p2;
-	if(i>max_vertex_order) voro_fatal_error("Vertex order memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
-#if VOROPP_VERBOSE >=2
-	fprintf(stderr,"Vertex order memory scaled up to %d\n",i);
-#endif
-	p1=new int[i];
-	for(j=0;j<current_vertex_order;j++) p1[j]=mem[j];while(j<i) p1[j++]=0;
-	delete [] mem;mem=p1;
-	p2=new int*[i];
-	for(j=0;j<current_vertex_order;j++) p2[j]=mep[j];
-	delete [] mep;mep=p2;
-	p1=new int[i];
-	for(j=0;j<current_vertex_order;j++) p1[j]=mec[j];while(j<i) p1[j++]=0;
-	delete [] mec;mec=p1;
-	vc.n_add_memory_vorder(i);
-	current_vertex_order=i;
-}
-
-/** Doubles the size allocation of the main delete stack. If the allocation
- * exceeds the absolute maximum set in max_delete_size, then routine causes a
- * fatal error. */
-void voronoicell_base::add_memory_ds(int *&stackp) {
-	current_delete_size<<=1;
-	if(current_delete_size>max_delete_size) voro_fatal_error("Delete stack 1 memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
-#if VOROPP_VERBOSE >=2
-	fprintf(stderr,"Delete stack 1 memory scaled up to %d\n",current_delete_size);
-#endif
-	int *dsn=new int[current_delete_size],*dsnp=dsn,*dsp=ds;
-	while(dsp<stackp) *(dsnp++)=*(dsp++);
-	delete [] ds;ds=dsn;stackp=dsnp;
-	stacke=ds+current_delete_size;
-}
-
-/** Doubles the size allocation of the auxiliary delete stack. If the
- * allocation exceeds the absolute maximum set in max_delete2_size, then the
- * routine causes a fatal error. */
-void voronoicell_base::add_memory_ds2(int *&stackp2) {
-	current_delete2_size<<=1;
-	if(current_delete2_size>max_delete2_size) voro_fatal_error("Delete stack 2 memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
-#if VOROPP_VERBOSE >=2
-	fprintf(stderr,"Delete stack 2 memory scaled up to %d\n",current_delete2_size);
-#endif
-	int *dsn=new int[current_delete2_size],*dsnp=dsn,*dsp=ds2;
-	while(dsp<stackp2) *(dsnp++)=*(dsp++);
-	delete [] ds2;ds2=dsn;stackp2=dsnp;
-	stacke2=ds2+current_delete2_size;
-}
-
-/** Initializes a Voronoi cell as a rectangular box with the given dimensions.
- * \param[in] (xmin,xmax) the minimum and maximum x coordinates.
- * \param[in] (ymin,ymax) the minimum and maximum y coordinates.
- * \param[in] (zmin,zmax) the minimum and maximum z coordinates. */
-void voronoicell_base::init_base(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax) {
-	for(int i=0;i<current_vertex_order;i++) mec[i]=0;up=0;
-	mec[3]=p=8;xmin*=2;xmax*=2;ymin*=2;ymax*=2;zmin*=2;zmax*=2;
-	*pts=xmin;pts[1]=ymin;pts[2]=zmin;
-	pts[3]=xmax;pts[4]=ymin;pts[5]=zmin;
-	pts[6]=xmin;pts[7]=ymax;pts[8]=zmin;
-	pts[9]=xmax;pts[10]=ymax;pts[11]=zmin;
-	pts[12]=xmin;pts[13]=ymin;pts[14]=zmax;
-	pts[15]=xmax;pts[16]=ymin;pts[17]=zmax;
-	pts[18]=xmin;pts[19]=ymax;pts[20]=zmax;
-	pts[21]=xmax;pts[22]=ymax;pts[23]=zmax;
-	int *q=mep[3];
-	*q=1;q[1]=4;q[2]=2;q[3]=2;q[4]=1;q[5]=0;q[6]=0;
-	q[7]=3;q[8]=5;q[9]=0;q[10]=2;q[11]=1;q[12]=0;q[13]=1;
-	q[14]=0;q[15]=6;q[16]=3;q[17]=2;q[18]=1;q[19]=0;q[20]=2;
-	q[21]=2;q[22]=7;q[23]=1;q[24]=2;q[25]=1;q[26]=0;q[27]=3;
-	q[28]=6;q[29]=0;q[30]=5;q[31]=2;q[32]=1;q[33]=0;q[34]=4;
-	q[35]=4;q[36]=1;q[37]=7;q[38]=2;q[39]=1;q[40]=0;q[41]=5;
-	q[42]=7;q[43]=2;q[44]=4;q[45]=2;q[46]=1;q[47]=0;q[48]=6;
-	q[49]=5;q[50]=3;q[51]=6;q[52]=2;q[53]=1;q[54]=0;q[55]=7;
-	*ed=q;ed[1]=q+7;ed[2]=q+14;ed[3]=q+21;
-	ed[4]=q+28;ed[5]=q+35;ed[6]=q+42;ed[7]=q+49;
-	*nu=nu[1]=nu[2]=nu[3]=nu[4]=nu[5]=nu[6]=nu[7]=3;
-}
-
-/** Starting from a point within the current cutting plane, this routine attempts
- * to find an edge to a point outside the cutting plane. This prevents the plane
- * routine from .
- * \param[in] vc a reference to the specialized version of the calling class.
- * \param[in,out] up */
-template<class vc_class>
-inline bool voronoicell_base::search_for_outside_edge(vc_class &vc,int &up) {
-	int i,lp,lw,*j(ds2),*stackp2(ds2);
-	double l;
-	*(stackp2++)=up;
-	while(j<stackp2) {
-		up=*(j++);
-		for(i=0;i<nu[up];i++) {
-			lp=ed[up][i];
-			lw=m_test(lp,l);
-			if(lw==-1) return true;
-			else if(lw==0) add_to_stack(vc,lp,stackp2);
-		}
-	}
-	return false;
-}
-
-/** Adds a point to the auxiliary delete stack if it is not already there.
- * \param[in] vc a reference to the specialized version of the calling class.
- * \param[in] lp the index of the point to add.
- * \param[in,out] stackp2 a pointer to the end of the stack entries. */
-template<class vc_class>
-inline void voronoicell_base::add_to_stack(vc_class &vc,int lp,int *&stackp2) {
-	for(int *k(ds2);k<stackp2;k++) if(*k==lp) return;
-	if(stackp2==stacke2) add_memory_ds2(stackp2);
-	*(stackp2++)=lp;
-}
-
-/** Cuts the Voronoi cell by a particle whose center is at a separation of
- * (x,y,z) from the cell center. The value of rsq should be initially set to
- * \f$x^2+y^2+z^2\f$.
- * \param[in] vc a reference to the specialized version of the calling class.
- * \param[in] (x,y,z) the normal vector to the plane.
- * \param[in] rsq the distance along this vector of the plane.
- * \param[in] p_id the plane ID (for neighbor tracking only).
- * \return False if the plane cut deleted the cell entirely, true otherwise. */
-template<class vc_class>
-bool voronoicell_base::nplane(vc_class &vc,double x,double y,double z,double rsq,int p_id) {
-	int count=0,i,j,k,lp=up,cp,qp,rp,*stackp(ds),*stackp2(ds2),*dsp;
-	int us=0,ls=0,qs,iqs,cs,uw,qw,lw;
-	int *edp,*edd;
-	double u,l,r,q;bool complicated_setup=false,new_double_edge=false,double_edge=false;
-
-	// Initialize the safe testing routine
-	n_marg=0;px=x;py=y;pz=z;prsq=rsq;
-
-	// Test approximately sqrt(n)/4 points for their proximity to the plane
-	// and keep the one which is closest
-	uw=m_test(up,u);
-
-	// Starting from an initial guess, we now move from vertex to vertex,
-	// to try and find an edge which intersects the cutting plane,
-	// or a vertex which is on the plane
-	try {
-		if(uw==1) {
-
-			// The test point is inside the cutting plane.
-			us=0;
-			do {
-				lp=ed[up][us];
-				lw=m_test(lp,l);
-				if(l<u) break;
-				us++;
-			} while (us<nu[up]);
-
-			if(us==nu[up]) {
-				return false;
-			}
-
-			ls=ed[up][nu[up]+us];
-			while(lw==1) {
-				if(++count>=p) throw true;
-				u=l;up=lp;
-				for(us=0;us<ls;us++) {
-					lp=ed[up][us];
-					lw=m_test(lp,l);
-					if(l<u) break;
-				}
-				if(us==ls) {
-					us++;
-					while(us<nu[up]) {
-						lp=ed[up][us];
-						lw=m_test(lp,l);
-						if(l<u) break;
-						us++;
-					}
-					if(us==nu[up]) {
-						return false;
-					}
-				}
-				ls=ed[up][nu[up]+us];
-			}
-
-			// If the last point in the iteration is within the
-			// plane, we need to do the complicated setup
-			// routine. Otherwise, we use the regular iteration.
-			if(lw==0) {
-				up=lp;
-				complicated_setup=true;
-			} else complicated_setup=false;
-		} else if(uw==-1) {
-			us=0;
-			do {
-				qp=ed[up][us];
-				qw=m_test(qp,q);
-				if(u<q) break;
-				us++;
-			} while (us<nu[up]);
-			if(us==nu[up]) return true;
-
-			while(qw==-1) {
-				qs=ed[up][nu[up]+us];
-				if(++count>=p) throw true;
-				u=q;up=qp;
-				for(us=0;us<qs;us++) {
-					qp=ed[up][us];
-					qw=m_test(qp,q);
-					if(u<q) break;
-				}
-				if(us==qs) {
-					us++;
-					while(us<nu[up]) {
-						qp=ed[up][us];
-						qw=m_test(qp,q);
-						if(u<q) break;
-						us++;
-					}
-					if(us==nu[up]) return true;
-				}
-			}
-			if(qw==1) {
-				lp=up;ls=us;l=u;
-				up=qp;us=ed[lp][nu[lp]+ls];u=q;
-				complicated_setup=false;
-			} else {
-				up=qp;
-				complicated_setup=true;
-			}
-		} else {
-
-			// Our original test point was on the plane, so we
-			// automatically head for the complicated setup
-			// routine
-			complicated_setup=true;
-		}
-	}
-	catch(bool except) {
-		// This routine is a fall-back, in case floating point errors
-		// cause the usual search routine to fail. In the fall-back
-		// routine, we just test every edge to find one straddling
-		// the plane.
-#if VOROPP_VERBOSE >=1
-		fputs("Bailed out of convex calculation\n",stderr);
-#endif
-		qw=1;lw=0;
-		for(qp=0;qp<p;qp++) {
-			qw=m_test(qp,q);
-			if(qw==1) {
-
-				// The point is inside the cutting space. Now
-				// see if we can find a neighbor which isn't.
-				for(us=0;us<nu[qp];us++) {
-					lp=ed[qp][us];
-					if(lp<qp) {
-						lw=m_test(lp,l);
-						if(lw!=1) break;
-					}
-				}
-				if(us<nu[qp]) {
-					up=qp;
-					if(lw==0) {
-						complicated_setup=true;
-					} else {
-						complicated_setup=false;
-						u=q;
-						ls=ed[up][nu[up]+us];
-					}
-					break;
-				}
-			} else if(qw==-1) {
-
-				// The point is outside the cutting space. See
-				// if we can find a neighbor which isn't.
-				for(ls=0;ls<nu[qp];ls++) {
-					up=ed[qp][ls];
-					if(up<qp) {
-						uw=m_test(up,u);
-						if(uw!=-1) break;
-					}
-				}
-				if(ls<nu[qp]) {
-					if(uw==0) {
-						up=qp;
-						complicated_setup=true;
-					} else {
-						complicated_setup=false;
-						lp=qp;l=q;
-						us=ed[lp][nu[lp]+ls];
-					}
-					break;
-				}
-			} else {
-
-				// The point is in the plane, so we just
-				// proceed with the complicated setup routine
-				up=qp;
-				complicated_setup=true;
-				break;
-			}
-		}
-		if(qp==p) return qw==-1?true:false;
-	}
-
-	// We're about to add the first point of the new facet. In either
-	// routine, we have to add a point, so first check there's space for
-	// it.
-	if(p==current_vertices) add_memory_vertices(vc);
-
-	if(complicated_setup) {
-
-		// We want to be strict about reaching the conclusion that the
-		// cell is entirely within the cutting plane. It's not enough
-		// to find a vertex that has edges which are all inside or on
-		// the plane. If the vertex has neighbors that are also on the
-		// plane, we should check those too.
-		if(!search_for_outside_edge(vc,up)) return false;
-
-		// The search algorithm found a point which is on the cutting
-		// plane. We leave that point in place, and create a new one at
-		// the same location.
-		pts[3*p]=pts[3*up];
-		pts[3*p+1]=pts[3*up+1];
-		pts[3*p+2]=pts[3*up+2];
-
-		// Search for a collection of edges of the test vertex which
-		// are outside of the cutting space. Begin by testing the
-		// zeroth edge.
-		i=0;
-		lp=*ed[up];
-		lw=m_test(lp,l);
-		if(lw!=-1) {
-
-			// The first edge is either inside the cutting space,
-			// or lies within the cutting plane. Test the edges
-			// sequentially until we find one that is outside.
-			rp=lw;
-			do {
-				i++;
-
-				// If we reached the last edge with no luck
-				// then all of the vertices are inside
-				// or on the plane, so the cell is completely
-				// deleted
-				if(i==nu[up]) return false;
-				lp=ed[up][i];
-				lw=m_test(lp,l);
-			} while (lw!=-1);
-			j=i+1;
-
-			// We found an edge outside the cutting space. Keep
-			// moving through these edges until we find one that's
-			// inside or on the plane.
-			while(j<nu[up]) {
-				lp=ed[up][j];
-				lw=m_test(lp,l);
-				if(lw!=-1) break;
-				j++;
-			}
-
-			// Compute the number of edges for the new vertex. In
-			// general it will be the number of outside edges
-			// found, plus two. But we need to recognize the
-			// special case when all but one edge is outside, and
-			// the remaining one is on the plane. For that case we
-			// have to reduce the edge count by one to prevent
-			// doubling up.
-			if(j==nu[up]&&i==1&&rp==0) {
-				nu[p]=nu[up];
-				double_edge=true;
-			} else nu[p]=j-i+2;
-			k=1;
-
-			// Add memory for the new vertex if needed, and
-			// initialize
-			while (nu[p]>=current_vertex_order) add_memory_vorder(vc);
-			if(mec[nu[p]]==mem[nu[p]]) add_memory(vc,nu[p],stackp2);
-			vc.n_set_pointer(p,nu[p]);
-			ed[p]=mep[nu[p]]+((nu[p]<<1)+1)*mec[nu[p]]++;
-			ed[p][nu[p]<<1]=p;
-
-			// Copy the edges of the original vertex into the new
-			// one. Delete the edges of the original vertex, and
-			// update the relational table.
-			us=cycle_down(i,up);
-			while(i<j) {
-				qp=ed[up][i];
-				qs=ed[up][nu[up]+i];
-				vc.n_copy(p,k,up,i);
-				ed[p][k]=qp;
-				ed[p][nu[p]+k]=qs;
-				ed[qp][qs]=p;
-				ed[qp][nu[qp]+qs]=k;
-				ed[up][i]=-1;
-				i++;k++;
-			}
-			qs=i==nu[up]?0:i;
-		} else {
-
-			// In this case, the zeroth edge is outside the cutting
-			// plane. Begin by searching backwards from the last
-			// edge until we find an edge which isn't outside.
-			i=nu[up]-1;
-			lp=ed[up][i];
-			lw=m_test(lp,l);
-			while(lw==-1) {
-				i--;
-
-				// If i reaches zero, then we have a point in
-				// the plane all of whose edges are outside
-				// the cutting space, so we just exit
-				if(i==0) return true;
-				lp=ed[up][i];
-				lw=m_test(lp,l);
-			}
-
-			// Now search forwards from zero
-			j=1;
-			qp=ed[up][j];
-			qw=m_test(qp,q);
-			while(qw==-1) {
-				j++;
-				qp=ed[up][j];
-				qw=m_test(qp,l);
-			}
-
-			// Compute the number of edges for the new vertex. In
-			// general it will be the number of outside edges
-			// found, plus two. But we need to recognize the
-			// special case when all but one edge is outside, and
-			// the remaining one is on the plane. For that case we
-			// have to reduce the edge count by one to prevent
-			// doubling up.
-			if(i==j&&qw==0) {
-				double_edge=true;
-				nu[p]=nu[up];
-			} else {
-				nu[p]=nu[up]-i+j+1;
-			}
-
-			// Add memory to store the vertex if it doesn't exist
-			// already
-			k=1;
-			while(nu[p]>=current_vertex_order) add_memory_vorder(vc);
-			if(mec[nu[p]]==mem[nu[p]]) add_memory(vc,nu[p],stackp2);
-
-			// Copy the edges of the original vertex into the new
-			// one. Delete the edges of the original vertex, and
-			// update the relational table.
-			vc.n_set_pointer(p,nu[p]);
-			ed[p]=mep[nu[p]]+((nu[p]<<1)+1)*mec[nu[p]]++;
-			ed[p][nu[p]<<1]=p;
-			us=i++;
-			while(i<nu[up]) {
-				qp=ed[up][i];
-				qs=ed[up][nu[up]+i];
-				vc.n_copy(p,k,up,i);
-				ed[p][k]=qp;
-				ed[p][nu[p]+k]=qs;
-				ed[qp][qs]=p;
-				ed[qp][nu[qp]+qs]=k;
-				ed[up][i]=-1;
-				i++;k++;
-			}
-			i=0;
-			while(i<j) {
-				qp=ed[up][i];
-				qs=ed[up][nu[up]+i];
-				vc.n_copy(p,k,up,i);
-				ed[p][k]=qp;
-				ed[p][nu[p]+k]=qs;
-				ed[qp][qs]=p;
-				ed[qp][nu[qp]+qs]=k;
-				ed[up][i]=-1;
-				i++;k++;
-			}
-			qs=j;
-		}
-		if(!double_edge) {
-			vc.n_copy(p,k,up,qs);
-			vc.n_set(p,0,p_id);
-		} else vc.n_copy(p,0,up,qs);
-
-		// Add this point to the auxiliary delete stack
-		if(stackp2==stacke2) add_memory_ds2(stackp2);
-		*(stackp2++)=up;
-
-		// Look at the edges on either side of the group that was
-		// detected. We're going to commence facet computation by
-		// moving along one of them. We are going to end up coming back
-		// along the other one.
-		cs=k;
-		qp=up;q=u;
-		i=ed[up][us];
-		us=ed[up][nu[up]+us];
-		up=i;
-		ed[qp][nu[qp]<<1]=-p;
-
-	} else {
-
-		// The search algorithm found an intersected edge between the
-		// points lp and up. Create a new vertex between them which
-		// lies on the cutting plane. Since u and l differ by at least
-		// the tolerance, this division should never screw up.
-		if(stackp==stacke) add_memory_ds(stackp);
-		*(stackp++)=up;
-		r=u/(u-l);l=1-r;
-		pts[3*p]=pts[3*lp]*r+pts[3*up]*l;
-		pts[3*p+1]=pts[3*lp+1]*r+pts[3*up+1]*l;
-		pts[3*p+2]=pts[3*lp+2]*r+pts[3*up+2]*l;
-
-		// This point will always have three edges. Connect one of them
-		// to lp.
-		nu[p]=3;
-		if(mec[3]==mem[3]) add_memory(vc,3,stackp2);
-		vc.n_set_pointer(p,3);
-		vc.n_set(p,0,p_id);
-		vc.n_copy(p,1,up,us);
-		vc.n_copy(p,2,lp,ls);
-		ed[p]=mep[3]+7*mec[3]++;
-		ed[p][6]=p;
-		ed[up][us]=-1;
-		ed[lp][ls]=p;
-		ed[lp][nu[lp]+ls]=1;
-		ed[p][1]=lp;
-		ed[p][nu[p]+1]=ls;
-		cs=2;
-
-		// Set the direction to move in
-		qs=cycle_up(us,up);
-		qp=up;q=u;
-	}
-
-	// When the code reaches here, we have initialized the first point, and
-	// we have a direction for moving it to construct the rest of the facet
-	cp=p;rp=p;p++;
-	while(qp!=up||qs!=us) {
-
-		// We're currently tracing round an intersected facet. Keep
-		// moving around it until we find a point or edge which
-		// intersects the plane.
-		lp=ed[qp][qs];
-		lw=m_test(lp,l);
-
-		if(lw==1) {
-
-			// The point is still in the cutting space. Just add it
-			// to the delete stack and keep moving.
-			qs=cycle_up(ed[qp][nu[qp]+qs],lp);
-			qp=lp;
-			q=l;
-			if(stackp==stacke) add_memory_ds(stackp);
-			*(stackp++)=qp;
-
-		} else if(lw==-1) {
-
-			// The point is outside of the cutting space, so we've
-			// found an intersected edge. Introduce a regular point
-			// at the point of intersection. Connect it to the
-			// point we just tested. Also connect it to the previous
-			// new point in the facet we're constructing.
-			if(p==current_vertices) add_memory_vertices(vc);
-			r=q/(q-l);l=1-r;
-			pts[3*p]=pts[3*lp]*r+pts[3*qp]*l;
-			pts[3*p+1]=pts[3*lp+1]*r+pts[3*qp+1]*l;
-			pts[3*p+2]=pts[3*lp+2]*r+pts[3*qp+2]*l;
-			nu[p]=3;
-			if(mec[3]==mem[3]) add_memory(vc,3,stackp2);
-			ls=ed[qp][qs+nu[qp]];
-			vc.n_set_pointer(p,3);
-			vc.n_set(p,0,p_id);
-			vc.n_copy(p,1,qp,qs);
-			vc.n_copy(p,2,lp,ls);
-			ed[p]=mep[3]+7*mec[3]++;
-			*ed[p]=cp;
-			ed[p][1]=lp;
-			ed[p][3]=cs;
-			ed[p][4]=ls;
-			ed[p][6]=p;
-			ed[lp][ls]=p;
-			ed[lp][nu[lp]+ls]=1;
-			ed[cp][cs]=p;
-			ed[cp][nu[cp]+cs]=0;
-			ed[qp][qs]=-1;
-			qs=cycle_up(qs,qp);
-			cp=p++;
-			cs=2;
-		} else {
-
-			// We've found a point which is on the cutting plane.
-			// We're going to introduce a new point right here, but
-			// first we need to figure out the number of edges it
-			// has.
-			if(p==current_vertices) add_memory_vertices(vc);
-
-			// If the previous vertex detected a double edge, our
-			// new vertex will have one less edge.
-			k=double_edge?0:1;
-			qs=ed[qp][nu[qp]+qs];
-			qp=lp;
-			iqs=qs;
-
-			// Start testing the edges of the current point until
-			// we find one which isn't outside the cutting space
-			do {
-				k++;
-				qs=cycle_up(qs,qp);
-				lp=ed[qp][qs];
-				lw=m_test(lp,l);
-			} while (lw==-1);
-
-			// Now we need to find out whether this marginal vertex
-			// we are on has been visited before, because if that's
-			// the case, we need to add vertices to the existing
-			// new vertex, rather than creating a fresh one. We also
-			// need to figure out whether we're in a case where we
-			// might be creating a duplicate edge.
-			j=-ed[qp][nu[qp]<<1];
-	 		if(qp==up&&qs==us) {
-
-				// If we're heading into the final part of the
-				// new facet, then we never worry about the
-				// duplicate edge calculation.
-				new_double_edge=false;
-				if(j>0) k+=nu[j];
-			} else {
-				if(j>0) {
-
-					// This vertex was visited before, so
-					// count those vertices to the ones we
-					// already have.
-					k+=nu[j];
-
-					// The only time when we might make a
-					// duplicate edge is if the point we're
-					// going to move to next is also a
-					// marginal point, so test for that
-					// first.
-					if(lw==0) {
-
-						// Now see whether this marginal point
-						// has been visited before.
-						i=-ed[lp][nu[lp]<<1];
-						if(i>0) {
-
-							// Now see if the last edge of that other
-							// marginal point actually ends up here.
-							if(ed[i][nu[i]-1]==j) {
-								new_double_edge=true;
-								k-=1;
-							} else new_double_edge=false;
-						} else {
-
-							// That marginal point hasn't been visited
-							// before, so we probably don't have to worry
-							// about duplicate edges, except in the
-							// case when that's the way into the end
-							// of the facet, because that way always creates
-							// an edge.
-							if(j==rp&&lp==up&&ed[qp][nu[qp]+qs]==us) {
-								new_double_edge=true;
-								k-=1;
-							} else new_double_edge=false;
-						}
-					} else new_double_edge=false;
-				} else {
-
-					// The vertex hasn't been visited
-					// before, but let's see if it's
-					// marginal
-					if(lw==0) {
-
-						// If it is, we need to check
-						// for the case that it's a
-						// small branch, and that we're
-						// heading right back to where
-						// we came from
-						i=-ed[lp][nu[lp]<<1];
-						if(i==cp) {
-							new_double_edge=true;
-							k-=1;
-						} else new_double_edge=false;
-					} else new_double_edge=false;
-				}
-			}
-
-			// k now holds the number of edges of the new vertex
-			// we are forming. Add memory for it if it doesn't exist
-			// already.
-			while(k>=current_vertex_order) add_memory_vorder(vc);
-			if(mec[k]==mem[k]) add_memory(vc,k,stackp2);
-
-			// Now create a new vertex with order k, or augment
-			// the existing one
-			if(j>0) {
-
-				// If we're augmenting a vertex but we don't
-				// actually need any more edges, just skip this
-				// routine to avoid memory confusion
-				if(nu[j]!=k) {
-					// Allocate memory and copy the edges
-					// of the previous instance into it
-					vc.n_set_aux1(k);
-					edp=mep[k]+((k<<1)+1)*mec[k]++;
-					i=0;
-					while(i<nu[j]) {
-						vc.n_copy_aux1(j,i);
-						edp[i]=ed[j][i];
-						edp[k+i]=ed[j][nu[j]+i];
-						i++;
-					}
-					edp[k<<1]=j;
-
-					// Remove the previous instance with
-					// fewer vertices from the memory
-					// structure
-					edd=mep[nu[j]]+((nu[j]<<1)+1)*--mec[nu[j]];
-					if(edd!=ed[j]) {
-						for(lw=0;lw<=(nu[j]<<1);lw++) ed[j][lw]=edd[lw];
-						vc.n_set_aux2_copy(j,nu[j]);
-						vc.n_copy_pointer(edd[nu[j]<<1],j);
-						ed[edd[nu[j]<<1]]=ed[j];
-					}
-					vc.n_set_to_aux1(j);
-					ed[j]=edp;
-				} else i=nu[j];
-			} else {
-
-				// Allocate a new vertex of order k
-				vc.n_set_pointer(p,k);
-				ed[p]=mep[k]+((k<<1)+1)*mec[k]++;
-				ed[p][k<<1]=p;
-				if(stackp2==stacke2) add_memory_ds2(stackp2);
-				*(stackp2++)=qp;
-				pts[3*p]=pts[3*qp];
-				pts[3*p+1]=pts[3*qp+1];
-				pts[3*p+2]=pts[3*qp+2];
-				ed[qp][nu[qp]<<1]=-p;
-				j=p++;
-				i=0;
-			}
-			nu[j]=k;
-
-			// Unless the previous case was a double edge, connect
-			// the first available edge of the new vertex to the
-			// last one in the facet
-			if(!double_edge) {
-				ed[j][i]=cp;
-				ed[j][nu[j]+i]=cs;
-				vc.n_set(j,i,p_id);
-				ed[cp][cs]=j;
-				ed[cp][nu[cp]+cs]=i;
-				i++;
-			}
-
-			// Copy in the edges of the underlying vertex,
-			// and do one less if this was a double edge
-			qs=iqs;
-			while(i<(new_double_edge?k:k-1)) {
-				qs=cycle_up(qs,qp);
-				lp=ed[qp][qs];ls=ed[qp][nu[qp]+qs];
-				vc.n_copy(j,i,qp,qs);
-				ed[j][i]=lp;
-				ed[j][nu[j]+i]=ls;
-				ed[lp][ls]=j;
-				ed[lp][nu[lp]+ls]=i;
-				ed[qp][qs]=-1;
-				i++;
-			}
-			qs=cycle_up(qs,qp);
-			cs=i;
-			cp=j;
-			vc.n_copy(j,new_double_edge?0:cs,qp,qs);
-
-			// Update the double_edge flag, to pass it
-			// to the next instance of this routine
-			double_edge=new_double_edge;
-		}
-	}
-
-	// Connect the final created vertex to the initial one
-	ed[cp][cs]=rp;
-	*ed[rp]=cp;
-	ed[cp][nu[cp]+cs]=0;
-	ed[rp][nu[rp]]=cs;
-
-	// Delete points: first, remove any duplicates
-	dsp=ds;
-	while(dsp<stackp) {
-		j=*dsp;
-		if(ed[j][nu[j]]!=-1) {
-			ed[j][nu[j]]=-1;
-			dsp++;
-		} else *dsp=*(--stackp);
-	}
-
-	// Add the points in the auxiliary delete stack,
-	// and reset their back pointers
-	for(dsp=ds2;dsp<stackp2;dsp++) {
-		j=*dsp;
-		ed[j][nu[j]<<1]=j;
-		if(ed[j][nu[j]]!=-1) {
-			ed[j][nu[j]]=-1;
-			if(stackp==stacke) add_memory_ds(stackp);
-			*(stackp++)=j;
-		}
-	}
-
-	// Scan connections and add in extras
-	for(dsp=ds;dsp<stackp;dsp++) {
-		cp=*dsp;
-		for(edp=ed[cp];edp<ed[cp]+nu[cp];edp++) {
-			qp=*edp;
-			if(qp!=-1&&ed[qp][nu[qp]]!=-1) {
-				if(stackp==stacke) {
-					int dis=stackp-dsp;
-					add_memory_ds(stackp);
-					dsp=ds+dis;
-				}
-				*(stackp++)=qp;
-				ed[qp][nu[qp]]=-1;
-			}
-		}
-	}
-	up=0;
-
-	// Delete them from the array structure
-	while(stackp>ds) {
-		--p;
-		while(ed[p][nu[p]]==-1) {
-			j=nu[p];
-			edp=ed[p];edd=(mep[j]+((j<<1)+1)*--mec[j]);
-			while(edp<ed[p]+(j<<1)+1) *(edp++)=*(edd++);
-			vc.n_set_aux2_copy(p,j);
-			vc.n_copy_pointer(ed[p][(j<<1)],p);
-			ed[ed[p][(j<<1)]]=ed[p];
-			--p;
-		}
-		up=*(--stackp);
-		if(up<p) {
-
-			// Vertex management
-			pts[3*up]=pts[3*p];
-			pts[3*up+1]=pts[3*p+1];
-			pts[3*up+2]=pts[3*p+2];
-
-			// Memory management
-			j=nu[up];
-			edp=ed[up];edd=(mep[j]+((j<<1)+1)*--mec[j]);
-			while(edp<ed[up]+(j<<1)+1) *(edp++)=*(edd++);
-			vc.n_set_aux2_copy(up,j);
-			vc.n_copy_pointer(ed[up][j<<1],up);
-			vc.n_copy_pointer(up,p);
-			ed[ed[up][j<<1]]=ed[up];
-
-			// Edge management
-			ed[up]=ed[p];
-			nu[up]=nu[p];
-			for(i=0;i<nu[up];i++) ed[ed[up][i]][ed[up][nu[up]+i]]=up;
-			ed[up][nu[up]<<1]=up;
-		} else up=p++;
-	}
-
-	// Check for any vertices of zero order
-	if(*mec>0) voro_fatal_error("Zero order vertex formed",VOROPP_INTERNAL_ERROR);
-
-	// Collapse any order 2 vertices and exit
-	return collapse_order2(vc);
-}
-
-/** During the creation of a new facet in the plane routine, it is possible
- * that some order two vertices may arise. This routine removes them.
- * Suppose an order two vertex joins c and d. If there's a edge between
- * c and d already, then the order two vertex is just removed; otherwise,
- * the order two vertex is removed and c and d are joined together directly.
- * It is possible this process will create order two or order one vertices,
- * and the routine is continually run until all of them are removed.
- * \return False if the vertex removal was unsuccessful, indicative of the cell
- *         reducing to zero volume and disappearing; true if the vertex removal
- *         was successful. */
-template<class vc_class>
-inline bool voronoicell_base::collapse_order2(vc_class &vc) {
-	if(!collapse_order1(vc)) return false;
-	int a,b,i,j,k,l;
-	while(mec[2]>0) {
-
-		// Pick a order 2 vertex and read in its edges
-		i=--mec[2];
-		j=mep[2][5*i];k=mep[2][5*i+1];
-		if(j==k) {
-#if VOROPP_VERBOSE >=1
-			fputs("Order two vertex joins itself",stderr);
-#endif
-			return false;
-		}
-
-		// Scan the edges of j to see if joins k
-		for(l=0;l<nu[j];l++) {
-			if(ed[j][l]==k) break;
-		}
-
-		// If j doesn't already join k, join them together.
-		// Otherwise delete the connection to the current
-		// vertex from j and k.
-		a=mep[2][5*i+2];b=mep[2][5*i+3];i=mep[2][5*i+4];
-		if(l==nu[j]) {
-			ed[j][a]=k;
-			ed[k][b]=j;
-			ed[j][nu[j]+a]=b;
-			ed[k][nu[k]+b]=a;
-		} else {
-			if(!delete_connection(vc,j,a,false)) return false;
-			if(!delete_connection(vc,k,b,true)) return false;
-		}
-
-		// Compact the memory
-		--p;
-		if(up==i) up=0;
-		if(p!=i) {
-			if(up==p) up=i;
-			pts[3*i]=pts[3*p];
-			pts[3*i+1]=pts[3*p+1];
-			pts[3*i+2]=pts[3*p+2];
-			for(k=0;k<nu[p];k++) ed[ed[p][k]][ed[p][nu[p]+k]]=i;
-			vc.n_copy_pointer(i,p);
-			ed[i]=ed[p];
-			nu[i]=nu[p];
-			ed[i][nu[i]<<1]=i;
-		}
-
-		// Collapse any order 1 vertices if they were created
-		if(!collapse_order1(vc)) return false;
-	}
-	return true;
-}
-
-/** Order one vertices can potentially be created during the order two collapse
- * routine. This routine keeps removing them until there are none left.
- * \return False if the vertex removal was unsuccessful, indicative of the cell
- *         having zero volume and disappearing; true if the vertex removal was
- *         successful. */
-template<class vc_class>
-inline bool voronoicell_base::collapse_order1(vc_class &vc) {
-	int i,j,k;
-	while(mec[1]>0) {
-		up=0;
-#if VOROPP_VERBOSE >=1
-		fputs("Order one collapse\n",stderr);
-#endif
-		i=--mec[1];
-		j=mep[1][3*i];k=mep[1][3*i+1];
-		i=mep[1][3*i+2];
-		if(!delete_connection(vc,j,k,false)) return false;
-		--p;
-		if(up==i) up=0;
-		if(p!=i) {
-			if(up==p) up=i;
-			pts[3*i]=pts[3*p];
-			pts[3*i+1]=pts[3*p+1];
-			pts[3*i+2]=pts[3*p+2];
-			for(k=0;k<nu[p];k++) ed[ed[p][k]][ed[p][nu[p]+k]]=i;
-			vc.n_copy_pointer(i,p);
-			ed[i]=ed[p];
-			nu[i]=nu[p];
-			ed[i][nu[i]<<1]=i;
-		}
-	}
-	return true;
-}
-
-/** This routine deletes the kth edge of vertex j and reorganizes the memory.
- * If the neighbor computation is enabled, we also have to supply an handedness
- * flag to decide whether to preserve the plane on the left or right of the
- * connection.
- * \return False if a zero order vertex was formed, indicative of the cell
- *         disappearing; true if the vertex removal was successful. */
-template<class vc_class>
-inline bool voronoicell_base::delete_connection(vc_class &vc,int j,int k,bool hand) {
-	int q=hand?k:cycle_up(k,j);
-	int i=nu[j]-1,l,*edp,*edd,m;
-#if VOROPP_VERBOSE >=1
-	if(i<1) {
-		fputs("Zero order vertex formed\n",stderr);
-		return false;
-	}
-#endif
-	if(mec[i]==mem[i]) add_memory(vc,i,ds2);
-	vc.n_set_aux1(i);
-	for(l=0;l<q;l++) vc.n_copy_aux1(j,l);
-	while(l<i) {
-		vc.n_copy_aux1_shift(j,l);
-		l++;
-	}
-	edp=mep[i]+((i<<1)+1)*mec[i]++;
-	edp[i<<1]=j;
-	for(l=0;l<k;l++) {
-		edp[l]=ed[j][l];
-		edp[l+i]=ed[j][l+nu[j]];
-	}
-	while(l<i) {
-		m=ed[j][l+1];
-		edp[l]=m;
-		k=ed[j][l+nu[j]+1];
-		edp[l+i]=k;
-		ed[m][nu[m]+k]--;
-		l++;
-	}
-
-	edd=mep[nu[j]]+((nu[j]<<1)+1)*--mec[nu[j]];
-	for(l=0;l<=(nu[j]<<1);l++) ed[j][l]=edd[l];
-	vc.n_set_aux2_copy(j,nu[j]);
-	vc.n_set_to_aux2(edd[nu[j]<<1]);
-	vc.n_set_to_aux1(j);
-	ed[edd[nu[j]<<1]]=edd;
-	ed[j]=edp;
-	nu[j]=i;
-	return true;
-}
-
-/** Calculates the areas of each face of the Voronoi cell and prints the
- * results to an output stream.
- * \param[out] v the vector to store the results in. */
-void voronoicell_base::face_areas(std::vector<double> &v) {
-	double area;
-	v.clear();
-	int i,j,k,l,m,n;
-	double ux,uy,uz,vx,vy,vz,wx,wy,wz;
-	for(i=1;i<p;i++) for(j=0;j<nu[i];j++) {
-		k=ed[i][j];
-		if(k>=0) {
-			area=0;
-			ed[i][j]=-1-k;
-			l=cycle_up(ed[i][nu[i]+j],k);
-			m=ed[k][l];ed[k][l]=-1-m;
-			while(m!=i) {
-				n=cycle_up(ed[k][nu[k]+l],m);
-				ux=pts[3*k]-pts[3*i];
-				uy=pts[3*k+1]-pts[3*i+1];
-				uz=pts[3*k+2]-pts[3*i+2];
-				vx=pts[3*m]-pts[3*i];
-				vy=pts[3*m+1]-pts[3*i+1];
-				vz=pts[3*m+2]-pts[3*i+2];
-				wx=uy*vz-uz*vy;
-				wy=uz*vx-ux*vz;
-				wz=ux*vy-uy*vx;
-				area+=sqrt(wx*wx+wy*wy+wz*wz);
-				k=m;l=n;
-				m=ed[k][l];ed[k][l]=-1-m;
-			}
-			v.push_back(0.125*area);
-		}
-	}
-	reset_edges();
-}
-
-/** Several routines in the class that gather cell-based statistics internally
- * track their progress by flipping edges to negative so that they know what
- * parts of the cell have already been tested. This function resets them back
- * to positive. When it is called, it assumes that every edge in the routine
- * should have already been flipped to negative, and it bails out with an
- * internal error if it encounters a positive edge. */
-inline void voronoicell_base::reset_edges() {
-	int i,j;
-	for(i=0;i<p;i++) for(j=0;j<nu[i];j++) {
-		if(ed[i][j]>=0) voro_fatal_error("Edge reset routine found a previously untested edge",VOROPP_INTERNAL_ERROR);
-		ed[i][j]=-1-ed[i][j];
-	}
-}
-
-/** Checks to see if a given vertex is inside, outside or within the test
- * plane. If the point is far away from the test plane, the routine immediately
- * returns whether it is inside or outside. If the routine is close the the
- * plane and within the specified tolerance, then the special check_marginal()
- * routine is called.
- * \param[in] n the vertex to test.
- * \param[out] ans the result of the scalar product used in evaluating the
- *                 location of the point.
- * \return -1 if the point is inside the plane, 1 if the point is outside the
- *         plane, or 0 if the point is within the plane. */
-inline int voronoicell_base::m_test(int n,double &ans) {
-	double *pp=pts+n+(n<<1);
-	ans=*(pp++)*px;
-	ans+=*(pp++)*py;
-	ans+=*pp*pz-prsq;
-	if(ans<-tolerance2) {
-		return -1;
-	} else if(ans>tolerance2) {
-		return 1;
-	}
-	return check_marginal(n,ans);
-}
-
-/** Checks to see if a given vertex is inside, outside or within the test
- * plane, for the case when the point has been detected to be very close to the
- * plane. The routine ensures that the returned results are always consistent
- * with previous tests, by keeping a table of any marginal results. The routine
- * first sees if the vertex is in the table, and if it finds a previously
- * computed result it uses that. Otherwise, it computes a result for this
- * vertex and adds it the table.
- * \param[in] n the vertex to test.
- * \param[in] ans the result of the scalar product used in evaluating
- *                the location of the point.
- * \return -1 if the point is inside the plane, 1 if the point is outside the
- *         plane, or 0 if the point is within the plane. */
-int voronoicell_base::check_marginal(int n,double &ans) {
-	int i;
-	for(i=0;i<n_marg;i+=2) if(marg[i]==n) return marg[i+1];
-	if(n_marg==current_marginal) {
-		current_marginal<<=1;
-		if(current_marginal>max_marginal)
-			voro_fatal_error("Marginal case buffer allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
-#if VOROPP_VERBOSE >=2
-		fprintf(stderr,"Marginal cases buffer scaled up to %d\n",i);
-#endif
-		int *pmarg=new int[current_marginal];
-		for(int j=0;j<n_marg;j++) pmarg[j]=marg[j];
-		delete [] marg;
-		marg=pmarg;
-	}
-	marg[n_marg++]=n;
-	marg[n_marg++]=ans>tolerance?1:(ans<-tolerance?-1:0);
-	return marg[n_marg-1];
-}
-
-/** This initializes the class to be a rectangular box. It calls the base class
- * initialization routine to set up the edge and vertex information, and then
- * sets up the neighbor information, with initial faces being assigned ID
- * numbers from -1 to -6.
- * \param[in] (xmin,xmax) the minimum and maximum x coordinates.
- * \param[in] (ymin,ymax) the minimum and maximum y coordinates.
- * \param[in] (zmin,zmax) the minimum and maximum z coordinates. */
-void voronoicell_neighbor::init(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax) {
-	init_base(xmin,xmax,ymin,ymax,zmin,zmax);
-	int *q=mne[3];
-	*q=-5;q[1]=-3;q[2]=-1;
-	q[3]=-5;q[4]=-2;q[5]=-3;
-	q[6]=-5;q[7]=-1;q[8]=-4;
-	q[9]=-5;q[10]=-4;q[11]=-2;
-	q[12]=-6;q[13]=-1;q[14]=-3;
-	q[15]=-6;q[16]=-3;q[17]=-2;
-	q[18]=-6;q[19]=-4;q[20]=-1;
-	q[21]=-6;q[22]=-2;q[23]=-4;
-	*ne=q;ne[1]=q+3;ne[2]=q+6;ne[3]=q+9;
-	ne[4]=q+12;ne[5]=q+15;ne[6]=q+18;ne[7]=q+21;
-}
-
-/** This routine checks to make sure the neighbor information of each face is
- * consistent. */
-void voronoicell_neighbor::check_facets() {
-	int i,j,k,l,m,q;
-	for(i=1;i<p;i++) for(j=0;j<nu[i];j++) {
-		k=ed[i][j];
-		if(k>=0) {
-			ed[i][j]=-1-k;
-			q=ne[i][j];
-			l=cycle_up(ed[i][nu[i]+j],k);
-			do {
-				m=ed[k][l];
-				ed[k][l]=-1-m;
-				if(ne[k][l]!=q) fprintf(stderr,"Facet error at (%d,%d)=%d, started from (%d,%d)=%d\n",k,l,ne[k][l],i,j,q);
-				l=cycle_up(ed[k][nu[k]+l],m);
-				k=m;
-			} while (k!=i);
-		}
-	}
-	reset_edges();
-}
-
-/** The class constructor allocates memory for storing neighbor information. */
-voronoicell_neighbor::voronoicell_neighbor() {
-	int i;
-	mne=new int*[current_vertex_order];
-	ne=new int*[current_vertices];
-	for(i=0;i<3;i++) mne[i]=new int[init_n_vertices*i];
-	mne[3]=new int[init_3_vertices*3];
-	for(i=4;i<current_vertex_order;i++) mne[i]=new int[init_n_vertices*i];
-}
-
-/** The class destructor frees the dynamically allocated memory for storing
- * neighbor information. */
-voronoicell_neighbor::~voronoicell_neighbor() {
-	for(int i=current_vertex_order-1;i>=0;i--) if(mem[i]>0) delete [] mne[i];
-	delete [] mne;
-	delete [] ne;
-}
-
-/** Computes a vector list of neighbors. */
-void voronoicell_neighbor::neighbors(std::vector<int> &v) {
-	v.clear();
-	int i,j,k,l,m;
-	for(i=1;i<p;i++) for(j=0;j<nu[i];j++) {
-		k=ed[i][j];
-		if(k>=0) {
-			v.push_back(ne[i][j]);
-			ed[i][j]=-1-k;
-			l=cycle_up(ed[i][nu[i]+j],k);
-			do {
-				m=ed[k][l];
-				ed[k][l]=-1-m;
-				l=cycle_up(ed[k][nu[k]+l],m);
-				k=m;
-			} while (k!=i);
-		}
-	}
-	reset_edges();
-}
-
-// Explicit instantiation
-template bool voronoicell_base::nplane(voronoicell_neighbor&,double,double,double,double,int);
-template void voronoicell_base::check_memory_for_copy(voronoicell_neighbor&,voronoicell_base*);
-
-}
-
diff --git a/src/USER-PTM/cell.h b/src/USER-PTM/cell.h
deleted file mode 100644
index 51a0cbb9ef..0000000000
--- a/src/USER-PTM/cell.h
+++ /dev/null
@@ -1,324 +0,0 @@
-// Voro++, a 3D cell-based Voronoi library
-//
-// Author   : Chris H. Rycroft (LBL / UC Berkeley)
-// Email    : chr@alum.mit.edu
-// Date     : August 30th 2011
-//
-// Modified by PM Larsen for use in Polyhedral Template Matching
-
-/** \file cell.hh
- * \brief Header file for the voronoicell and related classes. */
-
-#ifndef VOROPP_CELL_HH
-#define VOROPP_CELL_HH
-
-#include <vector>
-#include <cstdio>
-
-#include "config.h"
-
-namespace voro {
-
-/** \brief A class representing a single Voronoi cell.
- *
- * This class represents a single Voronoi cell, as a collection of vertices
- * that are connected by edges. The class contains routines for initializing
- * the Voronoi cell to be simple shapes such as a box, tetrahedron, or octahedron.
- * It the contains routines for recomputing the cell based on cutting it
- * by a plane, which forms the key routine for the Voronoi cell computation.
- * It contains numerous routine for computing statistics about the Voronoi cell,
- * and it can output the cell in several formats.
- *
- * This class is not intended for direct use, but forms the base of the
- * voronoicell and voronoicell_neighbor classes, which extend it based on
- * whether neighboring particle ID information needs to be tracked. */
-class voronoicell_base {
-	public:
-		/** This holds the current size of the arrays ed and nu, which
-		 * hold the vertex information. If more vertices are created
-		 * than can fit in this array, then it is dynamically extended
-		 * using the add_memory_vertices routine. */
-		int current_vertices;
-		/** This holds the current maximum allowed order of a vertex,
-		 * which sets the size of the mem, mep, and mec arrays. If a
-		 * vertex is created with more vertices than this, the arrays
-		 * are dynamically extended using the add_memory_vorder routine.
-		 */
-		int current_vertex_order;
-		/** This sets the size of the main delete stack. */
-		int current_delete_size;
-		/** This sets the size of the auxiliary delete stack. */
-		int current_delete2_size;
-		/** This sets the total number of vertices in the current cell.
-		 */
-		int p;
-		/** This is the index of particular point in the cell, which is
-		 * used to start the tracing routines for plane intersection
-		 * and cutting. These routines will work starting from any
-		 * point, but it's often most efficient to start from the last
-		 * point considered, since in many cases, the cell construction
-		 * algorithm may consider many planes with similar vectors
-		 * concurrently. */
-		int up;
-		/** This is a two dimensional array that holds information
-		 * about the edge connections of the vertices that make up the
-		 * cell. The two dimensional array is not allocated in the
-		 * usual method. To account for the fact the different vertices
-		 * have different orders, and thus require different amounts of
-		 * storage, the elements of ed[i] point to one-dimensional
-		 * arrays in the mep[] array of different sizes.
-		 *
-		 * More specifically, if vertex i has order m, then ed[i]
-		 * points to a one-dimensional array in mep[m] that has 2*m+1
-		 * entries. The first m elements hold the neighboring edges, so
-		 * that the jth edge of vertex i is held in ed[i][j]. The next
-		 * m elements hold a table of relations which is redundant but
-		 * helps speed up the computation. It satisfies the relation
-		 * ed[ed[i][j]][ed[i][m+j]]=i. The final entry holds a back
-		 * pointer, so that ed[i+2*m]=i. The back pointers are used
-		 * when rearranging the memory. */
-		int **ed;
-		/** This array holds the order of the vertices in the Voronoi
-		 * cell. This array is dynamically allocated, with its current
-		 * size held by current_vertices. */
-		int *nu;
-		/** This in an array with size 3*current_vertices for holding
-		 * the positions of the vertices. */
-		double *pts;
-		voronoicell_base();
-		virtual ~voronoicell_base();
-		void init_base(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax);
-		void init_octahedron_base(double l);
-		void init_tetrahedron_base(double x0,double y0,double z0,double x1,double y1,double z1,double x2,double y2,double z2,double x3,double y3,double z3);
-		void translate(double x,double y,double z);
-		double volume();
-		double max_radius_squared();
-		double total_edge_distance();
-		double surface_area();
-		void centroid(double &cx,double &cy,double &cz);
-		int number_of_faces();
-		int number_of_edges();
-		void vertex_orders(std::vector<int> &v);
-		void vertices(std::vector<double> &v);
-		void vertices(double x,double y,double z,std::vector<double> &v);
-		void face_areas(std::vector<double> &v);
-		void face_orders(std::vector<int> &v);
-		void face_freq_table(std::vector<int> &v);
-		void face_vertices(std::vector<int> &v);
-		void face_perimeters(std::vector<double> &v);
-		void normals(std::vector<double> &v);
-		template<class vc_class>
-		bool nplane(vc_class &vc,double x,double y,double z,double rsq,int p_id);
-		bool plane_intersects(double x,double y,double z,double rsq);
-		bool plane_intersects_guess(double x,double y,double z,double rsq);
-		void construct_relations();
-		void check_relations();
-		void check_duplicates();
-		/** Returns a list of IDs of neighboring particles
-		 * corresponding to each face.
-		 * \param[out] v a reference to a vector in which to return the
-		 *               results. If no neighbor information is
-		 *               available, a blank vector is returned. */
-		virtual void neighbors(std::vector<int> &v) {v.clear();}
-		/** This a virtual function that is overridden by a routine to
-		 * print the neighboring particle IDs for a given vertex. By
-		 * default, when no neighbor information is available, the
-		 * routine does nothing.
-		 * \param[in] i the vertex to consider. */
-		/** This is a simple inline function for picking out the index
-		 * of the next edge counterclockwise at the current vertex.
-		 * \param[in] a the index of an edge of the current vertex.
-		 * \param[in] p the number of the vertex.
-		 * \return 0 if a=nu[p]-1, or a+1 otherwise. */
-		inline int cycle_up(int a,int p) {return a==nu[p]-1?0:a+1;}
-		/** This is a simple inline function for picking out the index
-		 * of the next edge clockwise from the current vertex.
-		 * \param[in] a the index of an edge of the current vertex.
-		 * \param[in] p the number of the vertex.
-		 * \return nu[p]-1 if a=0, or a-1 otherwise. */
-		inline int cycle_down(int a,int p) {return a==0?nu[p]-1:a-1;}
-	protected:
-		/** This a one dimensional array that holds the current sizes
-		 * of the memory allocations for them mep array.*/
-		int *mem;
-		/** This is a one dimensional array that holds the current
-		 * number of vertices of order p that are stored in the mep[p]
-		 * array. */
-		int *mec;
-		/** This is a two dimensional array for holding the information
-		 * about the edges of the Voronoi cell. mep[p] is a
-		 * one-dimensional array for holding the edge information about
-		 * all vertices of order p, with each vertex holding 2*p+1
-		 * integers of information. The total number of vertices held
-		 * on mep[p] is stored in mem[p]. If the space runs out, the
-		 * code allocates more using the add_memory() routine. */
-		int **mep;
-		inline void reset_edges();
-		template<class vc_class>
-		void check_memory_for_copy(vc_class &vc,voronoicell_base* vb);
-		void copy(voronoicell_base* vb);
-	private:
-		/** This is the delete stack, used to store the vertices which
-		 * are going to be deleted during the plane cutting procedure.
-		 */
-		int *ds,*stacke;
-		/** This is the auxiliary delete stack, which has size set by
-		 * current_delete2_size. */
-		int *ds2,*stacke2;
-		/** This stores the current memory allocation for the marginal
-		 * cases. */
-		int current_marginal;
-		/** This stores the total number of marginal points which are
-		 * currently in the buffer. */
-		int n_marg;
-		/** This array contains a list of the marginal points, and also
-		 * the outcomes of the marginal tests. */
-		int *marg;
-		/** The x coordinate of the normal vector to the test plane. */
-		double px;
-		/** The y coordinate of the normal vector to the test plane. */
-		double py;
-		/** The z coordinate of the normal vector to the test plane. */
-		double pz;
-		/** The magnitude of the normal vector to the test plane. */
-		double prsq;
-		template<class vc_class>
-		void add_memory(vc_class &vc,int i,int *stackp2);
-		template<class vc_class>
-		void add_memory_vertices(vc_class &vc);
-		template<class vc_class>
-		void add_memory_vorder(vc_class &vc);
-		void add_memory_ds(int *&stackp);
-		void add_memory_ds2(int *&stackp2);
-		template<class vc_class>
-		inline bool collapse_order1(vc_class &vc);
-		template<class vc_class>
-		inline bool collapse_order2(vc_class &vc);
-		template<class vc_class>
-		inline bool delete_connection(vc_class &vc,int j,int k,bool hand);
-		template<class vc_class>
-		inline bool search_for_outside_edge(vc_class &vc,int &up);
-		template<class vc_class>
-		inline void add_to_stack(vc_class &vc,int lp,int *&stackp2);
-		inline bool plane_intersects_track(double x,double y,double z,double rs,double g);
-		inline void normals_search(std::vector<double> &v,int i,int j,int k);
-		inline bool search_edge(int l,int &m,int &k);
-		inline int m_test(int n,double &ans);
-		int check_marginal(int n,double &ans);
-		friend class voronoicell;
-		friend class voronoicell_neighbor;
-};
-
-/** \brief Extension of the voronoicell_base class to represent a Voronoi cell
- * with neighbor information.
- *
- * This class is an extension of the voronoicell_base class, in cases when the
- * IDs of neighboring particles associated with each face of the Voronoi cell.
- * It contains additional data structures mne and ne for storing this
- * information. */
-class voronoicell_neighbor : public voronoicell_base {
-	public:
-		using voronoicell_base::nplane;
-		/** This two dimensional array holds the neighbor information
-		 * associated with each vertex. mne[p] is a one dimensional
-		 * array which holds all of the neighbor information for
-		 * vertices of order p. */
-		int **mne;
-		/** This is a two dimensional array that holds the neighbor
-		 * information associated with each vertex. ne[i] points to a
-		 * one-dimensional array in mne[nu[i]]. ne[i][j] holds the
-		 * neighbor information associated with the jth edge of vertex
-		 * i. It is set to the ID number of the plane that made the
-		 * face that is clockwise from the jth edge. */
-		int **ne;
-		voronoicell_neighbor();
-		~voronoicell_neighbor();
-		void operator=(voronoicell_neighbor &c);
-		/** Cuts the Voronoi cell by a particle whose center is at a
-		 * separation of (x,y,z) from the cell center. The value of rsq
-		 * should be initially set to \f$x^2+y^2+z^2\f$.
-		 * \param[in] (x,y,z) the normal vector to the plane.
-		 * \param[in] rsq the distance along this vector of the plane.
-		 * \param[in] p_id the plane ID (for neighbor tracking only).
-		 * \return False if the plane cut deleted the cell entirely,
-		 * true otherwise. */
-		inline bool nplane(double x,double y,double z,double rsq,int p_id) {
-			return nplane(*this,x,y,z,rsq,p_id);
-		}
-		/** This routine calculates the modulus squared of the vector
-		 * before passing it to the main nplane() routine with full
-		 * arguments.
-		 * \param[in] (x,y,z) the vector to cut the cell by.
-		 * \param[in] p_id the plane ID (for neighbor tracking only).
-		 * \return False if the plane cut deleted the cell entirely,
-		 *         true otherwise. */
-		inline bool nplane(double x,double y,double z,int p_id) {
-			double rsq=x*x+y*y+z*z;
-			return nplane(*this,x,y,z,rsq,p_id);
-		}
-		/** This version of the plane routine just makes up the plane
-		 * ID to be zero. It will only be referenced if neighbor
-		 * tracking is enabled.
-		 * \param[in] (x,y,z) the vector to cut the cell by.
-		 * \param[in] rsq the modulus squared of the vector.
-		 * \return False if the plane cut deleted the cell entirely,
-		 *         true otherwise. */
-		inline bool plane(double x,double y,double z,double rsq) {
-			return nplane(*this,x,y,z,rsq,0);
-		}
-		/** Cuts a Voronoi cell using the influence of a particle at
-		 * (x,y,z), first calculating the modulus squared of this
-		 * vector before passing it to the main nplane() routine. Zero
-		 * is supplied as the plane ID, which will be ignored unless
-		 * neighbor tracking is enabled.
-		 * \param[in] (x,y,z) the vector to cut the cell by.
-		 * \return False if the plane cut deleted the cell entirely,
-		 *         true otherwise. */
-		inline bool plane(double x,double y,double z) {
-			double rsq=x*x+y*y+z*z;
-			return nplane(*this,x,y,z,rsq,0);
-		}
-		void init(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax);
-		void check_facets();
-		virtual void neighbors(std::vector<int> &v);
-
-	private:
-		int *paux1;
-		int *paux2;
-		inline void n_allocate(int i,int m) {mne[i]=new int[m*i];}
-		inline void n_add_memory_vertices(int i) {
-			int **pp=new int*[i];
-			for(int j=0;j<current_vertices;j++) pp[j]=ne[j];
-			delete [] ne;ne=pp;
-		}
-		inline void n_add_memory_vorder(int i) {
-			int **p2=new int*[i];
-			for(int j=0;j<current_vertex_order;j++) p2[j]=mne[j];
-			delete [] mne;mne=p2;
-		}
-		inline void n_set_pointer(int p,int n) {
-			ne[p]=mne[n]+n*mec[n];
-		}
-		inline void n_copy(int a,int b,int c,int d) {ne[a][b]=ne[c][d];}
-		inline void n_set(int a,int b,int c) {ne[a][b]=c;}
-		inline void n_set_aux1(int k) {paux1=mne[k]+k*mec[k];}
-		inline void n_copy_aux1(int a,int b) {paux1[b]=ne[a][b];}
-		inline void n_copy_aux1_shift(int a,int b) {paux1[b]=ne[a][b+1];}
-		inline void n_set_aux2_copy(int a,int b) {
-			paux2=mne[b]+b*mec[b];
-			for(int i=0;i<b;i++) ne[a][i]=paux2[i];
-		}
-		inline void n_copy_pointer(int a,int b) {ne[a]=ne[b];}
-		inline void n_set_to_aux1(int j) {ne[j]=paux1;}
-		inline void n_set_to_aux2(int j) {ne[j]=paux2;}
-		inline void n_allocate_aux1(int i) {paux1=new int[i*mem[i]];}
-		inline void n_switch_to_aux1(int i) {delete [] mne[i];mne[i]=paux1;}
-		inline void n_copy_to_aux1(int i,int m) {paux1[m]=mne[i][m];}
-		inline void n_set_to_aux1_offset(int k,int m) {ne[k]=paux1+m;}
-		friend class voronoicell_base;
-};
-
-}
-
-#endif
-
diff --git a/src/USER-PTM/config.h b/src/USER-PTM/config.h
deleted file mode 100644
index eba69b3373..0000000000
--- a/src/USER-PTM/config.h
+++ /dev/null
@@ -1,129 +0,0 @@
-// Voro++, a 3D cell-based Voronoi library
-//
-// Author   : Chris H. Rycroft (LBL / UC Berkeley)
-// Email    : chr@alum.mit.edu
-// Date     : August 30th 2011
-//
-// Modified by PM Larsen for use in Polyhedral Template Matching
-
-/** \file config.hh
- * \brief Master configuration file for setting various compile-time options. */
-
-#ifndef VOROPP_CONFIG_HH
-#define VOROPP_CONFIG_HH
-
-namespace voro {
-
-// These constants set the initial memory allocation for the Voronoi cell
-/** The initial memory allocation for the number of vertices. */
-const int init_vertices=256;
-/** The initial memory allocation for the maximum vertex order. */
-const int init_vertex_order=64;
-/** The initial memory allocation for the number of regular vertices of order
- * 3. */
-const int init_3_vertices=256;
-/** The initial memory allocation for the number of vertices of higher order.
- */
-const int init_n_vertices=8;
-/** The initial buffer size for marginal cases used by the suretest class. */
-const int init_marginal=64;
-/** The initial size for the delete stack. */
-const int init_delete_size=256;
-/** The initial size for the auxiliary delete stack. */
-const int init_delete2_size=256;
-/** The initial size for the wall pointer array. */
-const int init_wall_size=32;
-/** The default initial size for the ordering class. */
-const int init_ordering_size=4096;
-/** The initial size of the pre_container chunk index. */
-const int init_chunk_size=256;
-
-// If the initial memory is too small, the program dynamically allocates more.
-// However, if the limits below are reached, then the program bails out.
-/** The maximum memory allocation for the number of vertices. */
-const int max_vertices=16777216;
-/** The maximum memory allocation for the maximum vertex order. */
-const int max_vertex_order=2048;
-/** The maximum memory allocation for the any particular order of vertex. */
-const int max_n_vertices=16777216;
-/** The maximum buffer size for marginal cases used by the suretest class. */
-const int max_marginal=16777216;
-/** The maximum size for the delete stack. */
-const int max_delete_size=16777216;
-/** The maximum size for the auxiliary delete stack. */
-const int max_delete2_size=16777216;
-/** The maximum amount of particle memory allocated for a single region. */
-const int max_particle_memory=16777216;
-/** The maximum size for the wall pointer array. */
-const int max_wall_size=2048;
-/** The maximum size for the ordering class. */
-const int max_ordering_size=67108864;
-/** The maximum size for the pre_container chunk index. */
-const int max_chunk_size=65536;
-
-/** The chunk size in the pre_container classes. */
-const int pre_container_chunk_size=1024;
-
-#ifndef VOROPP_VERBOSE
-/** Voro++ can print a number of different status and debugging messages to
- * notify the user of special behavior, and this macro sets the amount which
- * are displayed. At level 0, no messages are printed. At level 1, messages
- * about unusual cases during cell construction are printed, such as when the
- * plane routine bails out due to floating point problems. At level 2, general
- * messages about memory expansion are printed. At level 3, technical details
- * about memory management are printed. */
-#define VOROPP_VERBOSE 0
-#endif
-
-/** If a point is within this distance of a cutting plane, then the code
- * assumes that point exactly lies on the plane. */
-const double tolerance=1e-11;
-
-/** If a point is within this distance of a cutting plane, then the code stores
- * whether this point is inside, outside, or exactly on the cutting plane in
- * the marginal cases buffer, to prevent the test giving a different result on
- * a subsequent evaluation due to floating point rounding errors. */
-const double tolerance2=2e-11;
-
-/** The square of the tolerance, used when deciding whether some squared
- * quantities are large enough to be used. */
-const double tolerance_sq=tolerance*tolerance;
-
-/** A large number that is used in the computation. */
-const double large_number=1e30;
-
-/** A radius to use as a placeholder when no other information is available. */
-const double default_radius=0.5;
-
-/** The maximum number of shells of periodic images to test over. */
-const int max_unit_voro_shells=10;
-
-/** A guess for the optimal number of particles per block, used to set up the
- * container grid. */
-const double optimal_particles=5.6;
-
-/** If this is set to 1, then the code reports any instances of particles being
- * put outside of the container geometry. */
-#define VOROPP_REPORT_OUT_OF_BOUNDS 0
-
-/** Voro++ returns this status code if there is a file-related error, such as
- * not being able to open file. */
-#define VOROPP_FILE_ERROR 1
-
-/** Voro++ returns this status code if there is a memory allocation error, if
- * one of the safe memory limits is exceeded. */
-#define VOROPP_MEMORY_ERROR 2
-
-/** Voro++ returns this status code if there is any type of internal error, if
- * it detects that representation of the Voronoi cell is inconsistent. This
- * status code will generally indicate a bug, and the developer should be
- * contacted. */
-#define VOROPP_INTERNAL_ERROR 3
-
-/** Voro++ returns this status code if it could not interpret the command line
- * arguments passed to the command line utility. */
-#define VOROPP_CMD_LINE_ERROR 4
-
-}
-
-#endif
diff --git a/src/USER-PTM/convex_hull_incremental.cpp b/src/USER-PTM/convex_hull_incremental.cpp
deleted file mode 100644
index bfe173cc02..0000000000
--- a/src/USER-PTM/convex_hull_incremental.cpp
+++ /dev/null
@@ -1,363 +0,0 @@
-#include <cmath>
-#include <cfloat>
-#include <string.h>
-#include <cassert>
-#include <algorithm>
-#include "convex_hull_incremental.h"
-#include "ptm_constants.h"
-
-
-#define VISIBLE 1
-#define INVISIBLE 2
-#define BOTH 3
-#define TOLERANCE 1E-8
-
-static double norm_squared(double* p)
-{
-	double x = p[0];
-	double y = p[1];
-	double z = p[2];
-
-	return x*x + y*y + z*z;
-}
-
-static double dot_product(const double* a, const double* b)
-{
-	return a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
-}
-
-static void cross_product(double* a, double* b, double* c)
-{
-	c[0] = a[1] * b[2] - a[2] * b[1];
-	c[1] = a[2] * b[0] - a[0] * b[2];
-	c[2] = a[0] * b[1] - a[1] * b[0];
-}
-
-static void calculate_plane_normal(const double (*points)[3], int a, int b, int c, double* plane_normal)
-{
-	double u[3] = {	points[b][0] - points[a][0],
-			points[b][1] - points[a][1],
-			points[b][2] - points[a][2]	};
-
-	double v[3] = {	points[c][0] - points[a][0],
-			points[c][1] - points[a][1],
-			points[c][2] - points[a][2]	};
-
-	cross_product(u, v, plane_normal);
-	double norm = sqrt(norm_squared(plane_normal));
-	plane_normal[0] /= norm;
-	plane_normal[1] /= norm;
-	plane_normal[2] /= norm;
-}
-
-static double point_plane_distance(const double* w, const double* plane_point, const double* plane_cross)
-{
-	return	  plane_cross[0] * (plane_point[0] - w[0])
-		+ plane_cross[1] * (plane_point[1] - w[1])
-		+ plane_cross[2] * (plane_point[2] - w[2]);
-}
-
-static bool calc_max_extent(int num_points, const double (*points)[3], int* min_index, int* max_index)
-{
-	for (int j=0;j<3;j++)
-	{
-		double dmin = DBL_MAX, dmax = -DBL_MAX;
-		int imin = 0, imax = 0;
-
-		for (int i = 0;i<num_points;i++)
-		{
-			double d = points[i][j];
-			if (d < dmin)
-			{
-				dmin = d;
-				imin = i;
-			}
-			if (d > dmax)
-			{
-				dmax = d;
-				imax = i;
-			}
-		}
-
-		if (imin == imax)
-			return false;	//degenerate point set
-
-		min_index[j] = imin;
-		max_index[j] = imax;
-	}
-
-	return true;
-}
-
-static bool find_third_point(int num_points, const double (*points)[3], int a, int b, int* p_c)
-{
-	const double* x1 = points[a];
-	const double* x2 = points[b];
-
-	double x2x1[3] = {x2[0] - x1[0], x2[1] - x1[1], x2[2] - x1[2]};
-	double ns_x2x1 = norm_squared(x2x1);
-
-	int bi = -1;
-	double max_dist = 0.0;
-	for (int i = 0;i<num_points;i++)
-	{
-		if (i == a || i == b)
-			continue;
-
-		const double* x0 = points[i];
-
-		double x1x0[3] = {x1[0] - x0[0], x1[1] - x0[1], x1[2] - x0[2]};
-		double dot = dot_product(x1x0, x2x1);
-		double dist = (norm_squared(x1x0) * ns_x2x1 - dot*dot) / ns_x2x1;
-
-		if (dist > max_dist)
-		{
-			max_dist = dist;
-			bi = i;
-		}
-	}
-
-	*p_c = bi;
-	return max_dist > TOLERANCE;
-}
-
-static bool find_fourth_point(int num_points, const double (*points)[3], int a, int b, int c, int* p_d)
-{
-	double plane_normal[3];
-	calculate_plane_normal(points, a, b, c, plane_normal);
-
-
-	int bi = -1;
-	double max_dist = 0.0;
-	for (int i = 0;i<num_points;i++)
-	{
-		if (i == a || i == b || i == c)
-			continue;
-
-		const double* x0 = points[i];
-		double dist = fabs(point_plane_distance(x0, points[a], plane_normal));
-		if (dist > max_dist)
-		{
-			max_dist = dist;
-			bi = i;
-		}
-	}
-
-	*p_d = bi;
-	return max_dist > TOLERANCE;
-}
-
-static int initial_simplex(int num_points, const double (*points)[3], int* initial_vertices)
-{
-	int min_index[3] = {0};
-	int max_index[3] = {0};
-	if (!calc_max_extent(num_points, points, min_index, max_index))
-		return -1;
-
-	int bi = -1;
-	double max_dist = 0.0;
-	for (int i = 0;i<3;i++)
-	{
-		int a = min_index[i], b = max_index[i];
-		double delta[3] = {	points[a][0] - points[b][0],
-					points[a][1] - points[b][1],
-					points[a][2] - points[b][2]	};
-		double dist = norm_squared(delta);
-		if (dist > max_dist)
-		{
-			bi = i;
-			max_dist = dist;
-		}
-	}
-
-	//first two points are (a, b)
-	int a = min_index[bi], b = max_index[bi], c = -1, d = -1;
-
-	if (!find_third_point(num_points, points, a, b, &c))
-		return -2;
-
-	if (!find_fourth_point(num_points, points, a, b, c, &d))
-		return -3;
-
-	initial_vertices[0] = a;
-	initial_vertices[1] = b;
-	initial_vertices[2] = c;
-	initial_vertices[3] = d;
-	return 0;
-}
-
-static bool visible(const double* w, const double* plane_point, const double* plane_normal)
-{
-	return point_plane_distance(w, plane_point, plane_normal) > 0;
-}
-
-void add_facet(const double (*points)[3], int a, int b, int c, int8_t* facet, double* plane_normal, double* barycentre)
-{
-	calculate_plane_normal(points, a, b, c, plane_normal);
-	if (visible(barycentre, points[a], plane_normal))
-	{
-		plane_normal[0] = -plane_normal[0];
-		plane_normal[1] = -plane_normal[1];
-		plane_normal[2] = -plane_normal[2];
-
-		facet[0] = b;
-		facet[1] = a;
-		facet[2] = c;
-	}
-	else
-	{
-		facet[0] = a;
-		facet[1] = b;
-		facet[2] = c;
-	}
-}
-
-static int initialize_convex_hull(int num_points, const double (*points)[3], int8_t facets[][3], double plane_normal[][3], bool* processed, int* initial_vertices, double* barycentre)
-{
-	memset(processed, 0, PTM_MAX_POINTS * sizeof(bool));
-	memset(barycentre, 0, 3 * sizeof(double));
-	int ret = initial_simplex(num_points, points, initial_vertices);
-	if (ret != 0)
-		return ret;
-
-	for (int i = 0;i<4;i++)
-	{
-		int a = initial_vertices[i];
-		processed[a] = true;
-
-		barycentre[0] += points[a][0];
-		barycentre[1] += points[a][1];
-		barycentre[2] += points[a][2];
-	}
-	barycentre[0] /= 4;
-	barycentre[1] /= 4;
-	barycentre[2] /= 4;
-
-	add_facet(points, initial_vertices[0], initial_vertices[1], initial_vertices[2], facets[0], plane_normal[0], barycentre);
-	add_facet(points, initial_vertices[0], initial_vertices[1], initial_vertices[3], facets[1], plane_normal[1], barycentre);
-	add_facet(points, initial_vertices[0], initial_vertices[2], initial_vertices[3], facets[2], plane_normal[2], barycentre);
-	add_facet(points, initial_vertices[1], initial_vertices[2], initial_vertices[3], facets[3], plane_normal[3], barycentre);
-	return 0;
-}
-
-int get_convex_hull(int num_points, const double (*points)[3], convexhull_t* ch, int8_t simplex[][3])
-{
-	assert(	num_points == PTM_NUM_POINTS_FCC
-		|| num_points == PTM_NUM_POINTS_HCP
-		|| num_points == PTM_NUM_POINTS_BCC
-		|| num_points == PTM_NUM_POINTS_ICO
-		|| num_points == PTM_NUM_POINTS_SC
-		|| num_points == PTM_NUM_POINTS_DCUB
-		|| num_points == PTM_NUM_POINTS_DHEX);
-
-	int ret = 0;
-	int num_prev = ch->num_prev;
-	ch->num_prev = num_points;
-	if (!ch->ok || 0)
-	{
-		ret = initialize_convex_hull(num_points, points, ch->facets, ch->plane_normal, ch->processed, ch->initial_vertices, ch->barycentre);
-		if (ret != 0)
-			return ret;
-
-		ch->num_facets = 4;
-		num_prev = 0;
-	}
-
-	for (int i = num_prev;i<num_points;i++)
-	{
-		if (ch->processed[i])
-			continue;
-		ch->processed[i] = true;
-
-		int num_to_add = 0;
-		int8_t to_add[PTM_MAX_FACETS][3];
-		int8_t edge_visible[PTM_MAX_POINTS][PTM_MAX_POINTS];
-		memset(edge_visible, 0, sizeof(int8_t) * PTM_MAX_POINTS * PTM_MAX_POINTS);
-		for (int j = 0;j<ch->num_facets;j++)
-		{
-			int a = ch->facets[j][0];
-			int b = ch->facets[j][1];
-			int c = ch->facets[j][2];
-
-			int u = 0, v = 0, w = 0;
-
-			double distance = point_plane_distance(points[i], points[a], ch->plane_normal[j]);
-			bool vis = distance > TOLERANCE;
-			if (vis)
-			{
-				u = edge_visible[a][b] |= VISIBLE;
-				edge_visible[b][a] |= VISIBLE;
-
-				v = edge_visible[b][c] |= VISIBLE;
-				edge_visible[c][b] |= VISIBLE;
-
-				w = edge_visible[c][a] |= VISIBLE;
-				edge_visible[a][c] |= VISIBLE;
-
-				memcpy(ch->facets[j], ch->facets[ch->num_facets-1], 3 * sizeof(int8_t));
-				memcpy(ch->plane_normal[j], ch->plane_normal[ch->num_facets-1], 3 * sizeof(double));
-				ch->num_facets--;
-				j--;
-			}
-			else
-			{
-				u = edge_visible[a][b] |= INVISIBLE;
-				edge_visible[b][a] |= INVISIBLE;
-
-				v = edge_visible[b][c] |= INVISIBLE;
-				edge_visible[c][b] |= INVISIBLE;
-
-				w = edge_visible[c][a] |= INVISIBLE;
-				edge_visible[a][c] |= INVISIBLE;
-			}
-
-			if (u == BOTH)
-			{
-				to_add[num_to_add][0] = i;
-				to_add[num_to_add][1] = a;
-				to_add[num_to_add][2] = b;
-				num_to_add++;
-			}
-
-			if (v == BOTH)
-			{
-				to_add[num_to_add][0] = i;
-				to_add[num_to_add][1] = b;
-				to_add[num_to_add][2] = c;
-				num_to_add++;
-			}
-
-			if (w == BOTH)
-			{
-				to_add[num_to_add][0] = i;
-				to_add[num_to_add][1] = c;
-				to_add[num_to_add][2] = a;
-				num_to_add++;
-			}
-		}
-
-		for (int j = 0;j<num_to_add;j++)
-		{
-			if (ch->num_facets >= PTM_MAX_FACETS)
-				return -4;
-
-			add_facet(points, to_add[j][0], to_add[j][1], to_add[j][2], ch->facets[ch->num_facets], ch->plane_normal[ch->num_facets], ch->barycentre); ch->num_facets++;
-		}
-	}
-
-	for (int i=0;i<ch->num_facets;i++)
-	{
-		int a = ch->facets[i][0];
-		int b = ch->facets[i][1];
-		int c = ch->facets[i][2];
-		if (a == 0 || b == 0 || c == 0)
-			return 1;		//central atom contained in convex hull
-
-		simplex[i][0] = a - 1;
-		simplex[i][1] = b - 1;
-		simplex[i][2] = c - 1;
-	}
-
-	return ret;
-}
-
diff --git a/src/USER-PTM/convex_hull_incremental.h b/src/USER-PTM/convex_hull_incremental.h
deleted file mode 100644
index d384a0457e..0000000000
--- a/src/USER-PTM/convex_hull_incremental.h
+++ /dev/null
@@ -1,27 +0,0 @@
-#ifndef CONVEX_HULL_INCREMENTAL_H
-#define CONVEX_HULL_INCREMENTAL_H
-
-
-#include <stdint.h>
-#include <stdbool.h>
-#include "ptm_constants.h"
-
-
-typedef struct
-{
-	int8_t facets[PTM_MAX_FACETS][3];
-	double plane_normal[PTM_MAX_FACETS][3];
-	bool processed[PTM_MAX_POINTS];
-	int initial_vertices[4];
-	double barycentre[3];
-	int num_facets;
-	int num_prev;
-	bool ok;
-
-} convexhull_t;
-
-void add_facet(const double (*points)[3], int a, int b, int c, int8_t* facet, double* plane_normal, double* barycentre);
-int get_convex_hull(int num_points, const double (*points)[3], convexhull_t* ch, int8_t simplex[][3]);
-
-#endif
-
diff --git a/src/USER-PTM/deformation_gradient.cpp b/src/USER-PTM/deformation_gradient.cpp
deleted file mode 100644
index 9a86dff6a3..0000000000
--- a/src/USER-PTM/deformation_gradient.cpp
+++ /dev/null
@@ -1,37 +0,0 @@
-#include "deformation_gradient.h"
-
-
-void calculate_deformation_gradient(int num_points, const double (*ideal_points)[3], int8_t* mapping, double (*normalized)[3], const double (*penrose)[3], double* F, double* res)
-{
-	for (int i = 0;i<3;i++)
-	{
-		for (int j = 0;j<3;j++)
-		{
-			double acc = 0.0;
-			for (int k = 0;k<num_points;k++)
-				acc += penrose[k][j] * normalized[mapping[k]][i];
-
-			F[i*3 + j] = acc;
-		}
-	}
-
-	res[0] = 0;
-	res[1] = 0;
-	res[2] = 0;
-
-	for (int k = 0;k<num_points;k++)
-	{
-		for (int i = 0;i<3;i++)
-		{
-			double acc = 0.0;
-			for (int j = 0;j<3;j++)
-			{
-				acc += F[i*3 + j] * ideal_points[k][j];
-			}
-
-			double delta = acc - normalized[mapping[k]][i];
-			res[i] += delta * delta;
-		}
-	}
-}
-
diff --git a/src/USER-PTM/deformation_gradient.h b/src/USER-PTM/deformation_gradient.h
deleted file mode 100644
index 059a06fdec..0000000000
--- a/src/USER-PTM/deformation_gradient.h
+++ /dev/null
@@ -1,142 +0,0 @@
-#ifndef DEFORMATION_GRADIENT_H
-#define DEFORMATION_GRADIENT_H
-
-#include <stdint.h>
-#include "ptm_constants.h"
-
-void calculate_deformation_gradient(int num_points, const double (*ideal_points)[3], int8_t* mapping, double (*normalized)[3], const double (*penrose)[3], double* F, double* res);
-
-//sc
-#define k_sc 0.5
-const double penrose_sc[PTM_NUM_POINTS_SC][3] = {	
-					{0, 0, 0},
-					{0, 0, -k_sc},
-					{0, 0, k_sc},
-					{0, -k_sc, 0},
-					{0, k_sc, 0},
-					{-k_sc, 0, 0},
-					{k_sc, 0, 0},
-				};
-
-//fcc
-#define k_fcc 0.17677669529663678216
-const double penrose_fcc[PTM_NUM_POINTS_FCC][3] = {
-					{0, 0, 0},
-					{0, k_fcc, k_fcc},
-					{0, -k_fcc, -k_fcc},
-					{0, k_fcc, -k_fcc},
-					{0, -k_fcc, k_fcc},
-					{k_fcc, 0, k_fcc},
-					{-k_fcc, 0, -k_fcc},
-					{k_fcc, 0, -k_fcc},
-					{-k_fcc, 0, k_fcc},
-					{k_fcc, k_fcc, -0},
-					{-k_fcc, -k_fcc, 0},
-					{k_fcc, -k_fcc, 0},
-					{-k_fcc, k_fcc, -0},
-				};
-
-//hcp
-#define k_hcp 0.17677669529663678216
-const double penrose_hcp[PTM_NUM_POINTS_HCP][3] = {
-					{0, 0, 0},
-					{k_hcp, 0, k_hcp},
-					{-k_hcp/3, -4*k_hcp/3, -k_hcp/3},
-					{k_hcp, k_hcp, 0},
-					{-k_hcp/3, -k_hcp/3, -4*k_hcp/3},
-					{0, k_hcp, k_hcp},
-					{-4*k_hcp/3, -k_hcp/3, -k_hcp/3},
-					{-k_hcp, k_hcp, -0},
-					{0, k_hcp, -k_hcp},
-					{k_hcp, 0, -k_hcp},
-					{k_hcp, -k_hcp, 0},
-					{-k_hcp, 0, k_hcp},
-					{0, -k_hcp, k_hcp},
-				};
-
-//ico
-#define k_ico 0.13143277802974323576
-#define phi 1.61803398874989490253
-//((1.0 + sqrt(5)) / 2)
-const double penrose_ico[PTM_NUM_POINTS_ICO][3] = {
-					{0, 0, 0},
-					{0, k_ico, phi*k_ico},
-					{0, -k_ico, -phi*k_ico},
-					{0, k_ico, -phi*k_ico},
-					{0, -k_ico, phi*k_ico},
-					{-k_ico, -phi*k_ico, -0},
-					{k_ico, phi*k_ico, 0},
-					{k_ico, -phi*k_ico, 0},
-					{-k_ico, phi*k_ico, -0},
-					{-phi*k_ico, 0, -k_ico},
-					{phi*k_ico, 0, k_ico},
-					{phi*k_ico, 0, -k_ico},
-					{-phi*k_ico, 0, k_ico},
-				};
-
-//bcc
-#define k_bcc 0.11543038598460284017
-const double penrose_bcc[PTM_NUM_POINTS_BCC][3] = {
-					{0, 0, 0},
-					{-k_bcc, -k_bcc, -k_bcc},
-					{k_bcc, k_bcc, k_bcc},
-					{k_bcc, -k_bcc, -k_bcc},
-					{-k_bcc, k_bcc, k_bcc},
-					{-k_bcc, k_bcc, -k_bcc},
-					{k_bcc, -k_bcc, k_bcc},
-					{-k_bcc, -k_bcc, k_bcc},
-					{k_bcc, k_bcc, -k_bcc},
-					{0, 0, -2*k_bcc},
-					{0, 0, 2*k_bcc},
-					{0, -2*k_bcc, 0},
-					{0, 2*k_bcc, 0},
-					{-2*k_bcc, 0, 0},
-					{2*k_bcc, 0, -0},
-				};
-
-//dcub
-#define kdcub 0.07095369570691034689
-const double penrose_dcub[PTM_NUM_POINTS_DCUB][3] = {
-					{          0,          0,          0 },
-					{     -kdcub,      kdcub,      kdcub },
-					{     -kdcub,     -kdcub,     -kdcub },
-					{      kdcub,     -kdcub,      kdcub },
-					{      kdcub,      kdcub,     -kdcub },
-					{ -2 * kdcub,          0,  2 * kdcub },
-					{ -2 * kdcub,  2 * kdcub,          0 },
-					{          0,  2 * kdcub,  2 * kdcub },
-					{ -2 * kdcub, -2 * kdcub,          0 },
-					{ -2 * kdcub,          0, -2 * kdcub },
-					{          0, -2 * kdcub, -2 * kdcub },
-					{          0, -2 * kdcub,  2 * kdcub },
-					{  2 * kdcub, -2 * kdcub,          0 },
-					{  2 * kdcub,          0,  2 * kdcub },
-					{          0,  2 * kdcub, -2 * kdcub },
-					{  2 * kdcub,          0, -2 * kdcub },
-				 	{  2 * kdcub,  2 * kdcub,          0 },
-				};
-
-
-#define kdhex 0.04730246380471011397
-const double penrose_dhex[PTM_NUM_POINTS_DHEX][3] = {
-					{          0,          0,           0 },
-					{     -kdcub,     -kdcub,      -kdcub },
-					{      kdcub,     -kdcub,       kdcub },
-					{     -kdcub,      kdcub,       kdcub },
-					{      kdcub,      kdcub,      -kdcub },
-					{     -kdhex, -4 * kdhex,      -kdhex },
-					{ -4 * kdhex,     -kdhex,      -kdhex },
-					{     -kdhex,     -kdhex,  -4 * kdhex },
-					{  2 * kdcub,          0,   2 * kdcub },
-					{  2 * kdcub, -2 * kdcub,           0 },
-					{          0, -2 * kdcub,   2 * kdcub },
-					{          0,  2 * kdcub,   2 * kdcub },
-					{ -2 * kdcub,  2 * kdcub,           0 },
-					{ -2 * kdcub,          0,   2 * kdcub },
-					{  2 * kdcub,  2 * kdcub,           0 },
-					{          0,  2 * kdcub,  -2 * kdcub },
-					{  2 * kdcub,          0,  -2 * kdcub },
-				};
-#endif
-
-
diff --git a/src/USER-PTM/fundamental_mappings.h b/src/USER-PTM/fundamental_mappings.h
deleted file mode 100644
index 9030d3a2b2..0000000000
--- a/src/USER-PTM/fundamental_mappings.h
+++ /dev/null
@@ -1,180 +0,0 @@
-#ifndef FUNDAMENTAL_MAPPINGS_H
-#define FUNDAMENTAL_MAPPINGS_H
-
-#include <stdint.h>
-
-#define NUM_CUBIC_MAPPINGS 24
-#define NUM_ICO_MAPPINGS 60
-#define NUM_HEX_MAPPINGS 6
-#define NUM_DCUB_MAPPINGS 12
-#define NUM_DHEX_MAPPINGS 3
-
-const int8_t mapping_sc[NUM_CUBIC_MAPPINGS][PTM_MAX_POINTS] = {
-					{0, 1, 2, 3, 4, 5, 6},
-					{0, 2, 1, 4, 3, 5, 6},
-					{0, 2, 1, 3, 4, 6, 5},
-					{0, 1, 2, 4, 3, 6, 5},
-					{0, 3, 4, 5, 6, 1, 2},
-					{0, 5, 6, 2, 1, 4, 3},
-					{0, 6, 5, 1, 2, 4, 3},
-					{0, 4, 3, 5, 6, 2, 1},
-					{0, 5, 6, 1, 2, 3, 4},
-					{0, 4, 3, 6, 5, 1, 2},
-					{0, 3, 4, 6, 5, 2, 1},
-					{0, 6, 5, 2, 1, 3, 4},
-					{0, 3, 4, 2, 1, 5, 6},
-					{0, 6, 5, 3, 4, 1, 2},
-					{0, 1, 2, 5, 6, 4, 3},
-					{0, 4, 3, 1, 2, 5, 6},
-					{0, 5, 6, 3, 4, 2, 1},
-					{0, 1, 2, 6, 5, 3, 4},
-					{0, 2, 1, 5, 6, 3, 4},
-					{0, 5, 6, 4, 3, 1, 2},
-					{0, 3, 4, 1, 2, 6, 5},
-					{0, 2, 1, 6, 5, 4, 3},
-					{0, 6, 5, 4, 3, 2, 1},
-					{0, 4, 3, 2, 1, 6, 5}	};
-
-const int8_t mapping_fcc[NUM_CUBIC_MAPPINGS][PTM_MAX_POINTS] = {
-					{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
-					{0, 2, 1, 4, 3, 7, 8, 5, 6, 11, 12, 9, 10},
-					{0, 3, 4, 1, 2, 6, 5, 8, 7, 12, 11, 10, 9},
-					{0, 4, 3, 2, 1, 8, 7, 6, 5, 10, 9, 12, 11},
-					{0, 9, 10, 11, 12, 1, 2, 4, 3, 5, 6, 8, 7},
-					{0, 7, 8, 6, 5, 11, 12, 10, 9, 2, 1, 4, 3},
-					{0, 8, 7, 5, 6, 10, 9, 11, 12, 4, 3, 2, 1},
-					{0, 11, 12, 9, 10, 2, 1, 3, 4, 7, 8, 6, 5},
-					{0, 5, 6, 8, 7, 9, 10, 12, 11, 1, 2, 3, 4},
-					{0, 10, 9, 12, 11, 4, 3, 1, 2, 8, 7, 5, 6},
-					{0, 12, 11, 10, 9, 3, 4, 2, 1, 6, 5, 7, 8},
-					{0, 6, 5, 7, 8, 12, 11, 9, 10, 3, 4, 1, 2},
-					{0, 3, 4, 2, 1, 9, 10, 11, 12, 7, 8, 5, 6},
-					{0, 12, 11, 9, 10, 8, 7, 5, 6, 1, 2, 4, 3},
-					{0, 5, 6, 7, 8, 4, 3, 2, 1, 11, 12, 10, 9},
-					{0, 4, 3, 1, 2, 11, 12, 9, 10, 5, 6, 7, 8},
-					{0, 9, 10, 12, 11, 7, 8, 6, 5, 3, 4, 2, 1},
-					{0, 8, 7, 6, 5, 1, 2, 3, 4, 12, 11, 9, 10},
-					{0, 7, 8, 5, 6, 3, 4, 1, 2, 9, 10, 12, 11},
-					{0, 11, 12, 10, 9, 5, 6, 8, 7, 4, 3, 1, 2},
-					{0, 1, 2, 4, 3, 12, 11, 10, 9, 8, 7, 6, 5},
-					{0, 6, 5, 8, 7, 2, 1, 4, 3, 10, 9, 11, 12},
-					{0, 10, 9, 11, 12, 6, 5, 7, 8, 2, 1, 3, 4},
-					{0, 2, 1, 3, 4, 10, 9, 12, 11, 6, 5, 8, 7}	};
-
-const int8_t mapping_bcc[NUM_CUBIC_MAPPINGS][PTM_MAX_POINTS] = {
-					{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14},
-					{0, 4, 3, 2, 1, 7, 8, 5, 6, 10, 9, 12, 11, 13, 14},
-					{0, 6, 5, 7, 8, 2, 1, 3, 4, 10, 9, 11, 12, 14, 13},
-					{0, 8, 7, 5, 6, 3, 4, 2, 1, 9, 10, 12, 11, 14, 13},
-					{0, 1, 2, 7, 8, 3, 4, 5, 6, 11, 12, 13, 14, 9, 10},
-					{0, 4, 3, 7, 8, 5, 6, 2, 1, 13, 14, 10, 9, 12, 11},
-					{0, 8, 7, 3, 4, 2, 1, 5, 6, 14, 13, 9, 10, 12, 11},
-					{0, 4, 3, 5, 6, 2, 1, 7, 8, 12, 11, 13, 14, 10, 9},
-					{0, 1, 2, 5, 6, 7, 8, 3, 4, 13, 14, 9, 10, 11, 12},
-					{0, 8, 7, 2, 1, 5, 6, 3, 4, 12, 11, 14, 13, 9, 10},
-					{0, 6, 5, 3, 4, 7, 8, 2, 1, 11, 12, 14, 13, 10, 9},
-					{0, 6, 5, 2, 1, 3, 4, 7, 8, 14, 13, 10, 9, 11, 12},
-					{0, 7, 8, 6, 5, 1, 2, 4, 3, 11, 12, 10, 9, 13, 14},
-					{0, 3, 4, 6, 5, 8, 7, 1, 2, 14, 13, 11, 12, 9, 10},
-					{0, 5, 6, 1, 2, 8, 7, 4, 3, 9, 10, 13, 14, 12, 11},
-					{0, 5, 6, 8, 7, 4, 3, 1, 2, 12, 11, 9, 10, 13, 14},
-					{0, 7, 8, 1, 2, 4, 3, 6, 5, 13, 14, 11, 12, 10, 9},
-					{0, 3, 4, 8, 7, 1, 2, 6, 5, 9, 10, 14, 13, 11, 12},
-					{0, 7, 8, 4, 3, 6, 5, 1, 2, 10, 9, 13, 14, 11, 12},
-					{0, 5, 6, 4, 3, 1, 2, 8, 7, 13, 14, 12, 11, 9, 10},
-					{0, 3, 4, 1, 2, 6, 5, 8, 7, 11, 12, 9, 10, 14, 13},
-					{0, 2, 1, 6, 5, 4, 3, 8, 7, 10, 9, 14, 13, 12, 11},
-					{0, 2, 1, 8, 7, 6, 5, 4, 3, 14, 13, 12, 11, 10, 9},
-					{0, 2, 1, 4, 3, 8, 7, 6, 5, 12, 11, 10, 9, 14, 13}	};
-
-const int8_t mapping_ico[NUM_ICO_MAPPINGS][PTM_MAX_POINTS] = {
-					{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
-					{0, 10, 9, 8, 7, 5, 6, 2, 1, 12, 11, 3, 4},
-					{0, 1, 2, 9, 10, 7, 8, 11, 12, 5, 6, 3, 4},
-					{0, 4, 3, 8, 7, 2, 1, 11, 12, 9, 10, 6, 5},
-					{0, 6, 5, 9, 10, 4, 3, 7, 8, 12, 11, 2, 1},
-					{0, 12, 11, 3, 4, 7, 8, 10, 9, 2, 1, 6, 5},
-					{0, 4, 3, 6, 5, 9, 10, 2, 1, 8, 7, 11, 12},
-					{0, 8, 7, 2, 1, 4, 3, 10, 9, 5, 6, 11, 12},
-					{0, 10, 9, 3, 4, 12, 11, 5, 6, 8, 7, 2, 1},
-					{0, 12, 11, 6, 5, 2, 1, 7, 8, 3, 4, 10, 9},
-					{0, 1, 2, 11, 12, 9, 10, 5, 6, 3, 4, 7, 8},
-					{0, 8, 7, 11, 12, 5, 6, 4, 3, 2, 1, 10, 9},
-					{0, 6, 5, 2, 1, 12, 11, 4, 3, 9, 10, 7, 8},
-					{0, 3, 4, 5, 6, 1, 2, 10, 9, 12, 11, 7, 8},
-					{0, 3, 4, 7, 8, 12, 11, 1, 2, 5, 6, 10, 9},
-					{0, 6, 5, 7, 8, 9, 10, 12, 11, 2, 1, 4, 3},
-					{0, 9, 10, 11, 12, 4, 3, 1, 2, 7, 8, 6, 5},
-					{0, 11, 12, 9, 10, 1, 2, 4, 3, 8, 7, 5, 6},
-					{0, 8, 7, 5, 6, 10, 9, 11, 12, 4, 3, 2, 1},
-					{0, 10, 9, 2, 1, 8, 7, 12, 11, 3, 4, 5, 6},
-					{0, 12, 11, 2, 1, 10, 9, 6, 5, 7, 8, 3, 4},
-					{0, 9, 10, 6, 5, 7, 8, 4, 3, 11, 12, 1, 2},
-					{0, 8, 7, 10, 9, 2, 1, 5, 6, 11, 12, 4, 3},
-					{0, 6, 5, 12, 11, 7, 8, 2, 1, 4, 3, 9, 10},
-					{0, 11, 12, 8, 7, 4, 3, 5, 6, 1, 2, 9, 10},
-					{0, 4, 3, 11, 12, 8, 7, 9, 10, 6, 5, 2, 1},
-					{0, 4, 3, 9, 10, 11, 12, 6, 5, 2, 1, 8, 7},
-					{0, 12, 11, 10, 9, 3, 4, 2, 1, 6, 5, 7, 8},
-					{0, 5, 6, 8, 7, 11, 12, 10, 9, 3, 4, 1, 2},
-					{0, 7, 8, 6, 5, 12, 11, 9, 10, 1, 2, 3, 4},
-					{0, 10, 9, 12, 11, 2, 1, 3, 4, 5, 6, 8, 7},
-					{0, 7, 8, 1, 2, 9, 10, 3, 4, 12, 11, 6, 5},
-					{0, 5, 6, 1, 2, 3, 4, 11, 12, 8, 7, 10, 9},
-					{0, 7, 8, 12, 11, 3, 4, 6, 5, 9, 10, 1, 2},
-					{0, 1, 2, 5, 6, 11, 12, 3, 4, 7, 8, 9, 10},
-					{0, 11, 12, 1, 2, 5, 6, 9, 10, 4, 3, 8, 7},
-					{0, 5, 6, 3, 4, 10, 9, 1, 2, 11, 12, 8, 7},
-					{0, 5, 6, 10, 9, 8, 7, 3, 4, 1, 2, 11, 12},
-					{0, 3, 4, 12, 11, 10, 9, 7, 8, 1, 2, 5, 6},
-					{0, 9, 10, 7, 8, 1, 2, 6, 5, 4, 3, 11, 12},
-					{0, 9, 10, 1, 2, 11, 12, 7, 8, 6, 5, 4, 3},
-					{0, 7, 8, 3, 4, 1, 2, 12, 11, 6, 5, 9, 10},
-					{0, 11, 12, 5, 6, 8, 7, 1, 2, 9, 10, 4, 3},
-					{0, 1, 2, 7, 8, 3, 4, 9, 10, 11, 12, 5, 6},
-					{0, 3, 4, 10, 9, 5, 6, 12, 11, 7, 8, 1, 2},
-					{0, 2, 1, 4, 3, 8, 7, 6, 5, 12, 11, 10, 9},
-					{0, 2, 1, 12, 11, 6, 5, 10, 9, 8, 7, 4, 3},
-					{0, 9, 10, 4, 3, 6, 5, 11, 12, 1, 2, 7, 8},
-					{0, 11, 12, 4, 3, 9, 10, 8, 7, 5, 6, 1, 2},
-					{0, 2, 1, 10, 9, 12, 11, 8, 7, 4, 3, 6, 5},
-					{0, 5, 6, 11, 12, 1, 2, 8, 7, 10, 9, 3, 4},
-					{0, 10, 9, 5, 6, 3, 4, 8, 7, 2, 1, 12, 11},
-					{0, 12, 11, 7, 8, 6, 5, 3, 4, 10, 9, 2, 1},
-					{0, 7, 8, 9, 10, 6, 5, 1, 2, 3, 4, 12, 11},
-					{0, 2, 1, 8, 7, 10, 9, 4, 3, 6, 5, 12, 11},
-					{0, 8, 7, 4, 3, 11, 12, 2, 1, 10, 9, 5, 6},
-					{0, 6, 5, 4, 3, 2, 1, 9, 10, 7, 8, 12, 11},
-					{0, 2, 1, 6, 5, 4, 3, 12, 11, 10, 9, 8, 7},
-					{0, 3, 4, 1, 2, 7, 8, 5, 6, 10, 9, 12, 11},
-					{0, 4, 3, 2, 1, 6, 5, 8, 7, 11, 12, 9, 10}	};
-
-const int8_t mapping_hcp[NUM_HEX_MAPPINGS][PTM_MAX_POINTS] = {
-					{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
-					{0, 5, 6, 1, 2, 3, 4, 9, 10, 12, 11, 8, 7},
-					{0, 3, 4, 5, 6, 1, 2, 12, 11, 7, 8, 10, 9},
-					{0, 4, 3, 2, 1, 6, 5, 11, 12, 10, 9, 7, 8},
-					{0, 2, 1, 6, 5, 4, 3, 8, 7, 11, 12, 9, 10},
-					{0, 6, 5, 4, 3, 2, 1, 10, 9, 8, 7, 12, 11}	};
-
-const int8_t mapping_dcub[NUM_DCUB_MAPPINGS][PTM_MAX_POINTS] = {
-					{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
-					{0, 2, 1, 4, 3, 9, 8, 10, 6, 5, 7, 14, 16, 15, 11, 13, 12},
-					{0, 4, 3, 2, 1, 15, 16, 14, 12, 13, 11, 10, 8, 9, 7, 5, 6},
-					{0, 3, 4, 1, 2, 13, 12, 11, 16, 15, 14, 7, 6, 5, 10, 9, 8},
-					{0, 4, 2, 1, 3, 14, 15, 16, 9, 10, 8, 6, 5, 7, 12, 11, 13},
-					{0, 4, 1, 3, 2, 16, 14, 15, 7, 6, 5, 13, 11, 12, 9, 8, 10},
-					{0, 1, 4, 2, 3, 6, 7, 5, 14, 16, 15, 9, 10, 8, 13, 12, 11},
-					{0, 3, 1, 2, 4, 11, 13, 12, 5, 7, 6, 8, 9, 10, 16, 14, 15},
-					{0, 3, 2, 4, 1, 12, 11, 13, 10, 8, 9, 15, 14, 16, 5, 6, 7},
-					{0, 2, 4, 3, 1, 10, 9, 8, 15, 14, 16, 12, 13, 11, 6, 7, 5},
-					{0, 1, 3, 4, 2, 7, 5, 6, 13, 11, 12, 16, 15, 14, 8, 10, 9},
-					{0, 2, 3, 1, 4, 8, 10, 9, 11, 12, 13, 5, 7, 6, 15, 16, 14}	};
-
-const int8_t mapping_dhex[NUM_DHEX_MAPPINGS][PTM_MAX_POINTS] = {
-					{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
-					{0, 1, 3, 4, 2, 6, 7, 5, 11, 13, 12, 14, 16, 15, 8, 9, 10},
-					{0, 1, 4, 2, 3, 7, 5, 6, 14, 15, 16, 8, 10, 9, 11, 13, 12}	};
-
-#endif
-
diff --git a/src/USER-PTM/graph_data.cpp b/src/USER-PTM/graph_data.cpp
deleted file mode 100644
index aea2e59eac..0000000000
--- a/src/USER-PTM/graph_data.cpp
+++ /dev/null
@@ -1,2059 +0,0 @@
-#include "graph_data.h"
-
-
-int8_t automorphisms[65][17] = {
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, -1, -1, -1, -1},
-	{  0,  4,  3, 10,  9,  5,  6, 12, 11,  8,  7,  1,  2, -1, -1, -1, -1},
-	{  0,  5,  6, 11, 12,  8,  7,  2,  1,  4,  3, 10,  9, -1, -1, -1, -1},
-	{  0,  8,  7,  1,  2,  4,  3,  9, 10,  5,  6, 11, 12, -1, -1, -1, -1},
-	{  0,  8,  7, 10,  9,  1,  2,  6,  5, 12, 11,  3,  4, -1, -1, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, -1, -1, -1, -1},
-	{  0, 12,  3,  2,  7, 10,  8,  4,  6, 11,  5,  9,  1, -1, -1, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, -1, -1, -1, -1},
-	{  0,  4, 11,  8,  1,  9, 12, 10,  3,  5,  7,  2,  6, -1, -1, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, -1, -1, -1, -1},
-	{  0,  2,  1,  6,  5,  4,  3,  9,  8,  7, 11, 10, 12, -1, -1, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, -1, -1, -1, -1},
-	{  0,  1,  7, 10, 11,  9,  6,  4,  2, 12,  5,  8,  3, -1, -1, -1, -1},
-	{  0,  1, 11,  9,  2,  3,  6,  8,  4, 10, 12,  7,  5, -1, -1, -1, -1},
-	{  0,  3,  6,  1, 11,  9,  2, 10, 12,  5,  7,  4,  8, -1, -1, -1, -1},
-	{  0,  3, 11,  9, 12,  8,  2,  4, 10,  1,  5,  6,  7, -1, -1, -1, -1},
-	{  0,  8,  2,  3, 11,  9, 12,  1,  5,  7,  6, 10,  4, -1, -1, -1, -1},
-	{  0,  9,  2,  3,  6,  1, 11,  5,  7,  8,  4, 12, 10, -1, -1, -1, -1},
-	{  0,  9,  6,  1,  7, 10, 11, 12,  5,  3,  8,  2,  4, -1, -1, -1, -1},
-	{  0,  9, 12,  8,  2,  3, 11,  7,  6,  4, 10,  5,  1, -1, -1, -1, -1},
-	{  0, 10, 11,  9,  6,  1,  7,  3,  8,  4,  2,  5, 12, -1, -1, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, -1, -1, -1, -1},
-	{  0,  3,  2,  8,  6,  5, 12, 11,  7,  4,  9,  1, 10, -1, -1, -1, -1},
-	{  0,  3, 11, 10,  6,  9,  7,  4,  2, 12,  1,  8,  5, -1, -1, -1, -1},
-	{  0,  3, 12,  9,  6,  8, 11,  7,  4,  2, 10,  5,  1, -1, -1, -1, -1},
-	{  0,  5, 12,  3,  2,  8,  6,  4,  9, 10,  1,  7, 11, -1, -1, -1, -1},
-	{  0,  8,  6,  5, 12,  3,  2, 10,  1, 11,  7,  9,  4, -1, -1, -1, -1},
-	{  0,  8, 11,  3, 12,  9,  6,  2, 10,  1,  5,  4,  7, -1, -1, -1, -1},
-	{  0,  9,  6,  8, 11,  3, 12,  1,  5,  7,  4, 10,  2, -1, -1, -1, -1},
-	{  0,  9,  7,  3, 11, 10,  6, 12,  1,  5,  8,  2,  4, -1, -1, -1, -1},
-	{  0, 10,  6,  9,  7,  3, 11,  5,  8,  4,  2,  1, 12, -1, -1, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, -1, -1},
-	{  0,  3,  4,  6,  5,  2,  1,  9, 10, 14, 13, 11, 12,  8,  7, -1, -1},
-	{  0,  4,  3,  1,  2,  5,  6, 10,  9, 13, 14,  7,  8, 12, 11, -1, -1},
-	{  0,  6,  5,  1,  2,  4,  3, 14, 13,  7,  8, 11, 12, 10,  9, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, -1, -1},
-	{  0, 12, 11, 10,  9, 13, 14,  8,  7,  4,  3,  2,  1,  5,  6, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, -1, -1},
-	{  0,  9, 10, 13, 14, 11, 12,  8,  7,  1,  2,  5,  6,  3,  4, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, -1, -1},
-	{  0,  6,  5,  4,  3,  2,  1, 11, 12, 10,  9,  7,  8, 14, 13, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, -1, -1},
-	{  0, 12, 11, 10,  9, 13, 14,  8,  7,  4,  3,  2,  1,  5,  6, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, -1, -1},
-	{  0,  9, 10, 13, 14, 11, 12,  8,  7,  1,  2,  5,  6,  3,  4, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, -1, -1},
-	{  0,  3, 10, 14,  5,  9,  7, 13,  2,  8,  4, 11, 12,  1,  6, -1, -1},
-	{  0, 13,  8,  1, 10,  4, 14,  6,  9,  5,  2, 11, 12,  7,  3, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, -1, -1},
-	{  0, 11, 12, 14, 13,  9, 10,  7,  8,  3,  4,  6,  5,  1,  2, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, -1, -1},
-	{  0, 13, 14, 11, 12,  5,  6, 10,  9,  1,  2,  7,  8,  4,  3, -1, -1},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16},
-	{  0,  4,  3,  2,  1, 15, 14, 16, 13, 12, 11, 10,  9,  8,  6,  5,  7},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16},
-	{  0,  4,  1,  3,  2, 15, 14, 16,  5,  7,  6, 13, 11, 12, 10,  8,  9},
-	{  0,  4,  2,  1,  3, 16, 15, 14, 10,  8,  9,  5,  6,  7, 13, 12, 11},
-	{  0,  4,  3,  2,  1, 14, 16, 15, 13, 12, 11, 10,  9,  8,  5,  7,  6},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16},
-	{  0,  3,  4,  1,  2, 12, 13, 11, 16, 14, 15,  7,  5,  6,  9, 10,  8},
-	{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16},
-	{  0,  4,  1,  3,  2, 16, 15, 14,  6,  5,  7, 13, 11, 12, 10,  8,  9},
-	{  0,  4,  2,  1,  3, 14, 16, 15, 10,  8,  9,  6,  7,  5, 13, 12, 11},
-	{  0,  4,  3,  2,  1, 15, 14, 16, 13, 12, 11, 10,  9,  8,  6,  5,  7},
-};
-
-graph_t graphs_sc[NUM_SC_GRAPHS] = {
-
-{0,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,4},{1,3,5},{0,3,4},{0,3,5},{1,2,5},{1,2,4},{0,2,4},{0,2,5}}},
-
-};
-
-graph_t graphs_ico[NUM_ICO_GRAPHS] = {
-
-{0,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{0,5,9},{1,2,8},{0,5,7},{2,7,8},{2,5,7},{1,4,8},{1,2,10},{5,9,10},{2,5,10},{4,8,11},{7,8,11},{0,7,11},{0,3,9},{0,3,11},{3,4,11},{3,6,9},{3,4,6},{6,9,10},{1,4,6},{1,6,10}}},
-
-};
-
-graph_t graphs_fcc[NUM_FCC_GRAPHS] = {
-
-{0,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{1,2,6},{1,2,5},{1,3,10},{1,3,9},{4,6,10},{4,6,8}}},
-
-{1,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{1,2,6},{1,2,5},{1,3,10},{1,3,9},{6,8,10},{4,8,10}}},
-
-{2,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{1,2,6},{1,2,5},{3,9,10},{1,9,10},{6,8,10},{4,8,10}}},
-
-{3,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{2,5,6},{1,5,6},{1,3,10},{1,3,9},{4,6,10},{4,6,8}}},
-
-{4,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{2,5,6},{1,5,6},{1,3,10},{1,3,9},{6,8,10},{4,8,10}}},
-
-{5,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{2,5,6},{1,5,6},{3,9,10},{1,9,10},{4,6,10},{4,6,8}}},
-
-{6,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{7,9,11},{5,9,11},{1,2,6},{1,2,5},{3,9,10},{1,9,10},{4,6,10},{4,6,8}}},
-
-{7,
-0,
-1,
-5,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{7,9,11},{5,9,11},{2,5,6},{1,5,6},{1,3,10},{1,3,9},{6,8,10},{4,8,10}}},
-
-};
-
-graph_t graphs_hcp[NUM_HCP_GRAPHS] = {
-
-{0,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{2,6,7},{2,4,6}}},
-
-{1,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}},
-
-{2,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{2,8,9},{0,2,9},{4,10,11},{0,4,11},{2,6,7},{2,4,6}}},
-
-{3,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{2,8,9},{0,2,9},{4,10,11},{0,4,11},{4,6,7},{2,4,7}}},
-
-{4,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{0,8,9},{0,2,8},{0,10,11},{0,4,10},{2,6,7},{2,4,6}}},
-
-{5,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{0,8,9},{0,2,8},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}},
-
-{6,
-0,
-6,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{0,8,9},{0,2,8},{4,10,11},{0,4,11},{2,6,7},{2,4,6}}},
-
-{7,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{0,8,9},{0,2,8},{4,10,11},{0,4,11},{4,6,7},{2,4,7}}},
-
-{8,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{2,6,7},{2,4,6}}},
-
-{9,
-0,
-8,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}},
-
-{10,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{2,8,9},{0,2,9},{4,10,11},{0,4,11},{4,6,7},{2,4,7}}},
-
-{11,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{0,8,9},{0,2,8},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}},
-
-{12,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{0,8,9},{0,2,8},{4,10,11},{0,4,11},{2,6,7},{2,4,6}}},
-
-{13,
-0,
-10,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{5,6,7},{3,5,7},{3,8,9},{1,3,9},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}},
-
-{14,
-0,
-12,
-10,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{5,6,7},{3,5,7},{3,8,9},{1,3,9},{0,8,9},{0,2,8},{4,10,11},{0,4,11},{2,6,7},{2,4,6}}},
-
-{15,
-0,
-22,
-10,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{5,10,11},{1,5,11},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}},
-
-};
-
-graph_t graphs_bcc[NUM_BCC_GRAPHS] = {
-
-{0,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{1,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{2,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{3,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{4,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{5,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{6,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{7,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{8,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{9,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{10,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{11,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{12,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{13,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{14,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{15,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{16,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{17,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{18,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{19,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{20,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{21,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{22,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{23,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{24,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{25,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{26,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{27,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{28,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{29,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{30,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{31,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{32,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{33,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{34,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{35,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{36,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{37,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{38,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{39,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{40,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{41,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{42,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{43,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{44,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{45,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{46,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{47,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{48,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{49,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{50,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{51,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{52,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{53,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{54,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{55,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{56,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{57,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{58,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{59,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{60,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{61,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{62,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{63,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{64,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{65,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{66,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{67,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{68,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{69,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{70,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{71,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{72,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{73,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{74,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{75,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{76,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{77,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{78,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{79,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{80,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{81,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{82,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{83,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{84,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{85,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{86,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{87,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{88,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{89,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{90,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{91,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{92,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{93,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{94,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{95,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{96,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{97,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{98,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{99,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{100,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{101,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{102,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{103,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{104,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{105,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{106,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{107,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{108,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{109,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{110,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{111,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{112,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{113,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{114,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{115,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{116,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{117,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{118,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{119,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{120,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{121,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{122,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{123,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{124,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{125,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{126,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{127,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{128,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{129,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{130,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{131,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{132,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{133,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{134,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{135,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{136,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{137,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{138,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{139,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{140,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{141,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{142,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{143,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{144,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{145,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{146,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{147,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{148,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{149,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{150,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{151,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{152,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{153,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{154,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{155,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{156,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{157,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{158,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{159,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{160,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{161,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{162,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{163,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{164,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{165,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{166,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{167,
-0,
-32,
-4,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{168,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{169,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{170,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{171,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{172,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{173,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{174,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{175,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{176,
-0,
-36,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{177,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{178,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{179,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{180,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{181,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{182,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{183,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{184,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{185,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{186,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{187,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{188,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{189,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{190,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{191,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{192,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{193,
-0,
-38,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{194,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{195,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{196,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{197,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{198,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{199,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{200,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{201,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{202,
-0,
-40,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}},
-
-{203,
-0,
-42,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{204,
-0,
-44,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{205,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{206,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{207,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{208,
-0,
-46,
-3,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{209,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{210,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{211,
-0,
-49,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}},
-
-{212,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{213,
-0,
-51,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{214,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{215,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}},
-
-{216,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-{217,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{1,3,11},{1,3,9},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}},
-
-};
-
-graph_t graphs_dcub[NUM_DCUB_GRAPHS] = {
-
-{0,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{5,13,15},{5,6,15},{9,13,14},{8,9,13},{11,14,15},{11,12,15}}},
-
-{1,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{5,13,15},{5,6,15},{9,13,14},{8,9,13},{12,14,15},{11,12,14}}},
-
-{2,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{5,13,15},{5,6,15},{8,13,14},{8,9,14},{11,14,15},{11,12,15}}},
-
-{3,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{5,13,15},{5,6,15},{8,13,14},{8,9,14},{12,14,15},{11,12,14}}},
-
-{4,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{6,13,15},{5,6,13},{9,13,14},{8,9,13},{11,14,15},{11,12,15}}},
-
-{5,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{6,13,15},{5,6,13},{8,13,14},{8,9,14},{11,14,15},{11,12,15}}},
-
-{6,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{6,13,15},{5,6,13},{8,13,14},{8,9,14},{12,14,15},{11,12,14}}},
-
-{7,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{9,10,11},{7,9,10},{5,13,15},{5,6,15},{8,13,14},{8,9,14},{12,14,15},{11,12,14}}},
-
-{8,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{9,10,11},{7,9,10},{6,13,15},{5,6,13},{9,13,14},{8,9,13},{11,14,15},{11,12,15}}},
-
-{9,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{9,10,11},{7,9,10},{6,13,15},{5,6,13},{8,13,14},{8,9,14},{11,14,15},{11,12,15}}},
-
-{10,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{4,10,12},{4,6,12},{9,10,11},{7,9,10},{6,13,15},{5,6,13},{8,13,14},{8,9,14},{11,14,15},{11,12,15}}},
-
-{11,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{4,7,8},{4,5,8},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{5,13,15},{5,6,15},{9,13,14},{8,9,13},{12,14,15},{11,12,14}}},
-
-};
-
-graph_t graphs_dhex[NUM_DHEX_GRAPHS] = {
-
-{0,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{6,11,14},{5,6,11},{4,8,15},{4,6,15},{7,13,15},{7,8,15}}},
-
-{1,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{6,11,14},{5,6,11},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}},
-
-{2,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{7,13,15},{7,8,15}}},
-
-{3,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}},
-
-{4,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}},
-
-{5,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{7,13,15},{7,8,15}}},
-
-{6,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}},
-
-{7,
-0,
-53,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}},
-
-{8,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{7,13,15},{7,8,15}}},
-
-{9,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}},
-
-{10,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}},
-
-{11,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{7,13,15},{7,8,15}}},
-
-{12,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}},
-
-{13,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}},
-
-{14,
-0,
-55,
-4,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{7,13,15},{7,8,15}}},
-
-{15,
-0,
-59,
-2,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}},
-
-{16,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}},
-
-{17,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}},
-
-{18,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}},
-
-{19,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}},
-
-{20,
-0,
-61,
-4,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{7,10,12},{7,9,12},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}},
-
-{21,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{7,10,12},{7,9,12},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}},
-
-{22,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{7,10,12},{7,9,12},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}},
-
-{23,
-0,
-0,
-1,
-{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{7,10,12},{7,9,12},{4,9,12},{4,5,12},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}},
-
-};
-
diff --git a/src/USER-PTM/graph_data.h b/src/USER-PTM/graph_data.h
deleted file mode 100644
index 3a8a5c7ae7..0000000000
--- a/src/USER-PTM/graph_data.h
+++ /dev/null
@@ -1,37 +0,0 @@
-#ifndef GRAPH_DATA_H
-#define GRAPH_DATA_H
-
-#include <stdint.h>
-#include "ptm_constants.h"
-
-
-typedef struct
-{
-	int id;
-	uint64_t hash;
-	int automorphism_index;
-	int num_automorphisms;
-	int8_t canonical_labelling[PTM_MAX_POINTS];
-	int8_t facets[PTM_MAX_FACETS][3];
-} graph_t;
-
-#define NUM_SC_GRAPHS 1
-#define NUM_ICO_GRAPHS 1
-#define NUM_FCC_GRAPHS 8
-#define NUM_HCP_GRAPHS 16
-#define NUM_BCC_GRAPHS 218
-#define NUM_DCUB_GRAPHS 12
-#define NUM_DHEX_GRAPHS 24
-
-extern int8_t automorphisms[][PTM_MAX_POINTS];
-
-extern graph_t graphs_sc[NUM_SC_GRAPHS];
-extern graph_t graphs_fcc[NUM_FCC_GRAPHS];
-extern graph_t graphs_hcp[NUM_HCP_GRAPHS];
-extern graph_t graphs_ico[NUM_ICO_GRAPHS];
-extern graph_t graphs_bcc[NUM_BCC_GRAPHS];
-extern graph_t graphs_dcub[NUM_DCUB_GRAPHS];
-extern graph_t graphs_dhex[NUM_DHEX_GRAPHS];
-
-#endif
-
diff --git a/src/USER-PTM/graph_tools.cpp b/src/USER-PTM/graph_tools.cpp
deleted file mode 100644
index 864e921b51..0000000000
--- a/src/USER-PTM/graph_tools.cpp
+++ /dev/null
@@ -1,52 +0,0 @@
-#include <string.h>
-#include <algorithm>
-#include "graph_tools.h"
-#include "ptm_constants.h"
-
-
-bool build_facet_map(int num_facets, int8_t facets[][3], int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS])
-{
-	memset(common, -1, sizeof(int8_t) * PTM_MAX_NBRS * PTM_MAX_NBRS);
-
-	for (int i = 0;i<num_facets;i++)
-	{
-		int a = facets[i][0];
-		int b = facets[i][1];
-		int c = facets[i][2];
-
-		//assert(common[a][b] == -1);
-		//assert(common[b][c] == -1);
-		//assert(common[c][a] == -1);
-		if (common[a][b] != -1 || common[b][c] != -1 || common[c][a] != -1)
-			return false;
-
-		common[a][b] = c;
-		common[b][c] = a;
-		common[c][a] = b;
-	}
-
-	return true;
-}
-
-int graph_degree(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree)
-{
-	memset(degree, 0, sizeof(int8_t) * num_nodes);
-
-	for (int i = 0;i<num_facets;i++)
-	{
-		int a = facets[i][0];
-		int b = facets[i][1];
-		int c = facets[i][2];
-
-		degree[a]++;
-		degree[b]++;
-		degree[c]++;
-	}
-
-	int8_t max_degree = 0;
-	for (int i = 0;i<num_nodes;i++)
-		max_degree = std::max(max_degree, degree[i]);
-
-	return max_degree;
-}
-
diff --git a/src/USER-PTM/graph_tools.h b/src/USER-PTM/graph_tools.h
deleted file mode 100644
index 791a44f9a6..0000000000
--- a/src/USER-PTM/graph_tools.h
+++ /dev/null
@@ -1,11 +0,0 @@
-#ifndef GRAPH_TOOLS_H
-#define GRAPH_TOOLS_H
-
-#include <stdint.h>
-#include "ptm_constants.h"
-
-bool build_facet_map(int num_facets, int8_t facets[][3], int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS]);
-int graph_degree(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree);
-
-#endif
-
diff --git a/src/USER-PTM/index_ptm.cpp b/src/USER-PTM/index_ptm.cpp
deleted file mode 100644
index 2683323ac5..0000000000
--- a/src/USER-PTM/index_ptm.cpp
+++ /dev/null
@@ -1,218 +0,0 @@
-#include <cstdio>
-#include <cstdlib>
-#include <string.h>
-#include <cmath>
-#include <cfloat>
-#include <cassert>
-#include <algorithm>
-#include "convex_hull_incremental.h"
-#include "graph_data.h"
-#include "deformation_gradient.h"
-#include "alloy_types.h"
-#include "neighbour_ordering.h"
-#include "normalize_vertices.h"
-#include "quat.h"
-#include "polar.h"
-#include "initialize_data.h"
-#include "structure_matcher.h"
-#include "ptm_functions.h"
-#include "ptm_constants.h"
-
-
-//todo: verify that c == norm(template[1])
-static double calculate_interatomic_distance(int type, double scale)
-{
-	assert(type >= 1 && type <= 7);
-	double c[8] = {0, 1, 1, (7. - 3.5 * sqrt(3)), 1, 1, sqrt(3) * 4. / (6 * sqrt(2) + sqrt(3)), sqrt(3) * 4. / (6 * sqrt(2) + sqrt(3))};
-	return c[type] / scale;
-}
-
-static double calculate_lattice_constant(int type, double interatomic_distance)
-{
-	assert(type >= 1 && type <= 7);
-	double c[8] = {0, 2 / sqrt(2), 2 / sqrt(2), 2. / sqrt(3), 2 / sqrt(2), 1, 4 / sqrt(3), 4 / sqrt(3)};
-	return c[type] * interatomic_distance;
-}
-
-static int rotate_into_fundamental_zone(int type, double* q)
-{
-	if (type == PTM_MATCH_SC)	return rotate_quaternion_into_cubic_fundamental_zone(q);
-	if (type == PTM_MATCH_FCC)	return rotate_quaternion_into_cubic_fundamental_zone(q);
-	if (type == PTM_MATCH_BCC)	return rotate_quaternion_into_cubic_fundamental_zone(q);
-	if (type == PTM_MATCH_ICO)	return rotate_quaternion_into_icosahedral_fundamental_zone(q);
-	if (type == PTM_MATCH_HCP)	return rotate_quaternion_into_hcp_fundamental_zone(q);
-	if (type == PTM_MATCH_DCUB)	return rotate_quaternion_into_diamond_cubic_fundamental_zone(q);
-	if (type == PTM_MATCH_DHEX)	return rotate_quaternion_into_diamond_hexagonal_fundamental_zone(q);
-	return -1;
-}
-
-static void order_points(ptm_local_handle_t local_handle, int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers, bool topological_ordering,
-			int8_t* ordering, double (*points)[3], int32_t* numbers)
-{
-	if (topological_ordering)
-	{
-		double normalized_points[PTM_MAX_INPUT_POINTS][3];
-		normalize_vertices(num_points, unpermuted_points, normalized_points);
-		int ret = calculate_neighbour_ordering((void*)local_handle, num_points, (const double (*)[3])normalized_points, ordering);
-		if (ret != 0)
-			topological_ordering = false;
-	}
-
-	if (!topological_ordering)
-		for (int i=0;i<num_points;i++)
-			ordering[i] = i;
-
-	for (int i=0;i<num_points;i++)
-	{
-		memcpy(points[i], &unpermuted_points[ordering[i]], 3 * sizeof(double));
-
-		if (unpermuted_numbers != NULL)
-			numbers[i] = unpermuted_numbers[ordering[i]];
-	}
-}
-
-static void output_data(result_t* res, int num_points, int32_t* unpermuted_numbers, double (*points)[3], int32_t* numbers, int8_t* ordering,
-			int32_t* p_type, int32_t* p_alloy_type, double* p_scale, double* p_rmsd, double* q, double* F, double* F_res,
-			double* U, double* P, int8_t* mapping, double* p_interatomic_distance, double* p_lattice_constant)
-{
-	*p_type = PTM_MATCH_NONE;
-	if (p_alloy_type != NULL)
-		*p_alloy_type = PTM_ALLOY_NONE;
-
-	if (mapping != NULL)
-		memset(mapping, -1, num_points * sizeof(int8_t));
-
-	const refdata_t* ref = res->ref_struct;
-	if (ref == NULL)
-		return;
-
-	*p_type = ref->type;
-	if (p_alloy_type != NULL && unpermuted_numbers != NULL)
-		*p_alloy_type = find_alloy_type(ref, res->mapping, numbers);
-
-	int bi = rotate_into_fundamental_zone(ref->type, res->q);
-	int8_t temp[PTM_MAX_POINTS];
-	for (int i=0;i<ref->num_nbrs+1;i++)
-		temp[ref->mapping[bi][i]] = res->mapping[i];
-
-	memcpy(res->mapping, temp, (ref->num_nbrs+1) * sizeof(int8_t));
-
-	if (F != NULL && F_res != NULL)
-	{
-		double scaled_points[PTM_MAX_INPUT_POINTS][3];
-
-		subtract_barycentre(ref->num_nbrs + 1, points, scaled_points);
-		for (int i = 0;i<ref->num_nbrs + 1;i++)
-		{
-			scaled_points[i][0] *= res->scale;
-			scaled_points[i][1] *= res->scale;
-			scaled_points[i][2] *= res->scale;
-		}
-		calculate_deformation_gradient(ref->num_nbrs + 1, ref->points, res->mapping, scaled_points, ref->penrose, F, F_res);
-
-		if (P != NULL && U != NULL)
-			polar_decomposition_3x3(F, false, U, P);
-	}
-
-	if (mapping != NULL)
-		for (int i=0;i<ref->num_nbrs + 1;i++)
-			mapping[i] = ordering[res->mapping[i]];
-
-	double interatomic_distance = calculate_interatomic_distance(ref->type, res->scale);
-	double lattice_constant = calculate_lattice_constant(ref->type, interatomic_distance);
-
-	if (p_interatomic_distance != NULL)
-		*p_interatomic_distance = interatomic_distance;
-
-	if (p_lattice_constant != NULL)
-		*p_lattice_constant = lattice_constant;
-
-	*p_rmsd = res->rmsd;
-	*p_scale = res->scale;
-	memcpy(q, res->q, 4 * sizeof(double));
-}
-
-
-extern bool ptm_initialized;
-
-int ptm_index(	ptm_local_handle_t local_handle, int32_t flags,
-		int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers, bool topological_ordering,
-		int32_t* p_type, int32_t* p_alloy_type, double* p_scale, double* p_rmsd, double* q, double* F, double* F_res,
-		double* U, double* P, int8_t* mapping, double* p_interatomic_distance, double* p_lattice_constant)
-{
-	assert(ptm_initialized);
-	assert(num_points <= PTM_MAX_INPUT_POINTS);
-
-	if (flags & PTM_CHECK_SC)
-		assert(num_points >= PTM_NUM_POINTS_SC);
-
-	if (flags & PTM_CHECK_BCC)
-		assert(num_points >= PTM_NUM_POINTS_BCC);
-
-	if (flags & (PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO))
-		assert(num_points >= PTM_NUM_POINTS_FCC);
-
-	if (flags & (PTM_CHECK_DCUB | PTM_CHECK_DHEX))
-		assert(num_points >= PTM_NUM_POINTS_DCUB);
-
-	int ret = 0;
-	result_t res;
-	res.ref_struct = NULL;
-	res.rmsd = INFINITY;
-
-	int8_t ordering[PTM_MAX_INPUT_POINTS];
-	double points[PTM_MAX_POINTS][3];
-	int32_t numbers[PTM_MAX_POINTS];
-
-	int8_t dordering[PTM_MAX_INPUT_POINTS];
-	double dpoints[PTM_MAX_POINTS][3];
-	int32_t dnumbers[PTM_MAX_POINTS];
-
-	convexhull_t ch;
-	double ch_points[PTM_MAX_INPUT_POINTS][3];
-
-	if (flags & (PTM_CHECK_SC | PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO | PTM_CHECK_BCC))
-	{
-		int num_lpoints = std::min(std::min(PTM_MAX_POINTS, 20), num_points);
-		order_points(local_handle, num_lpoints, unpermuted_points, unpermuted_numbers, topological_ordering, ordering, points, numbers);
-		normalize_vertices(num_lpoints, points, ch_points);
-		ch.ok = false;
-
-		if (flags & PTM_CHECK_SC)
-			ret = match_general(&structure_sc, ch_points, points, &ch, &res);
-
-		if (flags & (PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO))
-			ret = match_fcc_hcp_ico(ch_points, points, flags, &ch, &res);
-
-		if (flags & PTM_CHECK_BCC)
-			ret = match_general(&structure_bcc, ch_points, points, &ch, &res);
-	}
-
-	if (flags & (PTM_CHECK_DCUB | PTM_CHECK_DHEX))
-	{
-		ret = calculate_diamond_neighbour_ordering(num_points, unpermuted_points, unpermuted_numbers, dordering, dpoints, dnumbers);
-		if (ret == 0)
-		{
-			normalize_vertices(PTM_NUM_NBRS_DCUB + 1, dpoints, ch_points);
-			ch.ok = false;
-
-			ret = match_dcub_dhex(ch_points, dpoints, flags, &ch, &res);
-		}
-	}
-
-	if (res.ref_struct != NULL && (res.ref_struct->type == PTM_MATCH_DCUB || res.ref_struct->type == PTM_MATCH_DHEX))
-	{
-		output_data(	&res, num_points, unpermuted_numbers, dpoints, dnumbers, dordering,
-				p_type, p_alloy_type, p_scale, p_rmsd, q, F, F_res,
-				U, P, mapping, p_interatomic_distance, p_lattice_constant);
-	}
-	else
-	{
-		output_data(	&res, num_points, unpermuted_numbers, points, numbers, ordering,
-				p_type, p_alloy_type, p_scale, p_rmsd, q, F, F_res,
-				U, P, mapping, p_interatomic_distance, p_lattice_constant);
-	}
-
-	return PTM_NO_ERROR;
-}
-
diff --git a/src/USER-PTM/initialize_data.cpp b/src/USER-PTM/initialize_data.cpp
deleted file mode 100644
index 6c177bfb70..0000000000
--- a/src/USER-PTM/initialize_data.cpp
+++ /dev/null
@@ -1,71 +0,0 @@
-#include <cstdio>
-#include <cstdlib>
-#include <string.h>
-#include <cmath>
-#include <cfloat>
-#include <cassert>
-#include <algorithm>
-#include "initialize_data.h"
-
-
-static void make_facets_clockwise(int num_facets, int8_t (*facets)[3], const double (*points)[3])
-{
-	double plane_normal[3];
-	double origin[3] = {0, 0, 0};
-
-	for (int i = 0;i<num_facets;i++)
-		add_facet(points, facets[i][0], facets[i][1], facets[i][2], facets[i], plane_normal, origin);
-}
-
-static int initialize_graphs(const refdata_t* s, int8_t* colours)
-{
-	for (int i = 0;i<s->num_graphs;i++)
-	{
-		int8_t code[2 * PTM_MAX_EDGES];
-		int8_t degree[PTM_MAX_NBRS];
-		int _max_degree = graph_degree(s->num_facets, s->graphs[i].facets, s->num_nbrs, degree);
-		assert(_max_degree <= s->max_degree);
-
-		make_facets_clockwise(s->num_facets, s->graphs[i].facets, &s->points[1]);
-		int ret = canonical_form_coloured(s->num_facets, s->graphs[i].facets, s->num_nbrs, degree, colours, s->graphs[i].canonical_labelling, (int8_t*)&code[0], &s->graphs[i].hash);
-		if (ret != 0)
-			return ret;		
-	}
-
-	return PTM_NO_ERROR;
-}
-
-bool ptm_initialized = false;
-int ptm_initialize_global()
-{
-	if (ptm_initialized)
-		return PTM_NO_ERROR;
-
-	int8_t colours[PTM_MAX_POINTS] = {0};
-	int8_t dcolours[PTM_MAX_POINTS] = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-
-	int ret = initialize_graphs(&structure_sc, colours);
-	ret |= initialize_graphs(&structure_fcc, colours);
-	ret |= initialize_graphs(&structure_hcp, colours);
-	ret |= initialize_graphs(&structure_ico, colours);
-	ret |= initialize_graphs(&structure_bcc, colours);
-	ret |= initialize_graphs(&structure_dcub, dcolours);
-	ret |= initialize_graphs(&structure_dhex, dcolours);
-
-	if (ret == PTM_NO_ERROR)
-		ptm_initialized = true;
-
-	return ret;
-}
-
-ptm_local_handle_t ptm_initialize_local()
-{
-	assert(ptm_initialized);
-	return (ptm_local_handle_t)voronoi_initialize_local();
-}
-
-void ptm_uninitialize_local(ptm_local_handle_t ptr)
-{
-	voronoi_uninitialize_local(ptr);
-}
-
diff --git a/src/USER-PTM/initialize_data.h b/src/USER-PTM/initialize_data.h
deleted file mode 100644
index 644dfea8c4..0000000000
--- a/src/USER-PTM/initialize_data.h
+++ /dev/null
@@ -1,61 +0,0 @@
-#ifndef INITIALIZE_DATA_H
-#define INITIALIZE_DATA_H
-
-
-#include "graph_data.h"
-#include "graph_tools.h"
-#include "deformation_gradient.h"
-#include "fundamental_mappings.h"
-#include "neighbour_ordering.h"
-#include "canonical_coloured.h"
-#include "convex_hull_incremental.h"
-
-
-typedef struct
-{
-	int type;
-	int num_nbrs;
-	int num_facets;
-	int max_degree;
-	int num_graphs;
-	int num_mappings;
-	graph_t* graphs;
-	const double (*points)[3];
-	const double (*penrose)[3];
-	const int8_t (*mapping)[PTM_MAX_POINTS];
-} refdata_t;
-
-
-//refdata_t structure_sc =  { .type = PTM_MATCH_SC,  .num_nbrs =  6, .num_facets =  8, .max_degree = 4, .num_graphs = NUM_SC_GRAPHS,  .graphs = graphs_sc,  .points = ptm_template_sc,  .penrose = penrose_sc , .mapping = mapping_sc };
-const refdata_t structure_sc =   { PTM_MATCH_SC,    6,  8, 4, NUM_SC_GRAPHS,   NUM_CUBIC_MAPPINGS, graphs_sc,   ptm_template_sc,   penrose_sc,   mapping_sc   };
-const refdata_t structure_fcc =  { PTM_MATCH_FCC,  12, 20, 6, NUM_FCC_GRAPHS,  NUM_CUBIC_MAPPINGS, graphs_fcc,  ptm_template_fcc,  penrose_fcc,  mapping_fcc  };
-const refdata_t structure_hcp =  { PTM_MATCH_HCP,  12, 20, 6, NUM_HCP_GRAPHS,  NUM_HEX_MAPPINGS,   graphs_hcp,  ptm_template_hcp,  penrose_hcp,  mapping_hcp  };
-const refdata_t structure_ico =  { PTM_MATCH_ICO,  12, 20, 6, NUM_ICO_GRAPHS,  NUM_ICO_MAPPINGS,   graphs_ico,  ptm_template_ico,  penrose_ico,  mapping_ico  };
-const refdata_t structure_bcc =  { PTM_MATCH_BCC,  14, 24, 8, NUM_BCC_GRAPHS,  NUM_CUBIC_MAPPINGS, graphs_bcc,  ptm_template_bcc,  penrose_bcc,  mapping_bcc  };
-const refdata_t structure_dcub = { PTM_MATCH_DCUB, 16, 28, 8, NUM_DCUB_GRAPHS, NUM_DCUB_MAPPINGS,  graphs_dcub, ptm_template_dcub, penrose_dcub, mapping_dcub };
-const refdata_t structure_dhex = { PTM_MATCH_DHEX, 16, 28, 8, NUM_DHEX_GRAPHS, NUM_DHEX_MAPPINGS,  graphs_dhex, ptm_template_dhex, penrose_dhex, mapping_dhex };
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-typedef struct ptm_local_handle* ptm_local_handle_t;
-ptm_local_handle_t ptm_initialize_local();
-void ptm_uninitialize_local(ptm_local_handle_t ptr);
-
-int ptm_initialize_global();
-
-//------------------------------------
-//    global initialization switch
-//------------------------------------
-extern bool ptm_initialized;
-
-
-#ifdef __cplusplus
-}
-#endif
-
-
-#endif
-
diff --git a/src/USER-PTM/neighbour_ordering.cpp b/src/USER-PTM/neighbour_ordering.cpp
deleted file mode 100644
index 8e8b016cfc..0000000000
--- a/src/USER-PTM/neighbour_ordering.cpp
+++ /dev/null
@@ -1,203 +0,0 @@
-#include <cstdlib>
-#include <cmath>
-#include <cstring>
-#include <cassert>
-#include <algorithm>
-#include "ptm_constants.h"
-#include "cell.h"
-using namespace voro;
-
-
-
-typedef struct
-{
-	double area;
-	double dist;
-	int index;
-} sorthelper_t;
-
-static bool sorthelper_compare(sorthelper_t const& a, sorthelper_t const& b)
-{
-	if (a.area > b.area)
-		return true;
-
-	if (a.area < b.area)
-		return false;
-
-	if (a.dist < b.dist)
-		return true;
-
-	return false;
-}
-
-//todo: change voronoi code to return errors rather than exiting
-static int calculate_voronoi_face_areas(int num_points, const double (*_points)[3], double* normsq, double max_norm, voronoicell_neighbor* v, std::vector<int>& nbr_indices, std::vector<double>& face_areas)
-{
-	const double k = 1000 * max_norm;	//todo: reduce this constant
-	v->init(-k,k,-k,k,-k,k);
-
-	for (int i=1;i<num_points;i++)
-	{
-		double x = _points[i][0] - _points[0][0];
-		double y = _points[i][1] - _points[0][1];
-		double z = _points[i][2] - _points[0][2];
-		v->nplane(x,y,z,normsq[i],i);
-	}
-
-	v->neighbors(nbr_indices);
-	v->face_areas(face_areas);
-	return 0;
-}
-
-int calculate_neighbour_ordering(void* _voronoi_handle, int num_points, const double (*_points)[3], int8_t* ordering)
-{
-	assert(num_points <= PTM_MAX_INPUT_POINTS);
-
-	voronoicell_neighbor* voronoi_handle = (voronoicell_neighbor*)_voronoi_handle;
-
-	double max_norm = 0;
-	double points[PTM_MAX_INPUT_POINTS][3];
-	double normsq[PTM_MAX_INPUT_POINTS];
-	for (int i = 0;i<num_points;i++)
-	{
-		double x = _points[i][0] - _points[0][0];
-		double y = _points[i][1] - _points[0][1];
-		double z = _points[i][2] - _points[0][2];
-		points[i][0] = x;
-		points[i][1] = y;
-		points[i][2] = z;
-
-		normsq[i] = x*x + y*y + z*z;
-		max_norm = std::max(max_norm, normsq[i]);
-#ifdef DEBUG
-		printf("point %d: %f\t%f\t%f\t%f\n", i, x, y, z, x*x + y*y + z*z);
-#endif
-	}
-
-	max_norm = sqrt(max_norm);
-
-	std::vector<int> nbr_indices(num_points + 6);
-	std::vector<double> face_areas(num_points + 6);
-	int ret = calculate_voronoi_face_areas(num_points, points, normsq, max_norm, voronoi_handle, nbr_indices, face_areas);
-	if (ret != 0)
-		return ret;
-
-	double areas[PTM_MAX_INPUT_POINTS];
-	memset(areas, 0, num_points * sizeof(double));
-	areas[0] = INFINITY;
-	for (size_t i=0;i<nbr_indices.size();i++)
-	{
-		int index = nbr_indices[i];
-		if (index > 0)
-			areas[index] = face_areas[i];
-	}
-
-	sorthelper_t data[PTM_MAX_INPUT_POINTS];
-	for (int i=0;i<num_points;i++)
-	{
-		assert(areas[i] == areas[i]);
-		data[i].area = areas[i];
-		data[i].dist = normsq[i];
-		data[i].index = i;
-	}
-
-	std::sort(data, data + num_points, &sorthelper_compare);
-
-#ifdef DEBUG
-	for (int i=0;i<num_points;i++)
-		printf("%d %f\n", data[i].index, data[i].area);
-#endif
-
-	for (int i=0;i<num_points;i++)
-		ordering[i] = data[i].index;
-
-	return ret;
-}
-
-void* voronoi_initialize_local()
-{
-	voronoicell_neighbor* ptr = new voronoicell_neighbor;
-	return (void*)ptr;
-}
-
-void voronoi_uninitialize_local(void* _ptr)
-{
-	voronoicell_neighbor* ptr = (voronoicell_neighbor*)_ptr;
-	delete ptr;
-}
-
-
-typedef struct
-{
-	double dist;
-	int p;
-	int index;
-} diamond_t;
-
-static bool diamond_compare(diamond_t const& a, diamond_t const& b)
-{
-	return a.dist < b.dist;
-}
-
-int calculate_diamond_neighbour_ordering(	int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers,
-						int8_t* ordering, double (*points)[3], int32_t* numbers)
-{
-	assert(num_points <= PTM_MAX_INPUT_POINTS);
-
-	diamond_t data[4 * (PTM_MAX_INPUT_POINTS - 5)];
-	int index = 0;
-	for (int i=5;i<num_points;i++)
-	{
-		for (int j=1;j<5;j++)
-		{
-			double dx = unpermuted_points[i][0] - unpermuted_points[j][0];
-			double dy = unpermuted_points[i][1] - unpermuted_points[j][1];
-			double dz = unpermuted_points[i][2] - unpermuted_points[j][2];
-
-			double d = dx*dx + dy*dy + dz*dz;
-
-			data[index].p = j - 1;
-			data[index].index = i;
-			data[index].dist = d;
-			index++;
-		}
-	}
-	int n = index;
-
-	std::sort(data, data + n, &diamond_compare);
-
-	for (index=0;index<5;index++)
-		ordering[index] = index;
-
-	int num_found = 0;
-	bool hit[PTM_MAX_INPUT_POINTS] = {0};
-	int counts[4] = {0};
-	for (int i=0;i<n;i++)
-	{
-		int p = data[i].p;
-		int q = data[i].index;
-		if (hit[q] || counts[p] >= 3)
-			continue;
-
-		ordering[1 + 4 + 3 * p + counts[p]] = q;
-		counts[p]++;
-		index++;
-		num_found++;
-		if (num_found >= 12)
-			break;
-	}
-
-	if (num_found != 12)
-		return -1;
-
-	for (int i=0;i<PTM_NUM_NBRS_DCUB+1;i++)
-	{
-		memcpy(points[i], &unpermuted_points[ordering[i]], 3 * sizeof(double));
-
-		if (unpermuted_numbers != NULL)
-			numbers[i] = unpermuted_numbers[ordering[i]];
-	}
-
-	return 0;
-}
-
diff --git a/src/USER-PTM/neighbour_ordering.h b/src/USER-PTM/neighbour_ordering.h
deleted file mode 100644
index 33160caa4f..0000000000
--- a/src/USER-PTM/neighbour_ordering.h
+++ /dev/null
@@ -1,13 +0,0 @@
-#ifndef NEIGHBOUR_ORDERING_H
-#define NEIGHBOUR_ORDERING_H
-
-int calculate_neighbour_ordering(void* voronoi_handle, int num_points, const double (*_points)[3], int8_t* ordering);
-
-int calculate_diamond_neighbour_ordering(	int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers,
-						int8_t* ordering, double (*points)[3], int32_t* numbers);
-
-void* voronoi_initialize_local();
-void voronoi_uninitialize_local(void* ptr);
-
-#endif
-
diff --git a/src/USER-PTM/normalize_vertices.cpp b/src/USER-PTM/normalize_vertices.cpp
deleted file mode 100644
index 61dca5006f..0000000000
--- a/src/USER-PTM/normalize_vertices.cpp
+++ /dev/null
@@ -1,55 +0,0 @@
-#include <cmath>
-
-
-void subtract_barycentre(int num, double (*points)[3], double (*normalized)[3])
-{
-	//calculate barycentre
-	double sum[3] = {0, 0, 0};
-	for (int i=0;i<num;i++)
-	{
-		sum[0] += points[i][0];
-		sum[1] += points[i][1];
-		sum[2] += points[i][2];
-	}
-
-	sum[0] /= num;
-	sum[1] /= num;
-	sum[2] /= num;
-
-	//subtract barycentre
-	for (int i=0;i<num;i++)
-	{
-		normalized[i][0] = points[i][0] - sum[0];
-		normalized[i][1] = points[i][1] - sum[1];
-		normalized[i][2] = points[i][2] - sum[2];
-	}
-}
-
-double normalize_vertices(int num, double (*points)[3], double (*normalized)[3])
-{
-	subtract_barycentre(num, points, normalized);
-
-	//calculate mean length
-	double scale = 0.0;
-	for (int i=1;i<num;i++)
-	{
-		double x = normalized[i][0];
-		double y = normalized[i][1];
-		double z = normalized[i][2];
-
-		double norm = sqrt(x*x + y*y + z*z);
-		scale += norm;
-	}
-	scale /= num;
-
-	//scale vertices such that mean length is 1
-	for (int i=0;i<num;i++)
-	{
-		normalized[i][0] /= scale;
-		normalized[i][1] /= scale;
-		normalized[i][2] /= scale;
-	}
-
-	return scale;
-}
-
diff --git a/src/USER-PTM/normalize_vertices.h b/src/USER-PTM/normalize_vertices.h
deleted file mode 100644
index e18990cd9b..0000000000
--- a/src/USER-PTM/normalize_vertices.h
+++ /dev/null
@@ -1,8 +0,0 @@
-#ifndef NORMALIZE_VERTICES_H
-#define NORMALIZE_VERTICES_H
-
-void subtract_barycentre(int num, double (*points)[3], double (*normalized)[3]);
-double normalize_vertices(int num, double (*points)[3], double (*normalized)[3]);
-
-#endif
-
diff --git a/src/USER-PTM/polar.cpp b/src/USER-PTM/polar.cpp
deleted file mode 100644
index fdb759a1f3..0000000000
--- a/src/USER-PTM/polar.cpp
+++ /dev/null
@@ -1,337 +0,0 @@
-/*******************************************************************************
- *  -/_|:|_|_\- 
- *
- *  This code is a modification of D.L. Theobald's QCP rotation code.
- *  It has been adapted to calculate the polar decomposition of a 3x3 matrix
- *  Adaption by P.M. Larsen
- *
- *  Original Author(s):	  Douglas L. Theobald
- *				  Department of Biochemistry
- *				  MS 009
- *				  Brandeis University
- *				  415 South St
- *				  Waltham, MA  02453
- *				  USA
- *
- *				  dtheobald@brandeis.edu
- *				  
- *				  Pu Liu
- *				  Johnson & Johnson Pharmaceutical Research and Development, L.L.C.
- *				  665 Stockton Drive
- *				  Exton, PA  19341
- *				  USA
- *
- *				  pliu24@its.jnj.com
- * 
- *
- *	If you use this QCP rotation calculation method in a publication, please
- *	reference:
- *
- *	  Douglas L. Theobald (2005)
- *	  "Rapid calculation of RMSD using a quaternion-based characteristic
- *	  polynomial."
- *	  Acta Crystallographica A 61(4):478-480.
- *
- *	  Pu Liu, Dmitris K. Agrafiotis, and Douglas L. Theobald (2009)
- *	  "Fast determination of the optimal rotational matrix for macromolecular 
- *	  superpositions."
- *	  Journal of Computational Chemistry 31(7):1561-1563.
- *
- *
- *  Copyright (c) 2009-2013 Pu Liu and Douglas L. Theobald
- *  All rights reserved.
- *
- *  Redistribution and use in source and binary forms, with or without modification, are permitted
- *  provided that the following conditions are met:
- *
- *  * Redistributions of source code must retain the above copyright notice, this list of
- *	conditions and the following disclaimer.
- *  * Redistributions in binary form must reproduce the above copyright notice, this list
- *	of conditions and the following disclaimer in the documentation and/or other materials
- *	provided with the distribution.
- *  * Neither the name of the <ORGANIZATION> nor the names of its contributors may be used to
- *	endorse or promote products derived from this software without specific prior written
- *	permission.
- *
- *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
- *  PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *  HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
- *
- *  Source:		 started anew.
- *
- *  Change History:
- *	2009/04/13	  Started source
- *	2010/03/28	  Modified FastCalcRMSDAndRotation() to handle tiny qsqr
- *					If trying all rows of the adjoint still gives too small
- *					qsqr, then just return identity matrix. (DLT)
- *	2010/06/30	  Fixed prob in assigning A[9] = 0 in InnerProduct()
- *					invalid mem access
- *	2011/02/21	  Made CenterCoords use weights
- *	2011/05/02	  Finally changed CenterCoords declaration in qcprot.h
- *					Also changed some functions to static
- *	2011/07/08	  put in fabs() to fix taking sqrt of small neg numbers, fp error
- *	2012/07/26	  minor changes to comments and main.c, more info (v.1.4)
- *
- *      2016/05/29        QCP method adapted for polar decomposition of a 3x3 matrix,
- *			  for use in Polyhedral Template Matching.
- *  
- ******************************************************************************/
-
-#include <cmath>
-#include <algorithm>
-#include <string.h>
-#include "quat.h"
-
-
-static void matmul_3x3(double* A, double* x, double* b)
-{
-	b[0] = A[0] * x[0] + A[1] * x[3] + A[2] * x[6];
-	b[3] = A[3] * x[0] + A[4] * x[3] + A[5] * x[6];
-	b[6] = A[6] * x[0] + A[7] * x[3] + A[8] * x[6];
-
-	b[1] = A[0] * x[1] + A[1] * x[4] + A[2] * x[7];
-	b[4] = A[3] * x[1] + A[4] * x[4] + A[5] * x[7];
-	b[7] = A[6] * x[1] + A[7] * x[4] + A[8] * x[7];
-
-	b[2] = A[0] * x[2] + A[1] * x[5] + A[2] * x[8];
-	b[5] = A[3] * x[2] + A[4] * x[5] + A[5] * x[8];
-	b[8] = A[6] * x[2] + A[7] * x[5] + A[8] * x[8];
-}
-
-static double matrix_determinant_3x3(double* A)
-{
-	return    A[0] * (A[4]*A[8] - A[5]*A[7])
-		- A[1] * (A[3]*A[8] - A[5]*A[6])
-		+ A[2] * (A[3]*A[7] - A[4]*A[6]);
-}
-
-static void flip_matrix(double* A)
-{
-	for (int i=0;i<9;i++)
-		A[i] = -A[i];
-}
-
-static bool optimal_quaternion(double* A, bool polar, double E0, double* p_nrmsdsq, double* qopt)
-{
-	const double evecprec = 1e-6;
-	const double evalprec = 1e-11;
-
-	double	Sxx = A[0], Sxy = A[1], Sxz = A[2],
-		Syx = A[3], Syy = A[4], Syz = A[5],
-		Szx = A[6], Szy = A[7], Szz = A[8];
-
-	double	Sxx2 = Sxx * Sxx, Syy2 = Syy * Syy, Szz2 = Szz * Szz,
-		Sxy2 = Sxy * Sxy, Syz2 = Syz * Syz, Sxz2 = Sxz * Sxz,
-		Syx2 = Syx * Syx, Szy2 = Szy * Szy, Szx2 = Szx * Szx;
-
-	double fnorm_squared = Sxx2 + Syy2 + Szz2 + Sxy2 + Syz2 + Sxz2 + Syx2 + Szy2 + Szx2;
-
-	double SyzSzymSyySzz2 = 2.0 * (Syz * Szy - Syy * Szz);
-	double Sxx2Syy2Szz2Syz2Szy2 = Syy2 + Szz2 - Sxx2 + Syz2 + Szy2;
-	double SxzpSzx = Sxz + Szx;
-	double SyzpSzy = Syz + Szy;
-	double SxypSyx = Sxy + Syx;
-	double SyzmSzy = Syz - Szy;
-	double SxzmSzx = Sxz - Szx;
-	double SxymSyx = Sxy - Syx;
-	double SxxpSyy = Sxx + Syy;
-	double SxxmSyy = Sxx - Syy;
-	double Sxy2Sxz2Syx2Szx2 = Sxy2 + Sxz2 - Syx2 - Szx2;
-
-	double C[3];
-	C[0] = Sxy2Sxz2Syx2Szx2 * Sxy2Sxz2Syx2Szx2
-		 + (Sxx2Syy2Szz2Syz2Szy2 + SyzSzymSyySzz2) * (Sxx2Syy2Szz2Syz2Szy2 - SyzSzymSyySzz2)
-		 + (-(SxzpSzx)*(SyzmSzy)+(SxymSyx)*(SxxmSyy-Szz)) * (-(SxzmSzx)*(SyzpSzy)+(SxymSyx)*(SxxmSyy+Szz))
-		 + (-(SxzpSzx)*(SyzpSzy)-(SxypSyx)*(SxxpSyy-Szz)) * (-(SxzmSzx)*(SyzmSzy)-(SxypSyx)*(SxxpSyy+Szz))
-		 + (+(SxypSyx)*(SyzpSzy)+(SxzpSzx)*(SxxmSyy+Szz)) * (-(SxymSyx)*(SyzmSzy)+(SxzpSzx)*(SxxpSyy+Szz))
-		 + (+(SxypSyx)*(SyzmSzy)+(SxzmSzx)*(SxxmSyy-Szz)) * (-(SxymSyx)*(SyzpSzy)+(SxzmSzx)*(SxxpSyy-Szz));
-
-	C[1] = 8.0 * (Sxx*Syz*Szy + Syy*Szx*Sxz + Szz*Sxy*Syx - Sxx*Syy*Szz - Syz*Szx*Sxy - Szy*Syx*Sxz);
-	C[2] = -2.0 * fnorm_squared;
-
-	//Newton-Raphson
-	double mxEigenV = polar ? sqrt(3 * fnorm_squared) : E0;
-	if (mxEigenV > evalprec)
-	{
-		for (int i=0;i<50;i++)
-		{
-			double oldg = mxEigenV;
-			double x2 = mxEigenV*mxEigenV;
-			double b = (x2 + C[2])*mxEigenV;
-			double a = b + C[1];
-			double delta = ((a * mxEigenV + C[0]) / (2 * x2 * mxEigenV + b + a));
-			mxEigenV -= delta;
-			if (fabs(mxEigenV - oldg) < fabs(evalprec * mxEigenV))
-				break;
-		}
-	}
-	else
-	{
-		mxEigenV = 0.0;
-	}
-
-	(*p_nrmsdsq) = std::max(0.0, 2.0 * (E0 - mxEigenV));
-
-	double a11 = SxxpSyy + Szz - mxEigenV;
-	double a12 = SyzmSzy;
-	double a13 = -SxzmSzx;
-	double a14 = SxymSyx;
-
-	double a21 = SyzmSzy;
-	double a22 = SxxmSyy - Szz  -mxEigenV;
-	double a23 = SxypSyx;
-	double a24 = SxzpSzx;
-
-	double a31 = a13;
-	double a32 = a23;
-	double a33 = Syy - Sxx - Szz - mxEigenV;
-	double a34 = SyzpSzy;
-
-	double a41 = a14;
-	double a42 = a24;
-	double a43 = a34;
-	double a44 = Szz - SxxpSyy - mxEigenV;
-
-	double a3344_4334 = a33 * a44 - a43 * a34;
-	double a3244_4234 = a32 * a44 - a42 * a34;
-	double a3243_4233 = a32 * a43 - a42 * a33;
-	double a3143_4133 = a31 * a43 - a41 * a33;
-	double a3144_4134 = a31 * a44 - a41 * a34;
-	double a3142_4132 = a31 * a42 - a41 * a32;
-	double a1324_1423 = a13 * a24 - a14 * a23;
-	double a1224_1422 = a12 * a24 - a14 * a22;
-	double a1223_1322 = a12 * a23 - a13 * a22;
-	double a1124_1421 = a11 * a24 - a14 * a21;
-	double a1123_1321 = a11 * a23 - a13 * a21;
-	double a1122_1221 = a11 * a22 - a12 * a21;
-
-	double q[4][4];
-	q[0][0] =  a12 * a3344_4334 - a13 * a3244_4234 + a14 * a3243_4233;
-	q[0][1] = -a11 * a3344_4334 + a13 * a3144_4134 - a14 * a3143_4133;
-	q[0][2] =  a11 * a3244_4234 - a12 * a3144_4134 + a14 * a3142_4132;
-	q[0][3] = -a11 * a3243_4233 + a12 * a3143_4133 - a13 * a3142_4132;
-
-	q[1][0] =  a22 * a3344_4334 - a23 * a3244_4234 + a24 * a3243_4233;
-	q[1][1] = -a21 * a3344_4334 + a23 * a3144_4134 - a24 * a3143_4133;
-	q[1][2] =  a21 * a3244_4234 - a22 * a3144_4134 + a24 * a3142_4132;
-	q[1][3] = -a21 * a3243_4233 + a22 * a3143_4133 - a23 * a3142_4132;
-
-	q[2][0] =  a32 * a1324_1423 - a33 * a1224_1422 + a34 * a1223_1322;
-	q[2][1] = -a31 * a1324_1423 + a33 * a1124_1421 - a34 * a1123_1321;
-	q[2][2] =  a31 * a1224_1422 - a32 * a1124_1421 + a34 * a1122_1221;
-	q[2][3] = -a31 * a1223_1322 + a32 * a1123_1321 - a33 * a1122_1221;
-
-	q[3][0] =  a42 * a1324_1423 - a43 * a1224_1422 + a44 * a1223_1322;
-	q[3][1] = -a41 * a1324_1423 + a43 * a1124_1421 - a44 * a1123_1321;
-	q[3][2] =  a41 * a1224_1422 - a42 * a1124_1421 + a44 * a1122_1221;
-	q[3][3] = -a41 * a1223_1322 + a42 * a1123_1321 - a43 * a1122_1221;
-
-	double qsqr[4];
-	for (int i=0;i<4;i++)
-		qsqr[i] = q[i][0]*q[i][0] + q[i][1]*q[i][1] + q[i][2]*q[i][2] + q[i][3]*q[i][3];
-
-	int bi = 0;
-	double max = 0;
-	for (int i=0;i<4;i++)
-	{
-		if (qsqr[i] > max)
-		{
-			bi = i;
-			max = qsqr[i];
-		}
-	}
-
-	bool too_small = false;
-	if (qsqr[bi] < evecprec)
-	{
-		//if qsqr is still too small, return the identity rotation.
-		q[bi][0] = 1;
-		q[bi][1] = 0;
-		q[bi][2] = 0;
-		q[bi][3] = 0;
-		too_small = true;
-	}
-	else
-	{
-		double normq = sqrt(qsqr[bi]);
-		q[bi][0] /= normq;
-		q[bi][1] /= normq;
-		q[bi][2] /= normq;
-		q[bi][3] /= normq;
-	}
-
-	memcpy(qopt, q[bi], 4 * sizeof(double));
-	return !too_small;
-}
-
-int polar_decomposition_3x3(double* _A, bool right_sided, double* U, double* P)
-{
-	double A[9];
-	memcpy(A, _A, 9 * sizeof(double));
-
-	double det = matrix_determinant_3x3(A);
-	if (det < 0)
-		flip_matrix(A);
-
-	double q[4];
-	double nrmsdsq = 0;
-	optimal_quaternion(A, true, -1, &nrmsdsq, q);
-	q[0] = -q[0];
-	quaternion_to_rotation_matrix(q, U);
-
-	if (det < 0)
-		flip_matrix(U);
-
-	double UT[9] = {U[0], U[3], U[6], U[1], U[4], U[7], U[2], U[5], U[8]};
-
-	if (right_sided)
-		matmul_3x3(UT, _A, P);
-	else
-		matmul_3x3(_A, UT, P);
-
-	return 0;
-}
-
-void InnerProduct(double *A, int num, const double (*coords1)[3], double (*coords2)[3], int8_t* permutation)
-{
-	A[0] = A[1] = A[2] = A[3] = A[4] = A[5] = A[6] = A[7] = A[8] = 0.0;
-
-	for (int i = 0; i < num; ++i)
-	{
-		double x1 = coords1[i][0];
-		double y1 = coords1[i][1];
-		double z1 = coords1[i][2];
-
-		double x2 = coords2[permutation[i]][0];
-		double y2 = coords2[permutation[i]][1];
-		double z2 = coords2[permutation[i]][2];
-
-		A[0] += x1 * x2;
-		A[1] += x1 * y2;
-		A[2] += x1 * z2;
-
-		A[3] += y1 * x2;
-		A[4] += y1 * y2;
-		A[5] += y1 * z2;
-
-		A[6] += z1 * x2;
-		A[7] += z1 * y2;
-		A[8] += z1 * z2;  
-	}
-}
-
-int FastCalcRMSDAndRotation(double *A, double E0, double *p_nrmsdsq, double *q, double* U)
-{
-	optimal_quaternion(A, false, E0, p_nrmsdsq, q);
-	quaternion_to_rotation_matrix(q, U);
-	return 0;
-}
-
diff --git a/src/USER-PTM/polar.h b/src/USER-PTM/polar.h
deleted file mode 100644
index 3ec025b806..0000000000
--- a/src/USER-PTM/polar.h
+++ /dev/null
@@ -1,12 +0,0 @@
-#ifndef POLAR_H
-#define POLAR_H
-
-#include <stdint.h>
-#include <stdbool.h>
-
-int polar_decomposition_3x3(double* _A, bool right_sided, double* U, double* P);
-void InnerProduct(double *A, int num, const double (*coords1)[3], double (*coords2)[3], int8_t* permutation);
-int FastCalcRMSDAndRotation(double *A, double E0, double *p_nrmsdsq, double *q, double* U);
-
-#endif
-
diff --git a/src/PTM/ptm_alloy_types.cpp b/src/USER-PTM/ptm_alloy_types.cpp
similarity index 100%
rename from src/PTM/ptm_alloy_types.cpp
rename to src/USER-PTM/ptm_alloy_types.cpp
diff --git a/src/PTM/ptm_alloy_types.h b/src/USER-PTM/ptm_alloy_types.h
similarity index 100%
rename from src/PTM/ptm_alloy_types.h
rename to src/USER-PTM/ptm_alloy_types.h
diff --git a/src/PTM/ptm_canonical_coloured.cpp b/src/USER-PTM/ptm_canonical_coloured.cpp
similarity index 100%
rename from src/PTM/ptm_canonical_coloured.cpp
rename to src/USER-PTM/ptm_canonical_coloured.cpp
diff --git a/src/PTM/ptm_canonical_coloured.h b/src/USER-PTM/ptm_canonical_coloured.h
similarity index 100%
rename from src/PTM/ptm_canonical_coloured.h
rename to src/USER-PTM/ptm_canonical_coloured.h
diff --git a/src/PTM/ptm_convex_hull_incremental.cpp b/src/USER-PTM/ptm_convex_hull_incremental.cpp
similarity index 100%
rename from src/PTM/ptm_convex_hull_incremental.cpp
rename to src/USER-PTM/ptm_convex_hull_incremental.cpp
diff --git a/src/PTM/ptm_convex_hull_incremental.h b/src/USER-PTM/ptm_convex_hull_incremental.h
similarity index 100%
rename from src/PTM/ptm_convex_hull_incremental.h
rename to src/USER-PTM/ptm_convex_hull_incremental.h
diff --git a/src/PTM/ptm_deformation_gradient.cpp b/src/USER-PTM/ptm_deformation_gradient.cpp
similarity index 100%
rename from src/PTM/ptm_deformation_gradient.cpp
rename to src/USER-PTM/ptm_deformation_gradient.cpp
diff --git a/src/PTM/ptm_deformation_gradient.h b/src/USER-PTM/ptm_deformation_gradient.h
similarity index 100%
rename from src/PTM/ptm_deformation_gradient.h
rename to src/USER-PTM/ptm_deformation_gradient.h
diff --git a/src/USER-PTM/ptm_functions.h b/src/USER-PTM/ptm_functions.h
index 69141a37c4..cd67d4940d 100644
--- a/src/USER-PTM/ptm_functions.h
+++ b/src/USER-PTM/ptm_functions.h
@@ -3,7 +3,7 @@
 
 #include <stdint.h>
 #include <stdbool.h>
-#include "initialize_data.h"
+#include "ptm_initialize_data.h"
 #include "ptm_constants.h"
 
 
diff --git a/src/PTM/ptm_fundamental_mappings.h b/src/USER-PTM/ptm_fundamental_mappings.h
similarity index 100%
rename from src/PTM/ptm_fundamental_mappings.h
rename to src/USER-PTM/ptm_fundamental_mappings.h
diff --git a/src/PTM/ptm_graph_data.cpp b/src/USER-PTM/ptm_graph_data.cpp
similarity index 100%
rename from src/PTM/ptm_graph_data.cpp
rename to src/USER-PTM/ptm_graph_data.cpp
diff --git a/src/PTM/ptm_graph_data.h b/src/USER-PTM/ptm_graph_data.h
similarity index 100%
rename from src/PTM/ptm_graph_data.h
rename to src/USER-PTM/ptm_graph_data.h
diff --git a/src/PTM/ptm_graph_tools.cpp b/src/USER-PTM/ptm_graph_tools.cpp
similarity index 100%
rename from src/PTM/ptm_graph_tools.cpp
rename to src/USER-PTM/ptm_graph_tools.cpp
diff --git a/src/PTM/ptm_graph_tools.h b/src/USER-PTM/ptm_graph_tools.h
similarity index 100%
rename from src/PTM/ptm_graph_tools.h
rename to src/USER-PTM/ptm_graph_tools.h
diff --git a/src/PTM/ptm_index.cpp b/src/USER-PTM/ptm_index.cpp
similarity index 100%
rename from src/PTM/ptm_index.cpp
rename to src/USER-PTM/ptm_index.cpp
diff --git a/src/PTM/ptm_initialize_data.cpp b/src/USER-PTM/ptm_initialize_data.cpp
similarity index 100%
rename from src/PTM/ptm_initialize_data.cpp
rename to src/USER-PTM/ptm_initialize_data.cpp
diff --git a/src/PTM/ptm_initialize_data.h b/src/USER-PTM/ptm_initialize_data.h
similarity index 100%
rename from src/PTM/ptm_initialize_data.h
rename to src/USER-PTM/ptm_initialize_data.h
diff --git a/src/PTM/ptm_neighbour_ordering.cpp b/src/USER-PTM/ptm_neighbour_ordering.cpp
similarity index 100%
rename from src/PTM/ptm_neighbour_ordering.cpp
rename to src/USER-PTM/ptm_neighbour_ordering.cpp
diff --git a/src/PTM/ptm_neighbour_ordering.h b/src/USER-PTM/ptm_neighbour_ordering.h
similarity index 100%
rename from src/PTM/ptm_neighbour_ordering.h
rename to src/USER-PTM/ptm_neighbour_ordering.h
diff --git a/src/PTM/ptm_normalize_vertices.cpp b/src/USER-PTM/ptm_normalize_vertices.cpp
similarity index 100%
rename from src/PTM/ptm_normalize_vertices.cpp
rename to src/USER-PTM/ptm_normalize_vertices.cpp
diff --git a/src/PTM/ptm_normalize_vertices.h b/src/USER-PTM/ptm_normalize_vertices.h
similarity index 100%
rename from src/PTM/ptm_normalize_vertices.h
rename to src/USER-PTM/ptm_normalize_vertices.h
diff --git a/src/PTM/ptm_polar.cpp b/src/USER-PTM/ptm_polar.cpp
similarity index 100%
rename from src/PTM/ptm_polar.cpp
rename to src/USER-PTM/ptm_polar.cpp
diff --git a/src/PTM/ptm_polar.h b/src/USER-PTM/ptm_polar.h
similarity index 100%
rename from src/PTM/ptm_polar.h
rename to src/USER-PTM/ptm_polar.h
diff --git a/src/PTM/ptm_quat.cpp b/src/USER-PTM/ptm_quat.cpp
similarity index 100%
rename from src/PTM/ptm_quat.cpp
rename to src/USER-PTM/ptm_quat.cpp
diff --git a/src/PTM/ptm_quat.h b/src/USER-PTM/ptm_quat.h
similarity index 100%
rename from src/PTM/ptm_quat.h
rename to src/USER-PTM/ptm_quat.h
diff --git a/src/PTM/ptm_structure_matcher.cpp b/src/USER-PTM/ptm_structure_matcher.cpp
similarity index 100%
rename from src/PTM/ptm_structure_matcher.cpp
rename to src/USER-PTM/ptm_structure_matcher.cpp
diff --git a/src/PTM/ptm_structure_matcher.h b/src/USER-PTM/ptm_structure_matcher.h
similarity index 100%
rename from src/PTM/ptm_structure_matcher.h
rename to src/USER-PTM/ptm_structure_matcher.h
diff --git a/src/PTM/ptm_voronoi_cell.cpp b/src/USER-PTM/ptm_voronoi_cell.cpp
similarity index 100%
rename from src/PTM/ptm_voronoi_cell.cpp
rename to src/USER-PTM/ptm_voronoi_cell.cpp
diff --git a/src/PTM/ptm_voronoi_cell.h b/src/USER-PTM/ptm_voronoi_cell.h
similarity index 100%
rename from src/PTM/ptm_voronoi_cell.h
rename to src/USER-PTM/ptm_voronoi_cell.h
diff --git a/src/PTM/ptm_voronoi_config.h b/src/USER-PTM/ptm_voronoi_config.h
similarity index 100%
rename from src/PTM/ptm_voronoi_config.h
rename to src/USER-PTM/ptm_voronoi_config.h
diff --git a/src/USER-PTM/quat.cpp b/src/USER-PTM/quat.cpp
deleted file mode 100644
index f55aff3d2b..0000000000
--- a/src/USER-PTM/quat.cpp
+++ /dev/null
@@ -1,396 +0,0 @@
-#include <string.h>
-#include <cmath>
-#include <cfloat>
-
-
-#define SIGN(x) (x >= 0 ? 1 : -1)
-#define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
-#define MAX(X, Y) (((X) > (Y)) ? (X) : (Y))
-
-
-#define SQRT_2         1.4142135623730951454746218587388284504414
-#define HALF_SQRT_2    0.7071067811865474617150084668537601828575
-
-#define PHI            1.6180339887498949025257388711906969547272
-#define HALF_PHI       0.8090169943749474512628694355953484773636
-
-#define INV_PHI        0.6180339887498947915034364086750429123640
-#define HALF_INV_PHI   0.3090169943749473957517182043375214561820
-
-#define SQRT_5_        2.23606797749978969640917366873127623544061835961152572427089
-#define SQRT_2_3       0.8164965809277260344600790631375275552273
-#define SQRT_1_6       0.4082482904638630172300395315687637776136
-
-
-double generator_cubic[24][4] = {		{1,	0,	0,	0	},
-						{0,	1,	0,	0	},
-						{0,	0,	1,	0	},
-						{0,	0,	0,	1	},
-						{0.5,	0.5,	0.5,	0.5	},
-						{0.5,	0.5,	-0.5,	0.5	},
-						{0.5,	-0.5,	0.5,	0.5	},
-						{0.5,	-0.5,	-0.5,	0.5	},
-						{-0.5,	0.5,	0.5,	0.5	},
-						{-0.5,	0.5,	-0.5,	0.5	},
-						{-0.5,	-0.5,	0.5,	0.5	},
-						{-0.5,	-0.5,	-0.5,	0.5	},
-						{HALF_SQRT_2,	HALF_SQRT_2,	0,	0	},
-						{HALF_SQRT_2,	0,	HALF_SQRT_2,	0	},
-						{HALF_SQRT_2,	0,	0,	HALF_SQRT_2	},
-						{-HALF_SQRT_2,	HALF_SQRT_2,	0,	0	},
-						{-HALF_SQRT_2,	0,	HALF_SQRT_2,	0	},
-						{-HALF_SQRT_2,	0,	0,	HALF_SQRT_2	},
-						{0,	HALF_SQRT_2,	HALF_SQRT_2,	0	},
-						{0,	HALF_SQRT_2,	0,	HALF_SQRT_2	},
-						{0,	0,	HALF_SQRT_2,	HALF_SQRT_2	},
-						{0,	-HALF_SQRT_2,	HALF_SQRT_2,	0	},
-						{0,	-HALF_SQRT_2,	0,	HALF_SQRT_2	},
-						{0,	0,	-HALF_SQRT_2,	HALF_SQRT_2	}	};
-
-double generator_diamond_cubic[12][4] = {	{1,	0,	0,	0	},
-						{0,	1,	0,	0	},
-						{0,	0,	1,	0	},
-						{0,	0,	0,	1	},
-						{0.5,	0.5,	0.5,	0.5	},
-						{0.5,	0.5,	-0.5,	0.5	},
-						{0.5,	-0.5,	0.5,	0.5	},
-						{0.5,	-0.5,	-0.5,	0.5	},
-						{-0.5,	0.5,	0.5,	0.5	},
-						{-0.5,	0.5,	-0.5,	0.5	},
-						{-0.5,	-0.5,	0.5,	0.5	},
-						{-0.5,	-0.5,	-0.5,	0.5	}	};
-
-double generator_hcp[6][4] = {			{1, 0, 0, 0},
-						{0.5, 0.5, 0.5, 0.5},
-						{0.5, -0.5, -0.5, -0.5},
-						{0, SQRT_2_3, -SQRT_1_6, -SQRT_1_6},
-						{0, SQRT_1_6, -SQRT_2_3, SQRT_1_6},
-						{0, SQRT_1_6, SQRT_1_6, -SQRT_2_3}	};
-
-double generator_diamond_hexagonal[3][4] = {	{1, 0, 0, 0},
-						{0.5, 0.5, 0.5, 0.5},
-						{0.5, -0.5, -0.5, -0.5}	};
-
-double generator_icosahedral[60][4] = {		{1, 0, 0, 0},
-						{HALF_PHI, -HALF_INV_PHI, -0.5, 0},
-						{HALF_PHI, 0, -HALF_INV_PHI, -0.5},
-						{HALF_PHI, -0.5, 0, -HALF_INV_PHI},
-						{HALF_PHI, HALF_INV_PHI, -0.5, 0},
-						{HALF_PHI, 0, HALF_INV_PHI, -0.5},
-						{HALF_PHI, -0.5, 0, HALF_INV_PHI},
-						{HALF_PHI, 0.5, 0, -HALF_INV_PHI},
-						{HALF_PHI, 0, -HALF_INV_PHI, 0.5},
-						{HALF_PHI, -HALF_INV_PHI, 0.5, 0},
-						{HALF_PHI, 0, HALF_INV_PHI, 0.5},
-						{HALF_PHI, HALF_INV_PHI, 0.5, 0},
-						{HALF_PHI, 0.5, 0, HALF_INV_PHI},
-						{0.5, HALF_PHI, -HALF_INV_PHI, 0},
-						{0.5, HALF_PHI, HALF_INV_PHI, 0},
-						{0.5, 0.5, 0.5, 0.5},
-						{0.5, 0.5, 0.5, -0.5},
-						{0.5, 0.5, -0.5, 0.5},
-						{0.5, 0.5, -0.5, -0.5},
-						{0.5, HALF_INV_PHI, 0, HALF_PHI},
-						{0.5, HALF_INV_PHI, 0, -HALF_PHI},
-						{0.5, 0, HALF_PHI, -HALF_INV_PHI},
-						{0.5, 0, HALF_PHI, HALF_INV_PHI},
-						{0.5, 0, -HALF_PHI, -HALF_INV_PHI},
-						{0.5, 0, -HALF_PHI, HALF_INV_PHI},
-						{0.5, -HALF_INV_PHI, 0, HALF_PHI},
-						{0.5, -HALF_INV_PHI, 0, -HALF_PHI},
-						{0.5, -0.5, 0.5, 0.5},
-						{0.5, -0.5, 0.5, -0.5},
-						{0.5, -0.5, -0.5, 0.5},
-						{0.5, -0.5, -0.5, -0.5},
-						{0.5, -HALF_PHI, -HALF_INV_PHI, 0},
-						{0.5, -HALF_PHI, HALF_INV_PHI, 0},
-						{HALF_INV_PHI, -HALF_PHI, 0, -0.5},
-						{HALF_INV_PHI, 0, -0.5, -HALF_PHI},
-						{HALF_INV_PHI, -0.5, -HALF_PHI, 0},
-						{HALF_INV_PHI, 0, 0.5, -HALF_PHI},
-						{HALF_INV_PHI, -HALF_PHI, 0, 0.5},
-						{HALF_INV_PHI, 0.5, -HALF_PHI, 0},
-						{HALF_INV_PHI, HALF_PHI, 0, -0.5},
-						{HALF_INV_PHI, -0.5, HALF_PHI, 0},
-						{HALF_INV_PHI, 0, -0.5, HALF_PHI},
-						{HALF_INV_PHI, HALF_PHI, 0, 0.5},
-						{HALF_INV_PHI, 0, 0.5, HALF_PHI},
-						{HALF_INV_PHI, 0.5, HALF_PHI, 0},
-						{0, 1, 0, 0},
-						{0, HALF_PHI, -0.5, HALF_INV_PHI},
-						{0, HALF_PHI, -0.5, -HALF_INV_PHI},
-						{0, HALF_PHI, 0.5, HALF_INV_PHI},
-						{0, HALF_PHI, 0.5, -HALF_INV_PHI},
-						{0, 0.5, HALF_INV_PHI, -HALF_PHI},
-						{0, 0.5, HALF_INV_PHI, HALF_PHI},
-						{0, 0.5, -HALF_INV_PHI, -HALF_PHI},
-						{0, 0.5, -HALF_INV_PHI, HALF_PHI},
-						{0, HALF_INV_PHI, -HALF_PHI, 0.5},
-						{0, HALF_INV_PHI, -HALF_PHI, -0.5},
-						{0, HALF_INV_PHI, HALF_PHI, 0.5},
-						{0, HALF_INV_PHI, HALF_PHI, -0.5},
-						{0, 0, 1, 0},
-						{0, 0, 0, 1}	};
-
-static void quat_rot(double* r, double* a, double* b)
-{
-	b[0] = (r[0] * a[0] - r[1] * a[1] - r[2] * a[2] - r[3] * a[3]);
-	b[1] = (r[0] * a[1] + r[1] * a[0] + r[2] * a[3] - r[3] * a[2]);
-	b[2] = (r[0] * a[2] - r[1] * a[3] + r[2] * a[0] + r[3] * a[1]);
-	b[3] = (r[0] * a[3] + r[1] * a[2] - r[2] * a[1] + r[3] * a[0]);
-}
-
-static int rotate_quaternion_into_fundamental_zone(int num_generators, double (*generator)[4], double* q)
-{
-	double max = 0.0;
-	int i = 0, bi = -1;
-	for (i=0;i<num_generators;i++)
-	{
-		double* g = generator[i];
-		double t = fabs(q[0] * g[0] - q[1] * g[1] - q[2] * g[2] - q[3] * g[3]);
-		if (t > max)
-		{
-			max = t;
-			bi = i;
-		}
-	}
-
-	double f[4];
-	quat_rot(q, generator[bi], f);
-	memcpy(q, &f, 4 * sizeof(double));
-	if (q[0] < 0)
-	{
-		q[0] = -q[0];
-		q[1] = -q[1];
-		q[2] = -q[2];
-		q[3] = -q[3];
-	}
-
-	return bi;
-}
-
-int rotate_quaternion_into_cubic_fundamental_zone(double* q)
-{
-	return rotate_quaternion_into_fundamental_zone(24, generator_cubic, q);
-}
-
-int rotate_quaternion_into_diamond_cubic_fundamental_zone(double* q)
-{
-	return rotate_quaternion_into_fundamental_zone(12, generator_diamond_cubic, q);
-}
-
-int rotate_quaternion_into_icosahedral_fundamental_zone(double* q)
-{
-	return rotate_quaternion_into_fundamental_zone(60, generator_icosahedral, q);
-}
-
-int rotate_quaternion_into_hcp_fundamental_zone(double* q)
-{
-	return rotate_quaternion_into_fundamental_zone(6, generator_hcp, q);
-}
-
-int rotate_quaternion_into_diamond_hexagonal_fundamental_zone(double* q)
-{
-	return rotate_quaternion_into_fundamental_zone(3, generator_diamond_hexagonal, q);
-}
-
-double quat_dot(double* a, double* b)
-{
-	return	  a[0] * b[0]
-		+ a[1] * b[1]
-		+ a[2] * b[2]
-		+ a[3] * b[3];
-}
-
-double quat_size(double* q)
-{
-	return sqrt(quat_dot(q, q));
-}
-
-void normalize_quaternion(double* q)
-{
-	double size = quat_size(q);
-
-	q[0] /= size;
-	q[1] /= size;
-	q[2] /= size;
-	q[3] /= size;
-}
-
-void rotation_matrix_to_quaternion(double* u, double* q)
-{
-	double r11 = u[0];
-	double r12 = u[1];
-	double r13 = u[2];
-	double r21 = u[3];
-	double r22 = u[4];
-	double r23 = u[5];
-	double r31 = u[6];
-	double r32 = u[7];
-	double r33 = u[8];
-
-	q[0] = (1.0 + r11 + r22 + r33) / 4.0;
-	q[1] = (1.0 + r11 - r22 - r33) / 4.0;
-	q[2] = (1.0 - r11 + r22 - r33) / 4.0;
-	q[3] = (1.0 - r11 - r22 + r33) / 4.0;
-
-	q[0] = sqrt(MAX(0, q[0]));
-	q[1] = sqrt(MAX(0, q[1]));
-	q[2] = sqrt(MAX(0, q[2]));
-	q[3] = sqrt(MAX(0, q[3]));
-
-	double m0 = MAX(q[0], q[1]);
-	double m1 = MAX(q[2], q[3]);
-	double max = MAX(m0, m1);
-
-	int i = 0;
-	for (i=0;i<4;i++)
-		if (q[i] == max)
-			break;
-
-	if (i == 0)
-	{
-		q[1] *= SIGN(r32 - r23);
-		q[2] *= SIGN(r13 - r31);
-		q[3] *= SIGN(r21 - r12);
-	}
-	else if (i == 1)
-	{
-		q[0] *= SIGN(r32 - r23);
-		q[2] *= SIGN(r21 + r12);
-		q[3] *= SIGN(r13 + r31);
-	}
-	else if (i == 2)
-	{
-		q[0] *= SIGN(r13 - r31);
-		q[1] *= SIGN(r21 + r12);
-		q[3] *= SIGN(r32 + r23);
-	}
-	else if (i == 3)
-	{
-		q[0] *= SIGN(r21 - r12);
-		q[1] *= SIGN(r31 + r13);
-		q[2] *= SIGN(r32 + r23);
-	}
-
-	normalize_quaternion(q);
-}
-
-void quaternion_to_rotation_matrix(double* q, double* u)
-{
-	double a = q[0];
-	double b = q[1];
-	double c = q[2];
-	double d = q[3];
-
-	u[0] = a*a + b*b - c*c - d*d;
-	u[1] = 2*b*c - 2*a*d;
-	u[2] = 2*b*d + 2*a*c;
-
-	u[3] = 2*b*c + 2*a*d;
-	u[4] = a*a - b*b + c*c - d*d;
-	u[5] = 2*c*d - 2*a*b;
-
-	u[6] = 2*b*d - 2*a*c;
-	u[7] = 2*c*d + 2*a*b;
-	u[8] = a*a - b*b - c*c + d*d;
-}
-
-double quat_quick_misorientation(double* q1, double* q2)
-{
-	double t = quat_dot(q1, q2);
-	t = MIN(1, MAX(-1, t));
-	return 2 * t * t - 1;
-}
-
-double quat_misorientation(double* q1, double* q2)
-{
-	return acos(quat_quick_misorientation(q1, q2));
-}
-
-
-double quat_quick_disorientation_cubic(double* q0, double* q1)
-{
-	double qrot[4];
-	double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]};
-	quat_rot(qinv, q1, qrot);
-
-	rotate_quaternion_into_cubic_fundamental_zone(qrot);
-	double t = qrot[0];
-	t = MIN(1, MAX(-1, t));
-	return 2 * t * t - 1;
-}
-
-double quat_disorientation_cubic(double* q0, double* q1)
-{
-	return acos(quat_quick_disorientation_cubic(q0, q1));
-}
-
-double quat_quick_disorientation_diamond_cubic(double* q0, double* q1)
-{
-	double qrot[4];
-	double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]};
-	quat_rot(qinv, q1, qrot);
-
-	rotate_quaternion_into_diamond_cubic_fundamental_zone(qrot);
-	double t = qrot[0];
-	t = MIN(1, MAX(-1, t));
-	return 2 * t * t - 1;
-}
-
-double quat_disorientation_diamond_cubic(double* q0, double* q1)
-{
-	return acos(quat_quick_disorientation_diamond_cubic(q0, q1));
-}
-
-double quat_quick_disorientation_hcp(double* q0, double* q1)
-{
-	double qrot[4];
-	double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]};
-	quat_rot(qinv, q1, qrot);
-
-	rotate_quaternion_into_hcp_fundamental_zone(qrot);
-	double t = qrot[0];
-	t = MIN(1, MAX(-1, t));
-	return 2 * t * t - 1;
-}
-
-double quat_disorientation_hcp(double* q0, double* q1)
-{
-	return acos(quat_quick_disorientation_hcp(q0, q1));
-}
-
-double quat_quick_disorientation_diamond_hexagonal(double* q0, double* q1)
-{
-	double qrot[4];
-	double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]};
-	quat_rot(qinv, q1, qrot);
-
-	rotate_quaternion_into_diamond_hexagonal_fundamental_zone(qrot);
-	double t = qrot[0];
-	t = MIN(1, MAX(-1, t));
-	return 2 * t * t - 1;
-}
-
-double quat_disorientation_diamond_hexagonal(double* q0, double* q1)
-{
-	return acos(quat_quick_disorientation_diamond_hexagonal(q0, q1));
-}
-
-double quat_quick_disorientation_icosahedral(double* q0, double* q1)
-{
-	double qrot[4];
-	double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]};
-	quat_rot(qinv, q1, qrot);
-
-	rotate_quaternion_into_icosahedral_fundamental_zone(qrot);
-	double t = qrot[0];
-	t = MIN(1, MAX(-1, t));
-	return 2 * t * t - 1;
-}
-
-double quat_disorientation_icosahedral(double* q0, double* q1)
-{
-	return acos(quat_quick_disorientation_icosahedral(q0, q1));
-}
-
diff --git a/src/USER-PTM/quat.h b/src/USER-PTM/quat.h
deleted file mode 100644
index 725086322c..0000000000
--- a/src/USER-PTM/quat.h
+++ /dev/null
@@ -1,32 +0,0 @@
-#ifndef QUAT_H
-#define QUAT_H
-
-int rotate_quaternion_into_cubic_fundamental_zone(double* q);
-int rotate_quaternion_into_diamond_cubic_fundamental_zone(double* q);
-int rotate_quaternion_into_icosahedral_fundamental_zone(double* q);
-int rotate_quaternion_into_hcp_fundamental_zone(double* q);
-int rotate_quaternion_into_diamond_hexagonal_fundamental_zone(double* q);
-
-void normalize_quaternion(double* q);
-void quaternion_to_rotation_matrix(double* q, double* U);
-void rotation_matrix_to_quaternion(double* u, double* q);
-double quat_dot(double* a, double* b);
-double quat_quick_misorientation(double* q1, double* q2);
-double quat_misorientation(double* q1, double* q2);
-
-double quat_quick_disorientation_cubic(double* q0, double* q1);
-double quat_disorientation_cubic(double* q0, double* q1);
-double quat_quick_disorientation_diamond_cubic(double* q0, double* q1);
-double quat_disorientation_diamond_cubic(double* q0, double* q1);
-double quat_quick_disorientation_hcp(double* q0, double* q1);
-double quat_disorientation_hcp(double* q0, double* q1);
-double quat_quick_disorientation_diamond_hexagonal(double* q0, double* q1);
-double quat_disorientation_diamond_hexagonal(double* q0, double* q1);
-double quat_quick_disorientation_icosahedral(double* q0, double* q1);
-double quat_disorientation_icosahedral(double* q0, double* q1);
-
-#endif
-
-
-
-
diff --git a/src/USER-PTM/structure_matcher.cpp b/src/USER-PTM/structure_matcher.cpp
deleted file mode 100644
index dad8e3599a..0000000000
--- a/src/USER-PTM/structure_matcher.cpp
+++ /dev/null
@@ -1,294 +0,0 @@
-#include <cstdio>
-#include <cstdlib>
-#include <string.h>
-#include <cmath>
-#include <cfloat>
-#include <cassert>
-#include <algorithm>
-#include "convex_hull_incremental.h"
-#include "canonical_coloured.h"
-#include "graph_data.h"
-#include "graph_tools.h"
-#include "normalize_vertices.h"
-#include "polar.h"
-#include "structure_matcher.h"
-#include "ptm_constants.h"
-
-
-static double calc_rmsd(int num_points, const double (*ideal_points)[3], double (*normalized)[3], int8_t* mapping,
-			double G1, double G2, double E0, double* q, double* p_scale)
-{
-	double A0[9];
-	InnerProduct(A0, num_points, ideal_points, normalized, mapping);
-
-	double nrmsdsq, rot[9];
-	FastCalcRMSDAndRotation(A0, E0, &nrmsdsq, q, rot);
-
-	double k0 = 0;
-	for (int i=0;i<num_points;i++)
-	{
-		for (int j=0;j<3;j++)
-		{
-			double v = 0.0;
-			for (int k=0;k<3;k++)
-				v += rot[j*3+k] * ideal_points[i][k];
-
-			k0 += v * normalized[mapping[i]][j];
-		}
-	}
-
-	double scale = k0 / G2;
-	*p_scale = scale;
-	return sqrt(fabs(G1 - scale*k0) / num_points);
-}
-
-static void check_graphs(	const refdata_t* s,
-				uint64_t hash,
-				int8_t* canonical_labelling,
-				double (*normalized)[3],
-				result_t* res)
-{
-	int num_points = s->num_nbrs + 1;
-	const double (*ideal_points)[3] = s->points;
-	int8_t inverse_labelling[PTM_MAX_POINTS];
-	int8_t mapping[PTM_MAX_POINTS];
-
-	for (int i=0; i<num_points; i++)
-		inverse_labelling[ canonical_labelling[i] ] = i;
-
-	double G1 = 0, G2 = 0;
-	for (int i=0;i<num_points;i++)
-	{
-		double x1 = ideal_points[i][0];
-		double y1 = ideal_points[i][1];
-		double z1 = ideal_points[i][2];
-
-		double x2 = normalized[i][0];
-		double y2 = normalized[i][1];
-		double z2 = normalized[i][2];
-
-		G1 += x1 * x1 + y1 * y1 + z1 * z1;
-		G2 += x2 * x2 + y2 * y2 + z2 * z2;
-	}
-	double E0 = (G1 + G2) / 2;
-
-	for (int i = 0;i<s->num_graphs;i++)
-	{
-		if (hash != s->graphs[i].hash)
-			continue;
-
-		graph_t* gref = &s->graphs[i];
-		for (int j = 0;j<gref->num_automorphisms;j++)
-		{
-			for (int k=0;k<num_points;k++)
-				mapping[automorphisms[gref->automorphism_index + j][k]] = inverse_labelling[ gref->canonical_labelling[k] ];
-
-			double q[4], scale = 0;
-			double rmsd = calc_rmsd(num_points, ideal_points, normalized, mapping, G1, G2, E0, q, &scale);
-			if (rmsd < res->rmsd)
-			{
-				res->rmsd = rmsd;
-				res->scale = scale;
-				res->ref_struct = s;
-				memcpy(res->q, q, 4 * sizeof(double));
-				memcpy(res->mapping, mapping, sizeof(int8_t) * num_points);
-			}
-		}
-	}
-}
-
-int match_general(const refdata_t* s, double (*ch_points)[3], double (*points)[3], convexhull_t* ch, result_t* res)
-{
-	int8_t degree[PTM_MAX_NBRS];
-	int8_t facets[PTM_MAX_FACETS][3];
-
-	int ret = get_convex_hull(s->num_nbrs + 1, (const double (*)[3])ch_points, ch, facets);
-	ch->ok = ret >= 0;
-	if (ret != 0)
-		return PTM_NO_ERROR;
-
-	if (ch->num_facets != s->num_facets)
-		return PTM_NO_ERROR;			//incorrect number of facets in convex hull
-
-	int max_degree = graph_degree(s->num_facets, facets, s->num_nbrs, degree);
-	if (max_degree > s->max_degree)
-		return PTM_NO_ERROR;
-
-	if (s->type == PTM_MATCH_SC)
-		for (int i = 0;i<s->num_nbrs;i++)
-			if (degree[i] != 4)
-				return PTM_NO_ERROR;
-
-	double normalized[PTM_MAX_POINTS][3];
-	subtract_barycentre(s->num_nbrs + 1, points, normalized);
-
-	int8_t code[2 * PTM_MAX_EDGES];
-	int8_t colours[PTM_MAX_POINTS] = {0};
-	int8_t canonical_labelling[PTM_MAX_POINTS];
-	uint64_t hash = 0;
-	ret = canonical_form_coloured(s->num_facets, facets, s->num_nbrs, degree, colours, canonical_labelling, &code[0], &hash);
-	if (ret != PTM_NO_ERROR)
-		return ret;
-
-	check_graphs(s, hash, canonical_labelling, normalized, res);
-	return PTM_NO_ERROR;
-}
-
-int match_fcc_hcp_ico(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res)
-{
-	int num_nbrs = structure_fcc.num_nbrs;
-	int num_facets = structure_fcc.num_facets;
-	int max_degree = structure_fcc.max_degree;
-
-	int8_t degree[PTM_MAX_NBRS];
-	int8_t facets[PTM_MAX_FACETS][3];
-
-	int ret = get_convex_hull(num_nbrs + 1, (const double (*)[3])ch_points, ch, facets);
-	ch->ok = ret >= 0;
-	if (ret != 0)
-		return PTM_NO_ERROR;
-
-	if (ch->num_facets != num_facets)
-		return PTM_NO_ERROR;			//incorrect number of facets in convex hull
-
-	int _max_degree = graph_degree(num_facets, facets, num_nbrs, degree);
-	if (_max_degree > max_degree)
-		return PTM_NO_ERROR;
-
-	double normalized[PTM_MAX_POINTS][3];
-	subtract_barycentre(num_nbrs + 1, points, normalized);
-
-	int8_t code[2 * PTM_MAX_EDGES];
-	int8_t colours[PTM_MAX_POINTS] = {0};
-	int8_t canonical_labelling[PTM_MAX_POINTS];
-	uint64_t hash = 0;
-	ret = canonical_form_coloured(num_facets, facets, num_nbrs, degree, colours, canonical_labelling, &code[0], &hash);
-	if (ret != PTM_NO_ERROR)
-		return ret;
-
-	if (flags & PTM_CHECK_FCC)	check_graphs(&structure_fcc, hash, canonical_labelling, normalized, res);
-	if (flags & PTM_CHECK_HCP)	check_graphs(&structure_hcp, hash, canonical_labelling, normalized, res);
-	if (flags & PTM_CHECK_ICO)	check_graphs(&structure_ico, hash, canonical_labelling, normalized, res);
-	return PTM_NO_ERROR;
-}
-
-int match_dcub_dhex(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res)
-{
-	int num_nbrs = structure_dcub.num_nbrs;
-	int num_facets = structure_fcc.num_facets;
-	int max_degree = structure_dcub.max_degree;
-
-
-	int8_t facets[PTM_MAX_FACETS][3];
-	int ret = get_convex_hull(num_nbrs + 1, (const double (*)[3])ch_points, ch, facets);
-	ch->ok = ret >= 0;
-	if (ret != 0)
-		return PTM_NO_ERROR;
-
-	//check for facets with multiple inner atoms
-	bool inverted[4] = {false, false, false, false};
-	for (int i=0;i<ch->num_facets;i++)
-	{
-		int n = 0;
-		for (int j=0;j<3;j++)
-		{
-			if (facets[i][j] <= 3)
-			{
-				inverted[facets[i][j]] = true;
-				n++;
-			}
-		}
-		if (n > 1)
-			return PTM_NO_ERROR;
-	}
-
-	int num_inverted = 0;
-	for (int i=0;i<4;i++)
-		num_inverted += inverted[i] ? 1 : 0;
-
-	if (ch->num_facets != num_facets + 2 * num_inverted)
-		return PTM_NO_ERROR;			//incorrect number of facets in convex hull
-
-	int8_t degree[PTM_MAX_NBRS];
-	int _max_degree = graph_degree(num_facets, facets, num_nbrs, degree);
-	if (_max_degree > max_degree)
-		return PTM_NO_ERROR;
-
-	int num_found = 0;
-	int8_t toadd[4][3];
-	for (int i=0;i<ch->num_facets;i++)
-	{
-		int a = facets[i][0];
-		int b = facets[i][1];
-		int c = facets[i][2];
-		if (a <= 3 || b <= 3 || c <= 3)
-			continue;
-
-		int i0 = (a - 4) / 3;
-		int i1 = (b - 4) / 3;
-		int i2 = (c - 4) / 3;
-
-		if (i0 == i1 && i0 == i2)
-		{
-			if (num_found + num_inverted >= 4)
-				return PTM_NO_ERROR;
-
-			toadd[num_found][0] = a;
-			toadd[num_found][1] = b;
-			toadd[num_found][2] = c;
-			num_found++;
-
-			memcpy(&facets[i], &facets[ch->num_facets - 1], 3 * sizeof(int8_t));
-			ch->num_facets--;
-			i--;
-		}
-	}
-
-	if (num_found + num_inverted != 4)
-		return PTM_NO_ERROR;
-
-	for (int i=0;i<num_found;i++)
-	{
-		int a = toadd[i][0];
-		int b = toadd[i][1];
-		int c = toadd[i][2];
-
-		int i0 = (a - 4) / 3;
-
-		facets[ch->num_facets][0] = i0;
-		facets[ch->num_facets][1] = b;
-		facets[ch->num_facets][2] = c;
-		ch->num_facets++;
-
-		facets[ch->num_facets][0] = a;
-		facets[ch->num_facets][1] = i0;
-		facets[ch->num_facets][2] = c;
-		ch->num_facets++;
-
-		facets[ch->num_facets][0] = a;
-		facets[ch->num_facets][1] = b;
-		facets[ch->num_facets][2] = i0;
-		ch->num_facets++;
-	}
-
-	_max_degree = graph_degree(ch->num_facets, facets, num_nbrs, degree);
-	if (_max_degree > max_degree)
-		return PTM_NO_ERROR;
-
-	double normalized[PTM_MAX_POINTS][3];
-	subtract_barycentre(num_nbrs + 1, points, normalized);
-
-	int8_t code[2 * PTM_MAX_EDGES];
-	int8_t colours[PTM_MAX_POINTS] = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-	int8_t canonical_labelling[PTM_MAX_POINTS];
-	uint64_t hash = 0;
-	ret = canonical_form_coloured(ch->num_facets, facets, num_nbrs, degree, colours, canonical_labelling, &code[0], &hash);
-	if (ret != PTM_NO_ERROR)
-		return ret;
-
-	if (flags & PTM_CHECK_DCUB)	check_graphs(&structure_dcub, hash, canonical_labelling, normalized, res);
-	if (flags & PTM_CHECK_DHEX)	check_graphs(&structure_dhex, hash, canonical_labelling, normalized, res);
-
-	return PTM_NO_ERROR;
-}
-
diff --git a/src/USER-PTM/structure_matcher.h b/src/USER-PTM/structure_matcher.h
deleted file mode 100644
index 25e80a94e1..0000000000
--- a/src/USER-PTM/structure_matcher.h
+++ /dev/null
@@ -1,21 +0,0 @@
-#ifndef STRUCTURE_MATCHER_H
-#define STRUCTURE_MATCHER_H
-
-#include "initialize_data.h"
-#include "ptm_constants.h"
-
-typedef struct
-{
-	double rmsd;
-	double scale;
-	double q[4];		//rotation in quaternion form (rigid body transformation)
-	int8_t mapping[PTM_MAX_POINTS];
-	const refdata_t* ref_struct;
-} result_t;
-
-int match_general(const refdata_t* s, double (*ch_points)[3], double (*points)[3], convexhull_t* ch, result_t* res);
-int match_fcc_hcp_ico(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res);
-int match_dcub_dhex(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res);
-
-#endif
-
-- 
GitLab