From 37201beda545bcd04419d07971e78548b6378ed1 Mon Sep 17 00:00:00 2001 From: pmla <pete.mahler.larsen@gmail.com> Date: Thu, 20 Sep 2018 00:04:07 -0400 Subject: [PATCH] Fixed folder structure --- src/PTM/compute_ptm_atom.cpp | 307 --- src/PTM/compute_ptm_atom.h | 48 - src/PTM/ptm_constants.h | 174 -- src/PTM/ptm_functions.h | 27 - src/USER-PTM/alloy_types.cpp | 101 - src/USER-PTM/alloy_types.h | 9 - src/USER-PTM/canonical_coloured.cpp | 167 -- src/USER-PTM/canonical_coloured.h | 9 - src/USER-PTM/cell.cpp | 1368 ----------- src/USER-PTM/cell.h | 324 --- src/USER-PTM/config.h | 129 -- src/USER-PTM/convex_hull_incremental.cpp | 363 --- src/USER-PTM/convex_hull_incremental.h | 27 - src/USER-PTM/deformation_gradient.cpp | 37 - src/USER-PTM/deformation_gradient.h | 142 -- src/USER-PTM/fundamental_mappings.h | 180 -- src/USER-PTM/graph_data.cpp | 2059 ----------------- src/USER-PTM/graph_data.h | 37 - src/USER-PTM/graph_tools.cpp | 52 - src/USER-PTM/graph_tools.h | 11 - src/USER-PTM/index_ptm.cpp | 218 -- src/USER-PTM/initialize_data.cpp | 71 - src/USER-PTM/initialize_data.h | 61 - src/USER-PTM/neighbour_ordering.cpp | 203 -- src/USER-PTM/neighbour_ordering.h | 13 - src/USER-PTM/normalize_vertices.cpp | 55 - src/USER-PTM/normalize_vertices.h | 8 - src/USER-PTM/polar.cpp | 337 --- src/USER-PTM/polar.h | 12 - src/{PTM => USER-PTM}/ptm_alloy_types.cpp | 0 src/{PTM => USER-PTM}/ptm_alloy_types.h | 0 .../ptm_canonical_coloured.cpp | 0 .../ptm_canonical_coloured.h | 0 .../ptm_convex_hull_incremental.cpp | 0 .../ptm_convex_hull_incremental.h | 0 .../ptm_deformation_gradient.cpp | 0 .../ptm_deformation_gradient.h | 0 src/USER-PTM/ptm_functions.h | 2 +- .../ptm_fundamental_mappings.h | 0 src/{PTM => USER-PTM}/ptm_graph_data.cpp | 0 src/{PTM => USER-PTM}/ptm_graph_data.h | 0 src/{PTM => USER-PTM}/ptm_graph_tools.cpp | 0 src/{PTM => USER-PTM}/ptm_graph_tools.h | 0 src/{PTM => USER-PTM}/ptm_index.cpp | 0 src/{PTM => USER-PTM}/ptm_initialize_data.cpp | 0 src/{PTM => USER-PTM}/ptm_initialize_data.h | 0 .../ptm_neighbour_ordering.cpp | 0 .../ptm_neighbour_ordering.h | 0 .../ptm_normalize_vertices.cpp | 0 .../ptm_normalize_vertices.h | 0 src/{PTM => USER-PTM}/ptm_polar.cpp | 0 src/{PTM => USER-PTM}/ptm_polar.h | 0 src/{PTM => USER-PTM}/ptm_quat.cpp | 0 src/{PTM => USER-PTM}/ptm_quat.h | 0 .../ptm_structure_matcher.cpp | 0 src/{PTM => USER-PTM}/ptm_structure_matcher.h | 0 src/{PTM => USER-PTM}/ptm_voronoi_cell.cpp | 0 src/{PTM => USER-PTM}/ptm_voronoi_cell.h | 0 src/{PTM => USER-PTM}/ptm_voronoi_config.h | 0 src/USER-PTM/quat.cpp | 396 ---- src/USER-PTM/quat.h | 32 - src/USER-PTM/structure_matcher.cpp | 294 --- src/USER-PTM/structure_matcher.h | 21 - 63 files changed, 1 insertion(+), 7293 deletions(-) delete mode 100644 src/PTM/compute_ptm_atom.cpp delete mode 100644 src/PTM/compute_ptm_atom.h delete mode 100644 src/PTM/ptm_constants.h delete mode 100644 src/PTM/ptm_functions.h delete mode 100644 src/USER-PTM/alloy_types.cpp delete mode 100644 src/USER-PTM/alloy_types.h delete mode 100644 src/USER-PTM/canonical_coloured.cpp delete mode 100644 src/USER-PTM/canonical_coloured.h delete mode 100644 src/USER-PTM/cell.cpp delete mode 100644 src/USER-PTM/cell.h delete mode 100644 src/USER-PTM/config.h delete mode 100644 src/USER-PTM/convex_hull_incremental.cpp delete mode 100644 src/USER-PTM/convex_hull_incremental.h delete mode 100644 src/USER-PTM/deformation_gradient.cpp delete mode 100644 src/USER-PTM/deformation_gradient.h delete mode 100644 src/USER-PTM/fundamental_mappings.h delete mode 100644 src/USER-PTM/graph_data.cpp delete mode 100644 src/USER-PTM/graph_data.h delete mode 100644 src/USER-PTM/graph_tools.cpp delete mode 100644 src/USER-PTM/graph_tools.h delete mode 100644 src/USER-PTM/index_ptm.cpp delete mode 100644 src/USER-PTM/initialize_data.cpp delete mode 100644 src/USER-PTM/initialize_data.h delete mode 100644 src/USER-PTM/neighbour_ordering.cpp delete mode 100644 src/USER-PTM/neighbour_ordering.h delete mode 100644 src/USER-PTM/normalize_vertices.cpp delete mode 100644 src/USER-PTM/normalize_vertices.h delete mode 100644 src/USER-PTM/polar.cpp delete mode 100644 src/USER-PTM/polar.h rename src/{PTM => USER-PTM}/ptm_alloy_types.cpp (100%) rename src/{PTM => USER-PTM}/ptm_alloy_types.h (100%) rename src/{PTM => USER-PTM}/ptm_canonical_coloured.cpp (100%) rename src/{PTM => USER-PTM}/ptm_canonical_coloured.h (100%) rename src/{PTM => USER-PTM}/ptm_convex_hull_incremental.cpp (100%) rename src/{PTM => USER-PTM}/ptm_convex_hull_incremental.h (100%) rename src/{PTM => USER-PTM}/ptm_deformation_gradient.cpp (100%) rename src/{PTM => USER-PTM}/ptm_deformation_gradient.h (100%) rename src/{PTM => USER-PTM}/ptm_fundamental_mappings.h (100%) rename src/{PTM => USER-PTM}/ptm_graph_data.cpp (100%) rename src/{PTM => USER-PTM}/ptm_graph_data.h (100%) rename src/{PTM => USER-PTM}/ptm_graph_tools.cpp (100%) rename src/{PTM => USER-PTM}/ptm_graph_tools.h (100%) rename src/{PTM => USER-PTM}/ptm_index.cpp (100%) rename src/{PTM => USER-PTM}/ptm_initialize_data.cpp (100%) rename src/{PTM => USER-PTM}/ptm_initialize_data.h (100%) rename src/{PTM => USER-PTM}/ptm_neighbour_ordering.cpp (100%) rename src/{PTM => USER-PTM}/ptm_neighbour_ordering.h (100%) rename src/{PTM => USER-PTM}/ptm_normalize_vertices.cpp (100%) rename src/{PTM => USER-PTM}/ptm_normalize_vertices.h (100%) rename src/{PTM => USER-PTM}/ptm_polar.cpp (100%) rename src/{PTM => USER-PTM}/ptm_polar.h (100%) rename src/{PTM => USER-PTM}/ptm_quat.cpp (100%) rename src/{PTM => USER-PTM}/ptm_quat.h (100%) rename src/{PTM => USER-PTM}/ptm_structure_matcher.cpp (100%) rename src/{PTM => USER-PTM}/ptm_structure_matcher.h (100%) rename src/{PTM => USER-PTM}/ptm_voronoi_cell.cpp (100%) rename src/{PTM => USER-PTM}/ptm_voronoi_cell.h (100%) rename src/{PTM => USER-PTM}/ptm_voronoi_config.h (100%) delete mode 100644 src/USER-PTM/quat.cpp delete mode 100644 src/USER-PTM/quat.h delete mode 100644 src/USER-PTM/structure_matcher.cpp delete mode 100644 src/USER-PTM/structure_matcher.h diff --git a/src/PTM/compute_ptm_atom.cpp b/src/PTM/compute_ptm_atom.cpp deleted file mode 100644 index b6b4a9786c..0000000000 --- a/src/PTM/compute_ptm_atom.cpp +++ /dev/null @@ -1,307 +0,0 @@ -/* ---------------------------------------------------------------------- - LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator - http://lammps.sandia.gov, Sandia National Laboratories - Steve Plimpton, sjplimp@sandia.gov - - Copyright (2003) Sandia Corporation. Under the terms of Contract - DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains - certain rights in this software. This software is distributed -under - the GNU General Public License. - - See the README file in the top-level LAMMPS directory. -------------------------------------------------------------------------- */ - -/* ---------------------------------------------------------------------- - Contributing author: PM Larsen (MIT) -------------------------------------------------------------------------- */ - -#include <algorithm> -#include <cmath> -#include <cstdlib> -#include <cstring> - -#include "atom.h" -#include "comm.h" -#include "compute_ptm_atom.h" -#include "error.h" -#include "force.h" -#include "memory.h" -#include "modify.h" -#include "neigh_list.h" -#include "neigh_request.h" -#include "neighbor.h" -#include "pair.h" -#include "update.h" - -#include "ptm_functions.h" - -#define MAX_NEIGHBORS 30 -#define NUM_COLUMNS 7 -#define UNKNOWN 0 -#define OTHER 8 - -using namespace LAMMPS_NS; - -static const char cite_user_ptm_package[] = - "USER-PTM package:\n\n" - "@Article{larsen2016ptm,\n" - " author={Larsen, Peter Mahler and Schmidt, S{\o}ren and Schi{\o}tz, " - "Jakob},\n" - " title={Robust structural identification via polyhedral template " - "matching},\n" - " journal={Modelling~Simul.~Mater.~Sci.~Eng.},\n" - " year={2016},\n" - " number={5},\n" - " volume={24},\n" - " pages={055007},\n" - " DOI = {10.1088/0965-0393/24/5/055007}" - "}\n\n"; - -/* ---------------------------------------------------------------------- */ - -ComputePTMAtom::ComputePTMAtom(LAMMPS *lmp, int narg, char **arg) - : Compute(lmp, narg, arg), list(NULL), output(NULL) { - if (narg != 5) - error->all(FLERR, "Illegal compute ptm/atom command"); - - char *structures = arg[3]; - char *ptr = structures; - - const char *strings[] = {"fcc", "hcp", "bcc", "ico", "sc", - "dcub", "dhex", "all", "default"}; - int32_t flags[] = { - PTM_CHECK_FCC, - PTM_CHECK_HCP, - PTM_CHECK_BCC, - PTM_CHECK_ICO, - PTM_CHECK_SC, - PTM_CHECK_DCUB, - PTM_CHECK_DHEX, - PTM_CHECK_ALL, - PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_BCC | PTM_CHECK_ICO}; - - input_flags = 0; - while (*ptr != '\0') { - - bool found = false; - for (int i = 0; i < 9; i++) { - int len = strlen(strings[i]); - if (strncmp(ptr, strings[i], len) == 0) { - input_flags |= flags[i]; - ptr += len; - found = true; - break; - } - } - - if (!found) - error->all(FLERR, - "Illegal compute ptm/atom command (invalid structure type)"); - - if (*ptr == '\0') - break; - - if (*ptr != '-') - error->all(FLERR, - "Illegal compute ptm/atom command (invalid structure type)"); - - ptr++; - } - - double threshold = force->numeric(FLERR, arg[4]); - if (threshold < 0.0) - error->all(FLERR, - "Illegal compute ptm/atom command (threshold is negative)"); - rmsd_threshold = threshold; - if (rmsd_threshold == 0) - rmsd_threshold = INFINITY; - - peratom_flag = 1; - size_peratom_cols = NUM_COLUMNS; - create_attribute = 1; - nmax = 0; -} - -/* ---------------------------------------------------------------------- */ - -ComputePTMAtom::~ComputePTMAtom() { memory->destroy(output); } - -/* ---------------------------------------------------------------------- */ - -void ComputePTMAtom::init() { - if (force->pair == NULL) - error->all(FLERR, "Compute ptm/atom requires a pair style be defined"); - - int count = 0; - for (int i = 0; i < modify->ncompute; i++) - if (strcmp(modify->compute[i]->style, "ptm/atom") == 0) - count++; - if (count > 1 && comm->me == 0) - error->warning(FLERR, "More than one compute ptm/atom defined"); - - // need an occasional full neighbor list - - int irequest = neighbor->request(this, instance_me); - neighbor->requests[irequest]->pair = 0; - neighbor->requests[irequest]->compute = 1; - neighbor->requests[irequest]->half = 0; - neighbor->requests[irequest]->full = 1; - neighbor->requests[irequest]->occasional = 1; -} - -/* ---------------------------------------------------------------------- */ - -void ComputePTMAtom::init_list(int id, NeighList *ptr) { list = ptr; } - -/* ---------------------------------------------------------------------- */ - -typedef struct { - int index; - double d; -} ptmnbr_t; - -static bool sorthelper_compare(ptmnbr_t const &a, ptmnbr_t const &b) { - return a.d < b.d; -} - -static int get_neighbors(double *pos, int jnum, int *jlist, double **x, - double (*nbr)[3]) { - - ptmnbr_t *nbr_order = new ptmnbr_t[jnum]; - - for (int jj = 0; jj < jnum; jj++) { - int j = jlist[jj]; - j &= NEIGHMASK; - - double dx = pos[0] - x[j][0]; - double dy = pos[1] - x[j][1]; - double dz = pos[2] - x[j][2]; - double rsq = dx * dx + dy * dy + dz * dz; - - nbr_order[jj].index = j; - nbr_order[jj].d = rsq; - } - - std::sort(nbr_order, nbr_order + jnum, &sorthelper_compare); - int num_nbrs = std::min(MAX_NEIGHBORS, jnum); - - nbr[0][0] = nbr[0][1] = nbr[0][2] = 0; - for (int jj = 0; jj < num_nbrs; jj++) { - - int j = nbr_order[jj].index; - nbr[jj + 1][0] = x[j][0] - pos[0]; - nbr[jj + 1][1] = x[j][1] - pos[1]; - nbr[jj + 1][2] = x[j][2] - pos[2]; - } - - delete[] nbr_order; - return num_nbrs; -} - -void ComputePTMAtom::compute_peratom() { - // PTM global initialization. If already initialized this function does - // nothing. - ptm_initialize_global(); - - // initialize PTM local storage - ptm_local_handle_t local_handle = ptm_initialize_local(); - - invoked_peratom = update->ntimestep; - - // grow arrays if necessary - if (atom->nmax > nmax) { - memory->destroy(output); - nmax = atom->nmax; - - memory->create(output, nmax, NUM_COLUMNS, "ptm:ptm_output"); - array_atom = output; - } - - // invoke full neighbor list (will copy or build if necessary) - neighbor->build_one(list); - - int inum = list->inum; - int *ilist = list->ilist; - int *numneigh = list->numneigh; - int **firstneigh = list->firstneigh; - - double **x = atom->x; - int *mask = atom->mask; - int nlocal = atom->nlocal; - - for (int ii = 0; ii < inum; ii++) { - - int i = ilist[ii]; - output[i][0] = UNKNOWN; - if (!(mask[i] & groupbit)) - continue; - - double *pos = x[i]; - - int *jlist = firstneigh[i]; - int jnum = numneigh[i]; - if (jnum <= 0) - continue; - - // get neighbours ordered by increasing distance - double nbr[MAX_NEIGHBORS + 1][3]; - int num_nbrs = get_neighbors(pos, jnum, jlist, x, nbr); - - // check that we have enough neighbours for the desired structure types - int32_t flags = 0; - if (num_nbrs >= PTM_NUM_NBRS_SC && (input_flags & PTM_CHECK_SC)) - flags |= PTM_CHECK_SC; - if (num_nbrs >= PTM_NUM_NBRS_FCC && (input_flags & PTM_CHECK_FCC)) - flags |= PTM_CHECK_FCC; - if (num_nbrs >= PTM_NUM_NBRS_HCP && (input_flags & PTM_CHECK_HCP)) - flags |= PTM_CHECK_HCP; - if (num_nbrs >= PTM_NUM_NBRS_ICO && (input_flags & PTM_CHECK_ICO)) - flags |= PTM_CHECK_ICO; - if (num_nbrs >= PTM_NUM_NBRS_BCC && (input_flags & PTM_CHECK_BCC)) - flags |= PTM_CHECK_BCC; - if (num_nbrs >= PTM_NUM_NBRS_DCUB && (input_flags & PTM_CHECK_DCUB)) - flags |= PTM_CHECK_DCUB; - if (num_nbrs >= PTM_NUM_NBRS_DHEX && (input_flags & PTM_CHECK_DHEX)) - flags |= PTM_CHECK_DHEX; - - // now run PTM - int8_t mapping[MAX_NEIGHBORS + 1]; - int32_t type, alloy_type; - double scale, rmsd, interatomic_distance, lattice_constant; - double q[4], F[9], F_res[3], U[9], P[9]; - ptm_index(local_handle, flags, num_nbrs + 1, nbr, NULL, true, &type, - &alloy_type, &scale, &rmsd, q, F, F_res, U, P, mapping, - &interatomic_distance, &lattice_constant); - - if (rmsd > rmsd_threshold) { - type = PTM_MATCH_NONE; - } - - // printf("%d type=%d rmsd=%f\n", i, type, rmsd); - - if (type == PTM_MATCH_NONE) - type = OTHER; - - output[i][0] = type; - output[i][1] = rmsd; - output[i][2] = interatomic_distance; - output[i][3] = q[0]; - output[i][4] = q[1]; - output[i][5] = q[2]; - output[i][6] = q[3]; - } - - // printf("finished ptm analysis\n"); - ptm_uninitialize_local(local_handle); -} - -/* ---------------------------------------------------------------------- - memory usage of local atom-based array -------------------------------------------------------------------------- */ - -double ComputePTMAtom::memory_usage() { - double bytes = nmax * NUM_COLUMNS * sizeof(double); - bytes += nmax * sizeof(double); - return bytes; -} diff --git a/src/PTM/compute_ptm_atom.h b/src/PTM/compute_ptm_atom.h deleted file mode 100644 index 5c10e0c443..0000000000 --- a/src/PTM/compute_ptm_atom.h +++ /dev/null @@ -1,48 +0,0 @@ -/* -*- c++ -*- ---------------------------------------------------------- - LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator - http://lammps.sandia.gov, Sandia National Laboratories - Steve Plimpton, sjplimp@sandia.gov - - Copyright (2003) Sandia Corporation. Under the terms of Contract - DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains - certain rights in this software. This software is distributed under - the GNU General Public License. - - See the README file in the top-level LAMMPS directory. -------------------------------------------------------------------------- */ - -#ifdef COMPUTE_CLASS - -ComputeStyle(ptm/atom,ComputePTMAtom) - -#else - -#ifndef LMP_COMPUTE_PTM_ATOM_H -#define LMP_COMPUTE_PTM_ATOM_H - -#include "compute.h" - -namespace LAMMPS_NS { - -class ComputePTMAtom : public Compute { - public: - ComputePTMAtom(class LAMMPS *, int, char **); - ~ComputePTMAtom(); - void init(); - void init_list(int, class NeighList *); - void compute_peratom(); - double memory_usage(); - - private: - int nmax; - int32_t input_flags; - double rmsd_threshold; - class NeighList *list; - double **output; -}; - -} - -#endif -#endif - diff --git a/src/PTM/ptm_constants.h b/src/PTM/ptm_constants.h deleted file mode 100644 index f868f51e84..0000000000 --- a/src/PTM/ptm_constants.h +++ /dev/null @@ -1,174 +0,0 @@ -#ifndef PTM_CONSTANTS_H -#define PTM_CONSTANTS_H - -//------------------------------------ -// definitions -//------------------------------------ -#define PTM_NO_ERROR 0 - - -#define PTM_CHECK_FCC (1 << 0) -#define PTM_CHECK_HCP (1 << 1) -#define PTM_CHECK_BCC (1 << 2) -#define PTM_CHECK_ICO (1 << 3) -#define PTM_CHECK_SC (1 << 4) -#define PTM_CHECK_DCUB (1 << 5) -#define PTM_CHECK_DHEX (1 << 6) -#define PTM_CHECK_NONDIAMOND (PTM_CHECK_SC | PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO | PTM_CHECK_BCC) -#define PTM_CHECK_ALL (PTM_CHECK_SC | PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO | PTM_CHECK_BCC | PTM_CHECK_DCUB | PTM_CHECK_DHEX) - -#define PTM_MATCH_NONE 0 -#define PTM_MATCH_FCC 1 -#define PTM_MATCH_HCP 2 -#define PTM_MATCH_BCC 3 -#define PTM_MATCH_ICO 4 -#define PTM_MATCH_SC 5 -#define PTM_MATCH_DCUB 6 -#define PTM_MATCH_DHEX 7 - -#define PTM_ALLOY_NONE 0 -#define PTM_ALLOY_PURE 1 -#define PTM_ALLOY_L10 2 -#define PTM_ALLOY_L12_CU 3 -#define PTM_ALLOY_L12_AU 4 -#define PTM_ALLOY_B2 5 -#define PTM_ALLOY_SIC 6 - - -#define PTM_MAX_INPUT_POINTS 35 -#define PTM_MAX_NBRS 16 -#define PTM_MAX_POINTS (PTM_MAX_NBRS + 1) -#define PTM_MAX_FACETS 28 //2 * PTM_MAX_NBRS - 4 -#define PTM_MAX_EDGES 42 //3 * PTM_MAX_NBRS - 6 - - -//------------------------------------ -// number of neighbours -//------------------------------------ -#define PTM_NUM_NBRS_FCC 12 -#define PTM_NUM_NBRS_HCP 12 -#define PTM_NUM_NBRS_BCC 14 -#define PTM_NUM_NBRS_ICO 12 -#define PTM_NUM_NBRS_SC 6 -#define PTM_NUM_NBRS_DCUB 16 -#define PTM_NUM_NBRS_DHEX 16 - -#define PTM_NUM_POINTS_FCC (PTM_NUM_NBRS_FCC + 1) -#define PTM_NUM_POINTS_HCP (PTM_NUM_NBRS_HCP + 1) -#define PTM_NUM_POINTS_BCC (PTM_NUM_NBRS_BCC + 1) -#define PTM_NUM_POINTS_ICO (PTM_NUM_NBRS_ICO + 1) -#define PTM_NUM_POINTS_SC (PTM_NUM_NBRS_SC + 1) -#define PTM_NUM_POINTS_DCUB (PTM_NUM_NBRS_DCUB + 1) -#define PTM_NUM_POINTS_DHEX (PTM_NUM_NBRS_DHEX + 1) - -const int ptm_num_nbrs[8] = {0, PTM_NUM_NBRS_FCC, PTM_NUM_NBRS_HCP, PTM_NUM_NBRS_BCC, PTM_NUM_NBRS_ICO, PTM_NUM_NBRS_SC, PTM_NUM_NBRS_DCUB, PTM_NUM_NBRS_DHEX}; - -//------------------------------------ -// template structures -//------------------------------------ - -//these point sets have barycentre {0, 0, 0} and are scaled such that the mean neighbour distance is 1 - -const double ptm_template_fcc[PTM_NUM_POINTS_FCC][3] = { { 0. , 0. , 0. }, - { 0. , 0.707106781187, 0.707106781187 }, - { 0. , -0.707106781187, -0.707106781187 }, - { 0. , 0.707106781187, -0.707106781187 }, - { 0. , -0.707106781187, 0.707106781187 }, - { 0.707106781187, 0. , 0.707106781187 }, - { -0.707106781187, 0. , -0.707106781187 }, - { 0.707106781187, 0. , -0.707106781187 }, - { -0.707106781187, 0. , 0.707106781187 }, - { 0.707106781187, 0.707106781187, 0. }, - { -0.707106781187, -0.707106781187, 0. }, - { 0.707106781187, -0.707106781187, 0. }, - { -0.707106781187, 0.707106781187, 0. } }; - -const double ptm_template_hcp[PTM_NUM_POINTS_HCP][3] = { { 0. , 0. , 0. }, - { 0.707106781186, 0. , 0.707106781186 }, - { -0.235702260395, -0.942809041583, -0.235702260395 }, - { 0.707106781186, 0.707106781186, 0. }, - { -0.235702260395, -0.235702260395, -0.942809041583 }, - { 0. , 0.707106781186, 0.707106781186 }, - { -0.942809041583, -0.235702260395, -0.235702260395 }, - { -0.707106781186, 0.707106781186, 0. }, - { 0. , 0.707106781186, -0.707106781186 }, - { 0.707106781186, 0. , -0.707106781186 }, - { 0.707106781186, -0.707106781186, 0. }, - { -0.707106781186, 0. , 0.707106781186 }, - { 0. , -0.707106781186, 0.707106781186 } }; - -const double ptm_template_bcc[PTM_NUM_POINTS_BCC][3] = { { 0. , 0. , 0. }, - { -0.541451884327, -0.541451884327, -0.541451884327 }, - { 0.541451884327, 0.541451884327, 0.541451884327 }, - { 0.541451884327, -0.541451884327, -0.541451884327 }, - { -0.541451884327, 0.541451884327, 0.541451884327 }, - { -0.541451884327, 0.541451884327, -0.541451884327 }, - { 0.541451884327, -0.541451884327, 0.541451884327 }, - { -0.541451884327, -0.541451884327, 0.541451884327 }, - { 0.541451884327, 0.541451884327, -0.541451884327 }, - { 0. , 0. , -1.082903768655 }, - { 0. , 0. , 1.082903768655 }, - { 0. , -1.082903768655, 0. }, - { 0. , 1.082903768655, 0. }, - { -1.082903768655, 0. , 0. }, - { 1.082903768655, 0. , 0. } }; - -const double ptm_template_ico[PTM_NUM_POINTS_ICO][3] = { { 0. , 0. , 0. }, - { 0. , 0.525731112119, 0.850650808352 }, - { 0. , -0.525731112119, -0.850650808352 }, - { 0. , 0.525731112119, -0.850650808352 }, - { 0. , -0.525731112119, 0.850650808352 }, - { -0.525731112119, -0.850650808352, 0. }, - { 0.525731112119, 0.850650808352, 0. }, - { 0.525731112119, -0.850650808352, 0. }, - { -0.525731112119, 0.850650808352, 0. }, - { -0.850650808352, 0. , -0.525731112119 }, - { 0.850650808352, 0. , 0.525731112119 }, - { 0.850650808352, 0. , -0.525731112119 }, - { -0.850650808352, 0. , 0.525731112119 } }; - -const double ptm_template_sc[PTM_NUM_POINTS_SC][3] = { { 0. , 0. , 0. }, - { 0. , 0. , -1. }, - { 0. , 0. , 1. }, - { 0. , -1. , 0. }, - { 0. , 1. , 0. }, - { -1. , 0. , 0. }, - { 1. , 0. , 0. } }; - -const double ptm_template_dcub[PTM_NUM_POINTS_DCUB][3] = { { 0. , 0. , 0. }, - { -0.391491627053, 0.391491627053, 0.391491627053 }, - { -0.391491627053, -0.391491627053, -0.391491627053 }, - { 0.391491627053, -0.391491627053, 0.391491627053 }, - { 0.391491627053, 0.391491627053, -0.391491627053 }, - { -0.782983254107, 0. , 0.782983254107 }, - { -0.782983254107, 0.782983254107, 0. }, - { 0. , 0.782983254107, 0.782983254107 }, - { -0.782983254107, -0.782983254107, 0. }, - { -0.782983254107, 0. , -0.782983254107 }, - { 0. , -0.782983254107, -0.782983254107 }, - { 0. , -0.782983254107, 0.782983254107 }, - { 0.782983254107, -0.782983254107, 0. }, - { 0.782983254107, 0. , 0.782983254107 }, - { 0. , 0.782983254107, -0.782983254107 }, - { 0.782983254107, 0. , -0.782983254107 }, - { 0.782983254107, 0.782983254107, 0. } }; - -const double ptm_template_dhex[PTM_NUM_POINTS_DHEX][3] = { { 0. , 0. , 0. }, - { -0.391491627053, -0.391491627053, -0.391491627053 }, - { 0.391491627053, -0.391491627053, 0.391491627053 }, - { -0.391491627053, 0.391491627053, 0.391491627053 }, - { 0.391491627053, 0.391491627053, -0.391491627053 }, - { -0.260994418036, -1.043977672142, -0.260994418036 }, - { -1.043977672142, -0.260994418036, -0.260994418036 }, - { -0.260994418036, -0.260994418036, -1.043977672142 }, - { 0.782983254107, 0. , 0.782983254107 }, - { 0.782983254107, -0.782983254107, 0. }, - { 0. , -0.782983254107, 0.782983254107 }, - { 0. , 0.782983254107, 0.782983254107 }, - { -0.782983254107, 0.782983254107, 0. }, - { -0.782983254107, 0. , 0.782983254107 }, - { 0.782983254107, 0.782983254107, 0. }, - { 0. , 0.782983254107, -0.782983254107 }, - { 0.782983254107, 0. , -0.782983254107 } }; -#endif - diff --git a/src/PTM/ptm_functions.h b/src/PTM/ptm_functions.h deleted file mode 100644 index cd67d4940d..0000000000 --- a/src/PTM/ptm_functions.h +++ /dev/null @@ -1,27 +0,0 @@ -#ifndef PTM_FUNCTIONS_H -#define PTM_FUNCTIONS_H - -#include <stdint.h> -#include <stdbool.h> -#include "ptm_initialize_data.h" -#include "ptm_constants.h" - - -//------------------------------------ -// function declarations -//------------------------------------ -#ifdef __cplusplus -extern "C" { -#endif - - -int ptm_index( ptm_local_handle_t local_handle, int32_t flags, int num_points, double (*atomic_positions)[3], int32_t* atomic_numbers, bool topological_ordering, //inputs - int32_t* p_type, int32_t* p_alloy_type, double* p_scale, double* p_rmsd, double* q, double* F, double* F_res, double* U, double* P, int8_t* mapping, double* p_interatomic_distance, double* p_lattice_constant); //outputs - - -#ifdef __cplusplus -} -#endif - -#endif - diff --git a/src/USER-PTM/alloy_types.cpp b/src/USER-PTM/alloy_types.cpp deleted file mode 100644 index bde51c19b1..0000000000 --- a/src/USER-PTM/alloy_types.cpp +++ /dev/null @@ -1,101 +0,0 @@ -#include <algorithm> -#include "ptm_constants.h" -#include "initialize_data.h" - - -#define NUM_ALLOY_TYPES 3 -static uint32_t typedata[NUM_ALLOY_TYPES][3] = { - {PTM_MATCH_FCC, PTM_ALLOY_L10, 0x000001fe}, - {PTM_MATCH_FCC, PTM_ALLOY_L12_CU, 0x0000001e}, - {PTM_MATCH_FCC, PTM_ALLOY_L12_AU, 0x00001ffe}, -}; - -static bool test_pure(int num_nbrs, int32_t* numbers) -{ - for (int i=1;i<num_nbrs + 1;i++) - if (numbers[i] != numbers[0]) - return false; - return true; -} - -static bool test_binary(int num_nbrs, int32_t* numbers) -{ - int a = numbers[0], b = -1; - for (int i=1;i<num_nbrs + 1;i++) - { - if (numbers[i] != a) - { - if (b == -1) - b = numbers[i]; - else if (numbers[i] != b) - return false; - } - } - - return true; -} - -static bool test_shell_structure(const refdata_t* ref, int8_t* mapping, int32_t* numbers, int num_inner) -{ - int8_t binary[PTM_MAX_POINTS]; - for (int i=0;i<ref->num_nbrs+1;i++) - binary[i] = numbers[mapping[i]] == numbers[0] ? 0 : 1; - - for (int i=1;i<num_inner + 1;i++) - if (binary[i] == binary[0]) - return false; - - for (int i=num_inner+1;i<ref->num_nbrs+1;i++) - if (binary[i] != binary[0]) - return false; - - return true; -} - -static int32_t canonical_alloy_representation(const refdata_t* ref, int8_t* mapping, int32_t* numbers) -{ - int8_t binary[PTM_MAX_POINTS]; - for (int i=0;i<ref->num_nbrs+1;i++) - binary[i] = numbers[mapping[i]] == numbers[0] ? 0 : 1; - - int8_t temp[PTM_MAX_POINTS]; - uint32_t best = 0xFFFFFFFF; - for (int j=0;j<ref->num_mappings;j++) - { - for (int i=0;i<ref->num_nbrs+1;i++) - temp[ref->mapping[j][i]] = binary[i]; - - uint32_t code = 0; - for (int i=0;i<ref->num_nbrs+1;i++) - code |= (temp[i] << i); - - best = std::min(best, code); - } - - return best; -} - -int32_t find_alloy_type(const refdata_t* ref, int8_t* mapping, int32_t* numbers) -{ - if (test_pure(ref->num_nbrs, numbers)) - return PTM_ALLOY_PURE; - - if (!test_binary(ref->num_nbrs, numbers)) - return PTM_ALLOY_NONE; - - uint32_t code = canonical_alloy_representation(ref, mapping, numbers); - for (int i=0;i<NUM_ALLOY_TYPES;i++) - if ((uint32_t)ref->type == typedata[i][0] && code == typedata[i][2]) - return typedata[i][1]; - - if (ref->type == PTM_MATCH_BCC) - if (test_shell_structure(ref, mapping, numbers, 8)) - return PTM_ALLOY_B2; - - if (ref->type == PTM_MATCH_DCUB || ref->type == PTM_MATCH_DHEX) - if (test_shell_structure(ref, mapping, numbers, 4)) - return PTM_ALLOY_SIC; - - return PTM_ALLOY_NONE; -} - diff --git a/src/USER-PTM/alloy_types.h b/src/USER-PTM/alloy_types.h deleted file mode 100644 index 1f2980593a..0000000000 --- a/src/USER-PTM/alloy_types.h +++ /dev/null @@ -1,9 +0,0 @@ -#ifndef ALLOY_TYPES_H -#define ALLOY_TYPES_H - -#include "initialize_data.h" - -int32_t find_alloy_type(const refdata_t* ref, int8_t* mapping, int32_t* numbers); - -#endif - diff --git a/src/USER-PTM/canonical_coloured.cpp b/src/USER-PTM/canonical_coloured.cpp deleted file mode 100644 index af446e1a95..0000000000 --- a/src/USER-PTM/canonical_coloured.cpp +++ /dev/null @@ -1,167 +0,0 @@ -#include <string.h> -#include <climits> -#include <algorithm> -#include "graph_tools.h" -#include "ptm_constants.h" - - -static bool weinberg_coloured(int num_nodes, int num_edges, int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS], int8_t* colours, int8_t* best_code, int8_t* canonical_labelling, int a, int b) -{ - bool m[PTM_MAX_NBRS][PTM_MAX_NBRS]; - memset(m, 0, sizeof(bool) * PTM_MAX_NBRS * PTM_MAX_NBRS); - - int8_t index[PTM_MAX_NBRS]; - memset(index, -1, sizeof(int8_t) * PTM_MAX_NBRS); - - - int n = 0; - index[a] = colours[a] * num_nodes + n++; - if (index[a] > best_code[0]) - return false; - - bool winning = false; - if (index[a] < best_code[0]) - { - best_code[0] = index[a]; - winning = true; - } - - int c = -1; - for (int it=1;it<2*num_edges;it++) - { - bool newvertex = index[b] == -1; - - if (newvertex) - index[b] = colours[b] * num_nodes + n++; - - if (!winning && index[b] > best_code[it]) - return false; - - if (winning || index[b] < best_code[it]) - { - winning = true; - best_code[it] = index[b]; - } - - if (newvertex) - { - //When a new vertex is reached, take the right-most edge - //relative to the edge on which the vertex is reached. - - c = common[a][b]; - } - else if (m[b][a] == false) - { - //When an old vertex is reached on a new path, go back - //in the opposite direction. - - c = a; - } - else - { - //When an old vertex is reached on an old path, leave the - //vertex on the right-most edge that has not previously - //been traversed in that direction. - - c = common[a][b]; - while (m[b][c] == true) - c = common[c][b]; - } - - m[a][b] = true; - a = b; - b = c; - } - - if (winning) - { - memcpy(canonical_labelling, index, sizeof(int8_t) * num_nodes); - return true; - } - - return false; -} - -int canonical_form_coloured(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree, int8_t* colours, int8_t* canonical_labelling, int8_t* best_code, uint64_t* p_hash) -{ - int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS] = {{0}}; - int num_edges = 3 * num_facets / 2; - if (!build_facet_map(num_facets, facets, common)) - return -1; - - memset(best_code, SCHAR_MAX, sizeof(int8_t) * 2 * PTM_MAX_EDGES); - - bool equal = true; - for (int i = 1;i<num_nodes;i++) - if (degree[i] != degree[0] || colours[i] != colours[0]) - equal = false; - - if (equal) - { - weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, facets[0][0], facets[0][1]); - } - else - { - uint32_t best_degree = 0; - for (int i = 0;i<num_facets;i++) - { - int a = facets[i][0]; - int b = facets[i][1]; - int c = facets[i][2]; - - //int da = colours[a] * num_nodes + degree[a]; - //int db = colours[b] * num_nodes + degree[b]; - //int dc = colours[c] * num_nodes + degree[c]; - - int da = degree[a]; - int db = degree[b]; - int dc = degree[c]; - - best_degree = std::max(best_degree, ((uint32_t)da << 16) | ((uint32_t)db << 8) | ((uint32_t)dc << 0)); - best_degree = std::max(best_degree, ((uint32_t)da << 0) | ((uint32_t)db << 16) | ((uint32_t)dc << 8)); - best_degree = std::max(best_degree, ((uint32_t)da << 8) | ((uint32_t)db << 0) | ((uint32_t)dc << 16)); - } - - for (int i = 0;i<num_facets;i++) - { - int a = facets[i][0]; - int b = facets[i][1]; - int c = facets[i][2]; - - //int da = colours[a] * num_nodes + degree[a]; - //int db = colours[b] * num_nodes + degree[b]; - //int dc = colours[c] * num_nodes + degree[c]; - - int da = degree[a]; - int db = degree[b]; - int dc = degree[c]; - - if (best_degree == (((uint32_t)da << 16) | ((uint32_t)db << 8) | ((uint32_t)dc << 0))) - weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, a, b); - - if (best_degree == (((uint32_t)da << 0) | ((uint32_t)db << 16) | ((uint32_t)dc << 8))) - weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, b, c); - - if (best_degree == (((uint32_t)da << 8) | ((uint32_t)db << 0) | ((uint32_t)dc << 16))) - weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, c, a); - } - } - - for (int i = num_nodes-1;i>=0;i--) - canonical_labelling[i+1] = (canonical_labelling[i] % num_nodes) + 1; - canonical_labelling[0] = 0; - - uint64_t hash = 0; - for (int i = 0;i<2 * num_edges;i++) - { - uint64_t e = best_code[i]; - e += i % 8; - e &= 0xF; - e <<= (4 * i) % 64; - hash ^= e; - } - - *p_hash = hash; - return PTM_NO_ERROR; -} - diff --git a/src/USER-PTM/canonical_coloured.h b/src/USER-PTM/canonical_coloured.h deleted file mode 100644 index 4a7b5f5a4a..0000000000 --- a/src/USER-PTM/canonical_coloured.h +++ /dev/null @@ -1,9 +0,0 @@ -#ifndef CANONICAL_COLOURED_H -#define CANONICAL_COLOURED_H - -#include <stdint.h> - -int canonical_form_coloured(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree, int8_t* colours, int8_t* canonical_labelling, int8_t* best_code, uint64_t* p_hash); - -#endif - diff --git a/src/USER-PTM/cell.cpp b/src/USER-PTM/cell.cpp deleted file mode 100644 index f88e310b74..0000000000 --- a/src/USER-PTM/cell.cpp +++ /dev/null @@ -1,1368 +0,0 @@ -// Voro++, a 3D cell-based Voronoi library -// -// Author : Chris H. Rycroft (LBL / UC Berkeley) -// Email : chr@alum.mit.edu -// Date : August 30th 2011 -// -// Modified by PM Larsen for use in Polyhedral Template Matching - -/** \file cell.cc - * \brief Function implementations for the voronoicell and related classes. */ - -#include <cmath> -#include <cstring> -#include <cstdlib> -#include "config.h" -#include "cell.h" - -namespace voro { - -inline void voro_fatal_error(const char *p,int status) { - fprintf(stderr,"voro++: %s\n",p); - exit(status); - //return -1;//status; -} - -/** Constructs a Voronoi cell and sets up the initial memory. */ -voronoicell_base::voronoicell_base() : - current_vertices(init_vertices), current_vertex_order(init_vertex_order), - current_delete_size(init_delete_size), current_delete2_size(init_delete2_size), - ed(new int*[current_vertices]), nu(new int[current_vertices]), - pts(new double[3*current_vertices]), mem(new int[current_vertex_order]), - mec(new int[current_vertex_order]), mep(new int*[current_vertex_order]), - ds(new int[current_delete_size]), stacke(ds+current_delete_size), - ds2(new int[current_delete2_size]), stacke2(ds2+current_delete_size), - current_marginal(init_marginal), marg(new int[current_marginal]) { - int i; - for(i=0;i<3;i++) { - mem[i]=init_n_vertices;mec[i]=0; - mep[i]=new int[init_n_vertices*((i<<1)+1)]; - } - mem[3]=init_3_vertices;mec[3]=0; - mep[3]=new int[init_3_vertices*7]; - for(i=4;i<current_vertex_order;i++) { - mem[i]=init_n_vertices;mec[i]=0; - mep[i]=new int[init_n_vertices*((i<<1)+1)]; - } -} - -/** The voronoicell destructor deallocates all the dynamic memory. */ -voronoicell_base::~voronoicell_base() { - for(int i=current_vertex_order-1;i>=0;i--) if(mem[i]>0) delete [] mep[i]; - delete [] marg; - delete [] ds2;delete [] ds; - delete [] mep;delete [] mec; - delete [] mem;delete [] pts; - delete [] nu;delete [] ed; -} - -/** Ensures that enough memory is allocated prior to carrying out a copy. - * \param[in] vc a reference to the specialized version of the calling class. - * \param[in] vb a pointered to the class to be copied. */ -template<class vc_class> -void voronoicell_base::check_memory_for_copy(vc_class &vc,voronoicell_base* vb) { - while(current_vertex_order<vb->current_vertex_order) add_memory_vorder(vc); - for(int i=0;i<current_vertex_order;i++) while(mem[i]<vb->mec[i]) add_memory(vc,i,ds2); - while(current_vertices<vb->p) add_memory_vertices(vc); -} - -/** Increases the memory storage for a particular vertex order, by increasing - * the size of the of the corresponding mep array. If the arrays already exist, - * their size is doubled; if they don't exist, then new ones of size - * init_n_vertices are allocated. The routine also ensures that the pointers in - * the ed array are updated, by making use of the back pointers. For the cases - * where the back pointer has been temporarily overwritten in the marginal - * vertex code, the auxiliary delete stack is scanned to find out how to update - * the ed value. If the template has been instantiated with the neighbor - * tracking turned on, then the routine also reallocates the corresponding mne - * array. - * \param[in] i the order of the vertex memory to be increased. */ -template<class vc_class> -void voronoicell_base::add_memory(vc_class &vc,int i,int *stackp2) { - int s=(i<<1)+1; - if(mem[i]==0) { - vc.n_allocate(i,init_n_vertices); - mep[i]=new int[init_n_vertices*s]; - mem[i]=init_n_vertices; -#if VOROPP_VERBOSE >=2 - fprintf(stderr,"Order %d vertex memory created\n",i); -#endif - } else { - int j=0,k,*l; - mem[i]<<=1; - if(mem[i]>max_n_vertices) voro_fatal_error("Point memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR); -#if VOROPP_VERBOSE >=2 - fprintf(stderr,"Order %d vertex memory scaled up to %d\n",i,mem[i]); -#endif - l=new int[s*mem[i]]; - int m=0; - vc.n_allocate_aux1(i); - while(j<s*mec[i]) { - k=mep[i][j+(i<<1)]; - if(k>=0) { - ed[k]=l+j; - vc.n_set_to_aux1_offset(k,m); - } else { - int *dsp; - for(dsp=ds2;dsp<stackp2;dsp++) { - if(ed[*dsp]==mep[i]+j) { - ed[*dsp]=l+j; - vc.n_set_to_aux1_offset(*dsp,m); - break; - } - } - if(dsp==stackp2) voro_fatal_error("Couldn't relocate dangling pointer",VOROPP_INTERNAL_ERROR); -#if VOROPP_VERBOSE >=3 - fputs("Relocated dangling pointer",stderr); -#endif - } - for(k=0;k<s;k++,j++) l[j]=mep[i][j]; - for(k=0;k<i;k++,m++) vc.n_copy_to_aux1(i,m); - } - delete [] mep[i]; - mep[i]=l; - vc.n_switch_to_aux1(i); - } -} - -/** Doubles the maximum number of vertices allowed, by reallocating the ed, nu, - * and pts arrays. If the allocation exceeds the absolute maximum set in - * max_vertices, then the routine exits with a fatal error. If the template has - * been instantiated with the neighbor tracking turned on, then the routine - * also reallocates the ne array. */ -template<class vc_class> -void voronoicell_base::add_memory_vertices(vc_class &vc) { - -printf("nope: %d\n", current_vertices); -exit(3); - - int i=(current_vertices<<1),j,**pp,*pnu; - if(i>max_vertices) voro_fatal_error("Vertex memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR); -#if VOROPP_VERBOSE >=2 - fprintf(stderr,"Vertex memory scaled up to %d\n",i); -#endif - double *ppts; - pp=new int*[i]; - for(j=0;j<current_vertices;j++) pp[j]=ed[j]; - delete [] ed;ed=pp; - vc.n_add_memory_vertices(i); - pnu=new int[i]; - for(j=0;j<current_vertices;j++) pnu[j]=nu[j]; - delete [] nu;nu=pnu; - ppts=new double[3*i]; - for(j=0;j<3*current_vertices;j++) ppts[j]=pts[j]; - delete [] pts;pts=ppts; - current_vertices=i; -} - -/** Doubles the maximum allowed vertex order, by reallocating mem, mep, and mec - * arrays. If the allocation exceeds the absolute maximum set in - * max_vertex_order, then the routine causes a fatal error. If the template has - * been instantiated with the neighbor tracking turned on, then the routine - * also reallocates the mne array. */ -template<class vc_class> -void voronoicell_base::add_memory_vorder(vc_class &vc) { - int i=(current_vertex_order<<1),j,*p1,**p2; - if(i>max_vertex_order) voro_fatal_error("Vertex order memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR); -#if VOROPP_VERBOSE >=2 - fprintf(stderr,"Vertex order memory scaled up to %d\n",i); -#endif - p1=new int[i]; - for(j=0;j<current_vertex_order;j++) p1[j]=mem[j];while(j<i) p1[j++]=0; - delete [] mem;mem=p1; - p2=new int*[i]; - for(j=0;j<current_vertex_order;j++) p2[j]=mep[j]; - delete [] mep;mep=p2; - p1=new int[i]; - for(j=0;j<current_vertex_order;j++) p1[j]=mec[j];while(j<i) p1[j++]=0; - delete [] mec;mec=p1; - vc.n_add_memory_vorder(i); - current_vertex_order=i; -} - -/** Doubles the size allocation of the main delete stack. If the allocation - * exceeds the absolute maximum set in max_delete_size, then routine causes a - * fatal error. */ -void voronoicell_base::add_memory_ds(int *&stackp) { - current_delete_size<<=1; - if(current_delete_size>max_delete_size) voro_fatal_error("Delete stack 1 memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR); -#if VOROPP_VERBOSE >=2 - fprintf(stderr,"Delete stack 1 memory scaled up to %d\n",current_delete_size); -#endif - int *dsn=new int[current_delete_size],*dsnp=dsn,*dsp=ds; - while(dsp<stackp) *(dsnp++)=*(dsp++); - delete [] ds;ds=dsn;stackp=dsnp; - stacke=ds+current_delete_size; -} - -/** Doubles the size allocation of the auxiliary delete stack. If the - * allocation exceeds the absolute maximum set in max_delete2_size, then the - * routine causes a fatal error. */ -void voronoicell_base::add_memory_ds2(int *&stackp2) { - current_delete2_size<<=1; - if(current_delete2_size>max_delete2_size) voro_fatal_error("Delete stack 2 memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR); -#if VOROPP_VERBOSE >=2 - fprintf(stderr,"Delete stack 2 memory scaled up to %d\n",current_delete2_size); -#endif - int *dsn=new int[current_delete2_size],*dsnp=dsn,*dsp=ds2; - while(dsp<stackp2) *(dsnp++)=*(dsp++); - delete [] ds2;ds2=dsn;stackp2=dsnp; - stacke2=ds2+current_delete2_size; -} - -/** Initializes a Voronoi cell as a rectangular box with the given dimensions. - * \param[in] (xmin,xmax) the minimum and maximum x coordinates. - * \param[in] (ymin,ymax) the minimum and maximum y coordinates. - * \param[in] (zmin,zmax) the minimum and maximum z coordinates. */ -void voronoicell_base::init_base(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax) { - for(int i=0;i<current_vertex_order;i++) mec[i]=0;up=0; - mec[3]=p=8;xmin*=2;xmax*=2;ymin*=2;ymax*=2;zmin*=2;zmax*=2; - *pts=xmin;pts[1]=ymin;pts[2]=zmin; - pts[3]=xmax;pts[4]=ymin;pts[5]=zmin; - pts[6]=xmin;pts[7]=ymax;pts[8]=zmin; - pts[9]=xmax;pts[10]=ymax;pts[11]=zmin; - pts[12]=xmin;pts[13]=ymin;pts[14]=zmax; - pts[15]=xmax;pts[16]=ymin;pts[17]=zmax; - pts[18]=xmin;pts[19]=ymax;pts[20]=zmax; - pts[21]=xmax;pts[22]=ymax;pts[23]=zmax; - int *q=mep[3]; - *q=1;q[1]=4;q[2]=2;q[3]=2;q[4]=1;q[5]=0;q[6]=0; - q[7]=3;q[8]=5;q[9]=0;q[10]=2;q[11]=1;q[12]=0;q[13]=1; - q[14]=0;q[15]=6;q[16]=3;q[17]=2;q[18]=1;q[19]=0;q[20]=2; - q[21]=2;q[22]=7;q[23]=1;q[24]=2;q[25]=1;q[26]=0;q[27]=3; - q[28]=6;q[29]=0;q[30]=5;q[31]=2;q[32]=1;q[33]=0;q[34]=4; - q[35]=4;q[36]=1;q[37]=7;q[38]=2;q[39]=1;q[40]=0;q[41]=5; - q[42]=7;q[43]=2;q[44]=4;q[45]=2;q[46]=1;q[47]=0;q[48]=6; - q[49]=5;q[50]=3;q[51]=6;q[52]=2;q[53]=1;q[54]=0;q[55]=7; - *ed=q;ed[1]=q+7;ed[2]=q+14;ed[3]=q+21; - ed[4]=q+28;ed[5]=q+35;ed[6]=q+42;ed[7]=q+49; - *nu=nu[1]=nu[2]=nu[3]=nu[4]=nu[5]=nu[6]=nu[7]=3; -} - -/** Starting from a point within the current cutting plane, this routine attempts - * to find an edge to a point outside the cutting plane. This prevents the plane - * routine from . - * \param[in] vc a reference to the specialized version of the calling class. - * \param[in,out] up */ -template<class vc_class> -inline bool voronoicell_base::search_for_outside_edge(vc_class &vc,int &up) { - int i,lp,lw,*j(ds2),*stackp2(ds2); - double l; - *(stackp2++)=up; - while(j<stackp2) { - up=*(j++); - for(i=0;i<nu[up];i++) { - lp=ed[up][i]; - lw=m_test(lp,l); - if(lw==-1) return true; - else if(lw==0) add_to_stack(vc,lp,stackp2); - } - } - return false; -} - -/** Adds a point to the auxiliary delete stack if it is not already there. - * \param[in] vc a reference to the specialized version of the calling class. - * \param[in] lp the index of the point to add. - * \param[in,out] stackp2 a pointer to the end of the stack entries. */ -template<class vc_class> -inline void voronoicell_base::add_to_stack(vc_class &vc,int lp,int *&stackp2) { - for(int *k(ds2);k<stackp2;k++) if(*k==lp) return; - if(stackp2==stacke2) add_memory_ds2(stackp2); - *(stackp2++)=lp; -} - -/** Cuts the Voronoi cell by a particle whose center is at a separation of - * (x,y,z) from the cell center. The value of rsq should be initially set to - * \f$x^2+y^2+z^2\f$. - * \param[in] vc a reference to the specialized version of the calling class. - * \param[in] (x,y,z) the normal vector to the plane. - * \param[in] rsq the distance along this vector of the plane. - * \param[in] p_id the plane ID (for neighbor tracking only). - * \return False if the plane cut deleted the cell entirely, true otherwise. */ -template<class vc_class> -bool voronoicell_base::nplane(vc_class &vc,double x,double y,double z,double rsq,int p_id) { - int count=0,i,j,k,lp=up,cp,qp,rp,*stackp(ds),*stackp2(ds2),*dsp; - int us=0,ls=0,qs,iqs,cs,uw,qw,lw; - int *edp,*edd; - double u,l,r,q;bool complicated_setup=false,new_double_edge=false,double_edge=false; - - // Initialize the safe testing routine - n_marg=0;px=x;py=y;pz=z;prsq=rsq; - - // Test approximately sqrt(n)/4 points for their proximity to the plane - // and keep the one which is closest - uw=m_test(up,u); - - // Starting from an initial guess, we now move from vertex to vertex, - // to try and find an edge which intersects the cutting plane, - // or a vertex which is on the plane - try { - if(uw==1) { - - // The test point is inside the cutting plane. - us=0; - do { - lp=ed[up][us]; - lw=m_test(lp,l); - if(l<u) break; - us++; - } while (us<nu[up]); - - if(us==nu[up]) { - return false; - } - - ls=ed[up][nu[up]+us]; - while(lw==1) { - if(++count>=p) throw true; - u=l;up=lp; - for(us=0;us<ls;us++) { - lp=ed[up][us]; - lw=m_test(lp,l); - if(l<u) break; - } - if(us==ls) { - us++; - while(us<nu[up]) { - lp=ed[up][us]; - lw=m_test(lp,l); - if(l<u) break; - us++; - } - if(us==nu[up]) { - return false; - } - } - ls=ed[up][nu[up]+us]; - } - - // If the last point in the iteration is within the - // plane, we need to do the complicated setup - // routine. Otherwise, we use the regular iteration. - if(lw==0) { - up=lp; - complicated_setup=true; - } else complicated_setup=false; - } else if(uw==-1) { - us=0; - do { - qp=ed[up][us]; - qw=m_test(qp,q); - if(u<q) break; - us++; - } while (us<nu[up]); - if(us==nu[up]) return true; - - while(qw==-1) { - qs=ed[up][nu[up]+us]; - if(++count>=p) throw true; - u=q;up=qp; - for(us=0;us<qs;us++) { - qp=ed[up][us]; - qw=m_test(qp,q); - if(u<q) break; - } - if(us==qs) { - us++; - while(us<nu[up]) { - qp=ed[up][us]; - qw=m_test(qp,q); - if(u<q) break; - us++; - } - if(us==nu[up]) return true; - } - } - if(qw==1) { - lp=up;ls=us;l=u; - up=qp;us=ed[lp][nu[lp]+ls];u=q; - complicated_setup=false; - } else { - up=qp; - complicated_setup=true; - } - } else { - - // Our original test point was on the plane, so we - // automatically head for the complicated setup - // routine - complicated_setup=true; - } - } - catch(bool except) { - // This routine is a fall-back, in case floating point errors - // cause the usual search routine to fail. In the fall-back - // routine, we just test every edge to find one straddling - // the plane. -#if VOROPP_VERBOSE >=1 - fputs("Bailed out of convex calculation\n",stderr); -#endif - qw=1;lw=0; - for(qp=0;qp<p;qp++) { - qw=m_test(qp,q); - if(qw==1) { - - // The point is inside the cutting space. Now - // see if we can find a neighbor which isn't. - for(us=0;us<nu[qp];us++) { - lp=ed[qp][us]; - if(lp<qp) { - lw=m_test(lp,l); - if(lw!=1) break; - } - } - if(us<nu[qp]) { - up=qp; - if(lw==0) { - complicated_setup=true; - } else { - complicated_setup=false; - u=q; - ls=ed[up][nu[up]+us]; - } - break; - } - } else if(qw==-1) { - - // The point is outside the cutting space. See - // if we can find a neighbor which isn't. - for(ls=0;ls<nu[qp];ls++) { - up=ed[qp][ls]; - if(up<qp) { - uw=m_test(up,u); - if(uw!=-1) break; - } - } - if(ls<nu[qp]) { - if(uw==0) { - up=qp; - complicated_setup=true; - } else { - complicated_setup=false; - lp=qp;l=q; - us=ed[lp][nu[lp]+ls]; - } - break; - } - } else { - - // The point is in the plane, so we just - // proceed with the complicated setup routine - up=qp; - complicated_setup=true; - break; - } - } - if(qp==p) return qw==-1?true:false; - } - - // We're about to add the first point of the new facet. In either - // routine, we have to add a point, so first check there's space for - // it. - if(p==current_vertices) add_memory_vertices(vc); - - if(complicated_setup) { - - // We want to be strict about reaching the conclusion that the - // cell is entirely within the cutting plane. It's not enough - // to find a vertex that has edges which are all inside or on - // the plane. If the vertex has neighbors that are also on the - // plane, we should check those too. - if(!search_for_outside_edge(vc,up)) return false; - - // The search algorithm found a point which is on the cutting - // plane. We leave that point in place, and create a new one at - // the same location. - pts[3*p]=pts[3*up]; - pts[3*p+1]=pts[3*up+1]; - pts[3*p+2]=pts[3*up+2]; - - // Search for a collection of edges of the test vertex which - // are outside of the cutting space. Begin by testing the - // zeroth edge. - i=0; - lp=*ed[up]; - lw=m_test(lp,l); - if(lw!=-1) { - - // The first edge is either inside the cutting space, - // or lies within the cutting plane. Test the edges - // sequentially until we find one that is outside. - rp=lw; - do { - i++; - - // If we reached the last edge with no luck - // then all of the vertices are inside - // or on the plane, so the cell is completely - // deleted - if(i==nu[up]) return false; - lp=ed[up][i]; - lw=m_test(lp,l); - } while (lw!=-1); - j=i+1; - - // We found an edge outside the cutting space. Keep - // moving through these edges until we find one that's - // inside or on the plane. - while(j<nu[up]) { - lp=ed[up][j]; - lw=m_test(lp,l); - if(lw!=-1) break; - j++; - } - - // Compute the number of edges for the new vertex. In - // general it will be the number of outside edges - // found, plus two. But we need to recognize the - // special case when all but one edge is outside, and - // the remaining one is on the plane. For that case we - // have to reduce the edge count by one to prevent - // doubling up. - if(j==nu[up]&&i==1&&rp==0) { - nu[p]=nu[up]; - double_edge=true; - } else nu[p]=j-i+2; - k=1; - - // Add memory for the new vertex if needed, and - // initialize - while (nu[p]>=current_vertex_order) add_memory_vorder(vc); - if(mec[nu[p]]==mem[nu[p]]) add_memory(vc,nu[p],stackp2); - vc.n_set_pointer(p,nu[p]); - ed[p]=mep[nu[p]]+((nu[p]<<1)+1)*mec[nu[p]]++; - ed[p][nu[p]<<1]=p; - - // Copy the edges of the original vertex into the new - // one. Delete the edges of the original vertex, and - // update the relational table. - us=cycle_down(i,up); - while(i<j) { - qp=ed[up][i]; - qs=ed[up][nu[up]+i]; - vc.n_copy(p,k,up,i); - ed[p][k]=qp; - ed[p][nu[p]+k]=qs; - ed[qp][qs]=p; - ed[qp][nu[qp]+qs]=k; - ed[up][i]=-1; - i++;k++; - } - qs=i==nu[up]?0:i; - } else { - - // In this case, the zeroth edge is outside the cutting - // plane. Begin by searching backwards from the last - // edge until we find an edge which isn't outside. - i=nu[up]-1; - lp=ed[up][i]; - lw=m_test(lp,l); - while(lw==-1) { - i--; - - // If i reaches zero, then we have a point in - // the plane all of whose edges are outside - // the cutting space, so we just exit - if(i==0) return true; - lp=ed[up][i]; - lw=m_test(lp,l); - } - - // Now search forwards from zero - j=1; - qp=ed[up][j]; - qw=m_test(qp,q); - while(qw==-1) { - j++; - qp=ed[up][j]; - qw=m_test(qp,l); - } - - // Compute the number of edges for the new vertex. In - // general it will be the number of outside edges - // found, plus two. But we need to recognize the - // special case when all but one edge is outside, and - // the remaining one is on the plane. For that case we - // have to reduce the edge count by one to prevent - // doubling up. - if(i==j&&qw==0) { - double_edge=true; - nu[p]=nu[up]; - } else { - nu[p]=nu[up]-i+j+1; - } - - // Add memory to store the vertex if it doesn't exist - // already - k=1; - while(nu[p]>=current_vertex_order) add_memory_vorder(vc); - if(mec[nu[p]]==mem[nu[p]]) add_memory(vc,nu[p],stackp2); - - // Copy the edges of the original vertex into the new - // one. Delete the edges of the original vertex, and - // update the relational table. - vc.n_set_pointer(p,nu[p]); - ed[p]=mep[nu[p]]+((nu[p]<<1)+1)*mec[nu[p]]++; - ed[p][nu[p]<<1]=p; - us=i++; - while(i<nu[up]) { - qp=ed[up][i]; - qs=ed[up][nu[up]+i]; - vc.n_copy(p,k,up,i); - ed[p][k]=qp; - ed[p][nu[p]+k]=qs; - ed[qp][qs]=p; - ed[qp][nu[qp]+qs]=k; - ed[up][i]=-1; - i++;k++; - } - i=0; - while(i<j) { - qp=ed[up][i]; - qs=ed[up][nu[up]+i]; - vc.n_copy(p,k,up,i); - ed[p][k]=qp; - ed[p][nu[p]+k]=qs; - ed[qp][qs]=p; - ed[qp][nu[qp]+qs]=k; - ed[up][i]=-1; - i++;k++; - } - qs=j; - } - if(!double_edge) { - vc.n_copy(p,k,up,qs); - vc.n_set(p,0,p_id); - } else vc.n_copy(p,0,up,qs); - - // Add this point to the auxiliary delete stack - if(stackp2==stacke2) add_memory_ds2(stackp2); - *(stackp2++)=up; - - // Look at the edges on either side of the group that was - // detected. We're going to commence facet computation by - // moving along one of them. We are going to end up coming back - // along the other one. - cs=k; - qp=up;q=u; - i=ed[up][us]; - us=ed[up][nu[up]+us]; - up=i; - ed[qp][nu[qp]<<1]=-p; - - } else { - - // The search algorithm found an intersected edge between the - // points lp and up. Create a new vertex between them which - // lies on the cutting plane. Since u and l differ by at least - // the tolerance, this division should never screw up. - if(stackp==stacke) add_memory_ds(stackp); - *(stackp++)=up; - r=u/(u-l);l=1-r; - pts[3*p]=pts[3*lp]*r+pts[3*up]*l; - pts[3*p+1]=pts[3*lp+1]*r+pts[3*up+1]*l; - pts[3*p+2]=pts[3*lp+2]*r+pts[3*up+2]*l; - - // This point will always have three edges. Connect one of them - // to lp. - nu[p]=3; - if(mec[3]==mem[3]) add_memory(vc,3,stackp2); - vc.n_set_pointer(p,3); - vc.n_set(p,0,p_id); - vc.n_copy(p,1,up,us); - vc.n_copy(p,2,lp,ls); - ed[p]=mep[3]+7*mec[3]++; - ed[p][6]=p; - ed[up][us]=-1; - ed[lp][ls]=p; - ed[lp][nu[lp]+ls]=1; - ed[p][1]=lp; - ed[p][nu[p]+1]=ls; - cs=2; - - // Set the direction to move in - qs=cycle_up(us,up); - qp=up;q=u; - } - - // When the code reaches here, we have initialized the first point, and - // we have a direction for moving it to construct the rest of the facet - cp=p;rp=p;p++; - while(qp!=up||qs!=us) { - - // We're currently tracing round an intersected facet. Keep - // moving around it until we find a point or edge which - // intersects the plane. - lp=ed[qp][qs]; - lw=m_test(lp,l); - - if(lw==1) { - - // The point is still in the cutting space. Just add it - // to the delete stack and keep moving. - qs=cycle_up(ed[qp][nu[qp]+qs],lp); - qp=lp; - q=l; - if(stackp==stacke) add_memory_ds(stackp); - *(stackp++)=qp; - - } else if(lw==-1) { - - // The point is outside of the cutting space, so we've - // found an intersected edge. Introduce a regular point - // at the point of intersection. Connect it to the - // point we just tested. Also connect it to the previous - // new point in the facet we're constructing. - if(p==current_vertices) add_memory_vertices(vc); - r=q/(q-l);l=1-r; - pts[3*p]=pts[3*lp]*r+pts[3*qp]*l; - pts[3*p+1]=pts[3*lp+1]*r+pts[3*qp+1]*l; - pts[3*p+2]=pts[3*lp+2]*r+pts[3*qp+2]*l; - nu[p]=3; - if(mec[3]==mem[3]) add_memory(vc,3,stackp2); - ls=ed[qp][qs+nu[qp]]; - vc.n_set_pointer(p,3); - vc.n_set(p,0,p_id); - vc.n_copy(p,1,qp,qs); - vc.n_copy(p,2,lp,ls); - ed[p]=mep[3]+7*mec[3]++; - *ed[p]=cp; - ed[p][1]=lp; - ed[p][3]=cs; - ed[p][4]=ls; - ed[p][6]=p; - ed[lp][ls]=p; - ed[lp][nu[lp]+ls]=1; - ed[cp][cs]=p; - ed[cp][nu[cp]+cs]=0; - ed[qp][qs]=-1; - qs=cycle_up(qs,qp); - cp=p++; - cs=2; - } else { - - // We've found a point which is on the cutting plane. - // We're going to introduce a new point right here, but - // first we need to figure out the number of edges it - // has. - if(p==current_vertices) add_memory_vertices(vc); - - // If the previous vertex detected a double edge, our - // new vertex will have one less edge. - k=double_edge?0:1; - qs=ed[qp][nu[qp]+qs]; - qp=lp; - iqs=qs; - - // Start testing the edges of the current point until - // we find one which isn't outside the cutting space - do { - k++; - qs=cycle_up(qs,qp); - lp=ed[qp][qs]; - lw=m_test(lp,l); - } while (lw==-1); - - // Now we need to find out whether this marginal vertex - // we are on has been visited before, because if that's - // the case, we need to add vertices to the existing - // new vertex, rather than creating a fresh one. We also - // need to figure out whether we're in a case where we - // might be creating a duplicate edge. - j=-ed[qp][nu[qp]<<1]; - if(qp==up&&qs==us) { - - // If we're heading into the final part of the - // new facet, then we never worry about the - // duplicate edge calculation. - new_double_edge=false; - if(j>0) k+=nu[j]; - } else { - if(j>0) { - - // This vertex was visited before, so - // count those vertices to the ones we - // already have. - k+=nu[j]; - - // The only time when we might make a - // duplicate edge is if the point we're - // going to move to next is also a - // marginal point, so test for that - // first. - if(lw==0) { - - // Now see whether this marginal point - // has been visited before. - i=-ed[lp][nu[lp]<<1]; - if(i>0) { - - // Now see if the last edge of that other - // marginal point actually ends up here. - if(ed[i][nu[i]-1]==j) { - new_double_edge=true; - k-=1; - } else new_double_edge=false; - } else { - - // That marginal point hasn't been visited - // before, so we probably don't have to worry - // about duplicate edges, except in the - // case when that's the way into the end - // of the facet, because that way always creates - // an edge. - if(j==rp&&lp==up&&ed[qp][nu[qp]+qs]==us) { - new_double_edge=true; - k-=1; - } else new_double_edge=false; - } - } else new_double_edge=false; - } else { - - // The vertex hasn't been visited - // before, but let's see if it's - // marginal - if(lw==0) { - - // If it is, we need to check - // for the case that it's a - // small branch, and that we're - // heading right back to where - // we came from - i=-ed[lp][nu[lp]<<1]; - if(i==cp) { - new_double_edge=true; - k-=1; - } else new_double_edge=false; - } else new_double_edge=false; - } - } - - // k now holds the number of edges of the new vertex - // we are forming. Add memory for it if it doesn't exist - // already. - while(k>=current_vertex_order) add_memory_vorder(vc); - if(mec[k]==mem[k]) add_memory(vc,k,stackp2); - - // Now create a new vertex with order k, or augment - // the existing one - if(j>0) { - - // If we're augmenting a vertex but we don't - // actually need any more edges, just skip this - // routine to avoid memory confusion - if(nu[j]!=k) { - // Allocate memory and copy the edges - // of the previous instance into it - vc.n_set_aux1(k); - edp=mep[k]+((k<<1)+1)*mec[k]++; - i=0; - while(i<nu[j]) { - vc.n_copy_aux1(j,i); - edp[i]=ed[j][i]; - edp[k+i]=ed[j][nu[j]+i]; - i++; - } - edp[k<<1]=j; - - // Remove the previous instance with - // fewer vertices from the memory - // structure - edd=mep[nu[j]]+((nu[j]<<1)+1)*--mec[nu[j]]; - if(edd!=ed[j]) { - for(lw=0;lw<=(nu[j]<<1);lw++) ed[j][lw]=edd[lw]; - vc.n_set_aux2_copy(j,nu[j]); - vc.n_copy_pointer(edd[nu[j]<<1],j); - ed[edd[nu[j]<<1]]=ed[j]; - } - vc.n_set_to_aux1(j); - ed[j]=edp; - } else i=nu[j]; - } else { - - // Allocate a new vertex of order k - vc.n_set_pointer(p,k); - ed[p]=mep[k]+((k<<1)+1)*mec[k]++; - ed[p][k<<1]=p; - if(stackp2==stacke2) add_memory_ds2(stackp2); - *(stackp2++)=qp; - pts[3*p]=pts[3*qp]; - pts[3*p+1]=pts[3*qp+1]; - pts[3*p+2]=pts[3*qp+2]; - ed[qp][nu[qp]<<1]=-p; - j=p++; - i=0; - } - nu[j]=k; - - // Unless the previous case was a double edge, connect - // the first available edge of the new vertex to the - // last one in the facet - if(!double_edge) { - ed[j][i]=cp; - ed[j][nu[j]+i]=cs; - vc.n_set(j,i,p_id); - ed[cp][cs]=j; - ed[cp][nu[cp]+cs]=i; - i++; - } - - // Copy in the edges of the underlying vertex, - // and do one less if this was a double edge - qs=iqs; - while(i<(new_double_edge?k:k-1)) { - qs=cycle_up(qs,qp); - lp=ed[qp][qs];ls=ed[qp][nu[qp]+qs]; - vc.n_copy(j,i,qp,qs); - ed[j][i]=lp; - ed[j][nu[j]+i]=ls; - ed[lp][ls]=j; - ed[lp][nu[lp]+ls]=i; - ed[qp][qs]=-1; - i++; - } - qs=cycle_up(qs,qp); - cs=i; - cp=j; - vc.n_copy(j,new_double_edge?0:cs,qp,qs); - - // Update the double_edge flag, to pass it - // to the next instance of this routine - double_edge=new_double_edge; - } - } - - // Connect the final created vertex to the initial one - ed[cp][cs]=rp; - *ed[rp]=cp; - ed[cp][nu[cp]+cs]=0; - ed[rp][nu[rp]]=cs; - - // Delete points: first, remove any duplicates - dsp=ds; - while(dsp<stackp) { - j=*dsp; - if(ed[j][nu[j]]!=-1) { - ed[j][nu[j]]=-1; - dsp++; - } else *dsp=*(--stackp); - } - - // Add the points in the auxiliary delete stack, - // and reset their back pointers - for(dsp=ds2;dsp<stackp2;dsp++) { - j=*dsp; - ed[j][nu[j]<<1]=j; - if(ed[j][nu[j]]!=-1) { - ed[j][nu[j]]=-1; - if(stackp==stacke) add_memory_ds(stackp); - *(stackp++)=j; - } - } - - // Scan connections and add in extras - for(dsp=ds;dsp<stackp;dsp++) { - cp=*dsp; - for(edp=ed[cp];edp<ed[cp]+nu[cp];edp++) { - qp=*edp; - if(qp!=-1&&ed[qp][nu[qp]]!=-1) { - if(stackp==stacke) { - int dis=stackp-dsp; - add_memory_ds(stackp); - dsp=ds+dis; - } - *(stackp++)=qp; - ed[qp][nu[qp]]=-1; - } - } - } - up=0; - - // Delete them from the array structure - while(stackp>ds) { - --p; - while(ed[p][nu[p]]==-1) { - j=nu[p]; - edp=ed[p];edd=(mep[j]+((j<<1)+1)*--mec[j]); - while(edp<ed[p]+(j<<1)+1) *(edp++)=*(edd++); - vc.n_set_aux2_copy(p,j); - vc.n_copy_pointer(ed[p][(j<<1)],p); - ed[ed[p][(j<<1)]]=ed[p]; - --p; - } - up=*(--stackp); - if(up<p) { - - // Vertex management - pts[3*up]=pts[3*p]; - pts[3*up+1]=pts[3*p+1]; - pts[3*up+2]=pts[3*p+2]; - - // Memory management - j=nu[up]; - edp=ed[up];edd=(mep[j]+((j<<1)+1)*--mec[j]); - while(edp<ed[up]+(j<<1)+1) *(edp++)=*(edd++); - vc.n_set_aux2_copy(up,j); - vc.n_copy_pointer(ed[up][j<<1],up); - vc.n_copy_pointer(up,p); - ed[ed[up][j<<1]]=ed[up]; - - // Edge management - ed[up]=ed[p]; - nu[up]=nu[p]; - for(i=0;i<nu[up];i++) ed[ed[up][i]][ed[up][nu[up]+i]]=up; - ed[up][nu[up]<<1]=up; - } else up=p++; - } - - // Check for any vertices of zero order - if(*mec>0) voro_fatal_error("Zero order vertex formed",VOROPP_INTERNAL_ERROR); - - // Collapse any order 2 vertices and exit - return collapse_order2(vc); -} - -/** During the creation of a new facet in the plane routine, it is possible - * that some order two vertices may arise. This routine removes them. - * Suppose an order two vertex joins c and d. If there's a edge between - * c and d already, then the order two vertex is just removed; otherwise, - * the order two vertex is removed and c and d are joined together directly. - * It is possible this process will create order two or order one vertices, - * and the routine is continually run until all of them are removed. - * \return False if the vertex removal was unsuccessful, indicative of the cell - * reducing to zero volume and disappearing; true if the vertex removal - * was successful. */ -template<class vc_class> -inline bool voronoicell_base::collapse_order2(vc_class &vc) { - if(!collapse_order1(vc)) return false; - int a,b,i,j,k,l; - while(mec[2]>0) { - - // Pick a order 2 vertex and read in its edges - i=--mec[2]; - j=mep[2][5*i];k=mep[2][5*i+1]; - if(j==k) { -#if VOROPP_VERBOSE >=1 - fputs("Order two vertex joins itself",stderr); -#endif - return false; - } - - // Scan the edges of j to see if joins k - for(l=0;l<nu[j];l++) { - if(ed[j][l]==k) break; - } - - // If j doesn't already join k, join them together. - // Otherwise delete the connection to the current - // vertex from j and k. - a=mep[2][5*i+2];b=mep[2][5*i+3];i=mep[2][5*i+4]; - if(l==nu[j]) { - ed[j][a]=k; - ed[k][b]=j; - ed[j][nu[j]+a]=b; - ed[k][nu[k]+b]=a; - } else { - if(!delete_connection(vc,j,a,false)) return false; - if(!delete_connection(vc,k,b,true)) return false; - } - - // Compact the memory - --p; - if(up==i) up=0; - if(p!=i) { - if(up==p) up=i; - pts[3*i]=pts[3*p]; - pts[3*i+1]=pts[3*p+1]; - pts[3*i+2]=pts[3*p+2]; - for(k=0;k<nu[p];k++) ed[ed[p][k]][ed[p][nu[p]+k]]=i; - vc.n_copy_pointer(i,p); - ed[i]=ed[p]; - nu[i]=nu[p]; - ed[i][nu[i]<<1]=i; - } - - // Collapse any order 1 vertices if they were created - if(!collapse_order1(vc)) return false; - } - return true; -} - -/** Order one vertices can potentially be created during the order two collapse - * routine. This routine keeps removing them until there are none left. - * \return False if the vertex removal was unsuccessful, indicative of the cell - * having zero volume and disappearing; true if the vertex removal was - * successful. */ -template<class vc_class> -inline bool voronoicell_base::collapse_order1(vc_class &vc) { - int i,j,k; - while(mec[1]>0) { - up=0; -#if VOROPP_VERBOSE >=1 - fputs("Order one collapse\n",stderr); -#endif - i=--mec[1]; - j=mep[1][3*i];k=mep[1][3*i+1]; - i=mep[1][3*i+2]; - if(!delete_connection(vc,j,k,false)) return false; - --p; - if(up==i) up=0; - if(p!=i) { - if(up==p) up=i; - pts[3*i]=pts[3*p]; - pts[3*i+1]=pts[3*p+1]; - pts[3*i+2]=pts[3*p+2]; - for(k=0;k<nu[p];k++) ed[ed[p][k]][ed[p][nu[p]+k]]=i; - vc.n_copy_pointer(i,p); - ed[i]=ed[p]; - nu[i]=nu[p]; - ed[i][nu[i]<<1]=i; - } - } - return true; -} - -/** This routine deletes the kth edge of vertex j and reorganizes the memory. - * If the neighbor computation is enabled, we also have to supply an handedness - * flag to decide whether to preserve the plane on the left or right of the - * connection. - * \return False if a zero order vertex was formed, indicative of the cell - * disappearing; true if the vertex removal was successful. */ -template<class vc_class> -inline bool voronoicell_base::delete_connection(vc_class &vc,int j,int k,bool hand) { - int q=hand?k:cycle_up(k,j); - int i=nu[j]-1,l,*edp,*edd,m; -#if VOROPP_VERBOSE >=1 - if(i<1) { - fputs("Zero order vertex formed\n",stderr); - return false; - } -#endif - if(mec[i]==mem[i]) add_memory(vc,i,ds2); - vc.n_set_aux1(i); - for(l=0;l<q;l++) vc.n_copy_aux1(j,l); - while(l<i) { - vc.n_copy_aux1_shift(j,l); - l++; - } - edp=mep[i]+((i<<1)+1)*mec[i]++; - edp[i<<1]=j; - for(l=0;l<k;l++) { - edp[l]=ed[j][l]; - edp[l+i]=ed[j][l+nu[j]]; - } - while(l<i) { - m=ed[j][l+1]; - edp[l]=m; - k=ed[j][l+nu[j]+1]; - edp[l+i]=k; - ed[m][nu[m]+k]--; - l++; - } - - edd=mep[nu[j]]+((nu[j]<<1)+1)*--mec[nu[j]]; - for(l=0;l<=(nu[j]<<1);l++) ed[j][l]=edd[l]; - vc.n_set_aux2_copy(j,nu[j]); - vc.n_set_to_aux2(edd[nu[j]<<1]); - vc.n_set_to_aux1(j); - ed[edd[nu[j]<<1]]=edd; - ed[j]=edp; - nu[j]=i; - return true; -} - -/** Calculates the areas of each face of the Voronoi cell and prints the - * results to an output stream. - * \param[out] v the vector to store the results in. */ -void voronoicell_base::face_areas(std::vector<double> &v) { - double area; - v.clear(); - int i,j,k,l,m,n; - double ux,uy,uz,vx,vy,vz,wx,wy,wz; - for(i=1;i<p;i++) for(j=0;j<nu[i];j++) { - k=ed[i][j]; - if(k>=0) { - area=0; - ed[i][j]=-1-k; - l=cycle_up(ed[i][nu[i]+j],k); - m=ed[k][l];ed[k][l]=-1-m; - while(m!=i) { - n=cycle_up(ed[k][nu[k]+l],m); - ux=pts[3*k]-pts[3*i]; - uy=pts[3*k+1]-pts[3*i+1]; - uz=pts[3*k+2]-pts[3*i+2]; - vx=pts[3*m]-pts[3*i]; - vy=pts[3*m+1]-pts[3*i+1]; - vz=pts[3*m+2]-pts[3*i+2]; - wx=uy*vz-uz*vy; - wy=uz*vx-ux*vz; - wz=ux*vy-uy*vx; - area+=sqrt(wx*wx+wy*wy+wz*wz); - k=m;l=n; - m=ed[k][l];ed[k][l]=-1-m; - } - v.push_back(0.125*area); - } - } - reset_edges(); -} - -/** Several routines in the class that gather cell-based statistics internally - * track their progress by flipping edges to negative so that they know what - * parts of the cell have already been tested. This function resets them back - * to positive. When it is called, it assumes that every edge in the routine - * should have already been flipped to negative, and it bails out with an - * internal error if it encounters a positive edge. */ -inline void voronoicell_base::reset_edges() { - int i,j; - for(i=0;i<p;i++) for(j=0;j<nu[i];j++) { - if(ed[i][j]>=0) voro_fatal_error("Edge reset routine found a previously untested edge",VOROPP_INTERNAL_ERROR); - ed[i][j]=-1-ed[i][j]; - } -} - -/** Checks to see if a given vertex is inside, outside or within the test - * plane. If the point is far away from the test plane, the routine immediately - * returns whether it is inside or outside. If the routine is close the the - * plane and within the specified tolerance, then the special check_marginal() - * routine is called. - * \param[in] n the vertex to test. - * \param[out] ans the result of the scalar product used in evaluating the - * location of the point. - * \return -1 if the point is inside the plane, 1 if the point is outside the - * plane, or 0 if the point is within the plane. */ -inline int voronoicell_base::m_test(int n,double &ans) { - double *pp=pts+n+(n<<1); - ans=*(pp++)*px; - ans+=*(pp++)*py; - ans+=*pp*pz-prsq; - if(ans<-tolerance2) { - return -1; - } else if(ans>tolerance2) { - return 1; - } - return check_marginal(n,ans); -} - -/** Checks to see if a given vertex is inside, outside or within the test - * plane, for the case when the point has been detected to be very close to the - * plane. The routine ensures that the returned results are always consistent - * with previous tests, by keeping a table of any marginal results. The routine - * first sees if the vertex is in the table, and if it finds a previously - * computed result it uses that. Otherwise, it computes a result for this - * vertex and adds it the table. - * \param[in] n the vertex to test. - * \param[in] ans the result of the scalar product used in evaluating - * the location of the point. - * \return -1 if the point is inside the plane, 1 if the point is outside the - * plane, or 0 if the point is within the plane. */ -int voronoicell_base::check_marginal(int n,double &ans) { - int i; - for(i=0;i<n_marg;i+=2) if(marg[i]==n) return marg[i+1]; - if(n_marg==current_marginal) { - current_marginal<<=1; - if(current_marginal>max_marginal) - voro_fatal_error("Marginal case buffer allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR); -#if VOROPP_VERBOSE >=2 - fprintf(stderr,"Marginal cases buffer scaled up to %d\n",i); -#endif - int *pmarg=new int[current_marginal]; - for(int j=0;j<n_marg;j++) pmarg[j]=marg[j]; - delete [] marg; - marg=pmarg; - } - marg[n_marg++]=n; - marg[n_marg++]=ans>tolerance?1:(ans<-tolerance?-1:0); - return marg[n_marg-1]; -} - -/** This initializes the class to be a rectangular box. It calls the base class - * initialization routine to set up the edge and vertex information, and then - * sets up the neighbor information, with initial faces being assigned ID - * numbers from -1 to -6. - * \param[in] (xmin,xmax) the minimum and maximum x coordinates. - * \param[in] (ymin,ymax) the minimum and maximum y coordinates. - * \param[in] (zmin,zmax) the minimum and maximum z coordinates. */ -void voronoicell_neighbor::init(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax) { - init_base(xmin,xmax,ymin,ymax,zmin,zmax); - int *q=mne[3]; - *q=-5;q[1]=-3;q[2]=-1; - q[3]=-5;q[4]=-2;q[5]=-3; - q[6]=-5;q[7]=-1;q[8]=-4; - q[9]=-5;q[10]=-4;q[11]=-2; - q[12]=-6;q[13]=-1;q[14]=-3; - q[15]=-6;q[16]=-3;q[17]=-2; - q[18]=-6;q[19]=-4;q[20]=-1; - q[21]=-6;q[22]=-2;q[23]=-4; - *ne=q;ne[1]=q+3;ne[2]=q+6;ne[3]=q+9; - ne[4]=q+12;ne[5]=q+15;ne[6]=q+18;ne[7]=q+21; -} - -/** This routine checks to make sure the neighbor information of each face is - * consistent. */ -void voronoicell_neighbor::check_facets() { - int i,j,k,l,m,q; - for(i=1;i<p;i++) for(j=0;j<nu[i];j++) { - k=ed[i][j]; - if(k>=0) { - ed[i][j]=-1-k; - q=ne[i][j]; - l=cycle_up(ed[i][nu[i]+j],k); - do { - m=ed[k][l]; - ed[k][l]=-1-m; - if(ne[k][l]!=q) fprintf(stderr,"Facet error at (%d,%d)=%d, started from (%d,%d)=%d\n",k,l,ne[k][l],i,j,q); - l=cycle_up(ed[k][nu[k]+l],m); - k=m; - } while (k!=i); - } - } - reset_edges(); -} - -/** The class constructor allocates memory for storing neighbor information. */ -voronoicell_neighbor::voronoicell_neighbor() { - int i; - mne=new int*[current_vertex_order]; - ne=new int*[current_vertices]; - for(i=0;i<3;i++) mne[i]=new int[init_n_vertices*i]; - mne[3]=new int[init_3_vertices*3]; - for(i=4;i<current_vertex_order;i++) mne[i]=new int[init_n_vertices*i]; -} - -/** The class destructor frees the dynamically allocated memory for storing - * neighbor information. */ -voronoicell_neighbor::~voronoicell_neighbor() { - for(int i=current_vertex_order-1;i>=0;i--) if(mem[i]>0) delete [] mne[i]; - delete [] mne; - delete [] ne; -} - -/** Computes a vector list of neighbors. */ -void voronoicell_neighbor::neighbors(std::vector<int> &v) { - v.clear(); - int i,j,k,l,m; - for(i=1;i<p;i++) for(j=0;j<nu[i];j++) { - k=ed[i][j]; - if(k>=0) { - v.push_back(ne[i][j]); - ed[i][j]=-1-k; - l=cycle_up(ed[i][nu[i]+j],k); - do { - m=ed[k][l]; - ed[k][l]=-1-m; - l=cycle_up(ed[k][nu[k]+l],m); - k=m; - } while (k!=i); - } - } - reset_edges(); -} - -// Explicit instantiation -template bool voronoicell_base::nplane(voronoicell_neighbor&,double,double,double,double,int); -template void voronoicell_base::check_memory_for_copy(voronoicell_neighbor&,voronoicell_base*); - -} - diff --git a/src/USER-PTM/cell.h b/src/USER-PTM/cell.h deleted file mode 100644 index 51a0cbb9ef..0000000000 --- a/src/USER-PTM/cell.h +++ /dev/null @@ -1,324 +0,0 @@ -// Voro++, a 3D cell-based Voronoi library -// -// Author : Chris H. Rycroft (LBL / UC Berkeley) -// Email : chr@alum.mit.edu -// Date : August 30th 2011 -// -// Modified by PM Larsen for use in Polyhedral Template Matching - -/** \file cell.hh - * \brief Header file for the voronoicell and related classes. */ - -#ifndef VOROPP_CELL_HH -#define VOROPP_CELL_HH - -#include <vector> -#include <cstdio> - -#include "config.h" - -namespace voro { - -/** \brief A class representing a single Voronoi cell. - * - * This class represents a single Voronoi cell, as a collection of vertices - * that are connected by edges. The class contains routines for initializing - * the Voronoi cell to be simple shapes such as a box, tetrahedron, or octahedron. - * It the contains routines for recomputing the cell based on cutting it - * by a plane, which forms the key routine for the Voronoi cell computation. - * It contains numerous routine for computing statistics about the Voronoi cell, - * and it can output the cell in several formats. - * - * This class is not intended for direct use, but forms the base of the - * voronoicell and voronoicell_neighbor classes, which extend it based on - * whether neighboring particle ID information needs to be tracked. */ -class voronoicell_base { - public: - /** This holds the current size of the arrays ed and nu, which - * hold the vertex information. If more vertices are created - * than can fit in this array, then it is dynamically extended - * using the add_memory_vertices routine. */ - int current_vertices; - /** This holds the current maximum allowed order of a vertex, - * which sets the size of the mem, mep, and mec arrays. If a - * vertex is created with more vertices than this, the arrays - * are dynamically extended using the add_memory_vorder routine. - */ - int current_vertex_order; - /** This sets the size of the main delete stack. */ - int current_delete_size; - /** This sets the size of the auxiliary delete stack. */ - int current_delete2_size; - /** This sets the total number of vertices in the current cell. - */ - int p; - /** This is the index of particular point in the cell, which is - * used to start the tracing routines for plane intersection - * and cutting. These routines will work starting from any - * point, but it's often most efficient to start from the last - * point considered, since in many cases, the cell construction - * algorithm may consider many planes with similar vectors - * concurrently. */ - int up; - /** This is a two dimensional array that holds information - * about the edge connections of the vertices that make up the - * cell. The two dimensional array is not allocated in the - * usual method. To account for the fact the different vertices - * have different orders, and thus require different amounts of - * storage, the elements of ed[i] point to one-dimensional - * arrays in the mep[] array of different sizes. - * - * More specifically, if vertex i has order m, then ed[i] - * points to a one-dimensional array in mep[m] that has 2*m+1 - * entries. The first m elements hold the neighboring edges, so - * that the jth edge of vertex i is held in ed[i][j]. The next - * m elements hold a table of relations which is redundant but - * helps speed up the computation. It satisfies the relation - * ed[ed[i][j]][ed[i][m+j]]=i. The final entry holds a back - * pointer, so that ed[i+2*m]=i. The back pointers are used - * when rearranging the memory. */ - int **ed; - /** This array holds the order of the vertices in the Voronoi - * cell. This array is dynamically allocated, with its current - * size held by current_vertices. */ - int *nu; - /** This in an array with size 3*current_vertices for holding - * the positions of the vertices. */ - double *pts; - voronoicell_base(); - virtual ~voronoicell_base(); - void init_base(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax); - void init_octahedron_base(double l); - void init_tetrahedron_base(double x0,double y0,double z0,double x1,double y1,double z1,double x2,double y2,double z2,double x3,double y3,double z3); - void translate(double x,double y,double z); - double volume(); - double max_radius_squared(); - double total_edge_distance(); - double surface_area(); - void centroid(double &cx,double &cy,double &cz); - int number_of_faces(); - int number_of_edges(); - void vertex_orders(std::vector<int> &v); - void vertices(std::vector<double> &v); - void vertices(double x,double y,double z,std::vector<double> &v); - void face_areas(std::vector<double> &v); - void face_orders(std::vector<int> &v); - void face_freq_table(std::vector<int> &v); - void face_vertices(std::vector<int> &v); - void face_perimeters(std::vector<double> &v); - void normals(std::vector<double> &v); - template<class vc_class> - bool nplane(vc_class &vc,double x,double y,double z,double rsq,int p_id); - bool plane_intersects(double x,double y,double z,double rsq); - bool plane_intersects_guess(double x,double y,double z,double rsq); - void construct_relations(); - void check_relations(); - void check_duplicates(); - /** Returns a list of IDs of neighboring particles - * corresponding to each face. - * \param[out] v a reference to a vector in which to return the - * results. If no neighbor information is - * available, a blank vector is returned. */ - virtual void neighbors(std::vector<int> &v) {v.clear();} - /** This a virtual function that is overridden by a routine to - * print the neighboring particle IDs for a given vertex. By - * default, when no neighbor information is available, the - * routine does nothing. - * \param[in] i the vertex to consider. */ - /** This is a simple inline function for picking out the index - * of the next edge counterclockwise at the current vertex. - * \param[in] a the index of an edge of the current vertex. - * \param[in] p the number of the vertex. - * \return 0 if a=nu[p]-1, or a+1 otherwise. */ - inline int cycle_up(int a,int p) {return a==nu[p]-1?0:a+1;} - /** This is a simple inline function for picking out the index - * of the next edge clockwise from the current vertex. - * \param[in] a the index of an edge of the current vertex. - * \param[in] p the number of the vertex. - * \return nu[p]-1 if a=0, or a-1 otherwise. */ - inline int cycle_down(int a,int p) {return a==0?nu[p]-1:a-1;} - protected: - /** This a one dimensional array that holds the current sizes - * of the memory allocations for them mep array.*/ - int *mem; - /** This is a one dimensional array that holds the current - * number of vertices of order p that are stored in the mep[p] - * array. */ - int *mec; - /** This is a two dimensional array for holding the information - * about the edges of the Voronoi cell. mep[p] is a - * one-dimensional array for holding the edge information about - * all vertices of order p, with each vertex holding 2*p+1 - * integers of information. The total number of vertices held - * on mep[p] is stored in mem[p]. If the space runs out, the - * code allocates more using the add_memory() routine. */ - int **mep; - inline void reset_edges(); - template<class vc_class> - void check_memory_for_copy(vc_class &vc,voronoicell_base* vb); - void copy(voronoicell_base* vb); - private: - /** This is the delete stack, used to store the vertices which - * are going to be deleted during the plane cutting procedure. - */ - int *ds,*stacke; - /** This is the auxiliary delete stack, which has size set by - * current_delete2_size. */ - int *ds2,*stacke2; - /** This stores the current memory allocation for the marginal - * cases. */ - int current_marginal; - /** This stores the total number of marginal points which are - * currently in the buffer. */ - int n_marg; - /** This array contains a list of the marginal points, and also - * the outcomes of the marginal tests. */ - int *marg; - /** The x coordinate of the normal vector to the test plane. */ - double px; - /** The y coordinate of the normal vector to the test plane. */ - double py; - /** The z coordinate of the normal vector to the test plane. */ - double pz; - /** The magnitude of the normal vector to the test plane. */ - double prsq; - template<class vc_class> - void add_memory(vc_class &vc,int i,int *stackp2); - template<class vc_class> - void add_memory_vertices(vc_class &vc); - template<class vc_class> - void add_memory_vorder(vc_class &vc); - void add_memory_ds(int *&stackp); - void add_memory_ds2(int *&stackp2); - template<class vc_class> - inline bool collapse_order1(vc_class &vc); - template<class vc_class> - inline bool collapse_order2(vc_class &vc); - template<class vc_class> - inline bool delete_connection(vc_class &vc,int j,int k,bool hand); - template<class vc_class> - inline bool search_for_outside_edge(vc_class &vc,int &up); - template<class vc_class> - inline void add_to_stack(vc_class &vc,int lp,int *&stackp2); - inline bool plane_intersects_track(double x,double y,double z,double rs,double g); - inline void normals_search(std::vector<double> &v,int i,int j,int k); - inline bool search_edge(int l,int &m,int &k); - inline int m_test(int n,double &ans); - int check_marginal(int n,double &ans); - friend class voronoicell; - friend class voronoicell_neighbor; -}; - -/** \brief Extension of the voronoicell_base class to represent a Voronoi cell - * with neighbor information. - * - * This class is an extension of the voronoicell_base class, in cases when the - * IDs of neighboring particles associated with each face of the Voronoi cell. - * It contains additional data structures mne and ne for storing this - * information. */ -class voronoicell_neighbor : public voronoicell_base { - public: - using voronoicell_base::nplane; - /** This two dimensional array holds the neighbor information - * associated with each vertex. mne[p] is a one dimensional - * array which holds all of the neighbor information for - * vertices of order p. */ - int **mne; - /** This is a two dimensional array that holds the neighbor - * information associated with each vertex. ne[i] points to a - * one-dimensional array in mne[nu[i]]. ne[i][j] holds the - * neighbor information associated with the jth edge of vertex - * i. It is set to the ID number of the plane that made the - * face that is clockwise from the jth edge. */ - int **ne; - voronoicell_neighbor(); - ~voronoicell_neighbor(); - void operator=(voronoicell_neighbor &c); - /** Cuts the Voronoi cell by a particle whose center is at a - * separation of (x,y,z) from the cell center. The value of rsq - * should be initially set to \f$x^2+y^2+z^2\f$. - * \param[in] (x,y,z) the normal vector to the plane. - * \param[in] rsq the distance along this vector of the plane. - * \param[in] p_id the plane ID (for neighbor tracking only). - * \return False if the plane cut deleted the cell entirely, - * true otherwise. */ - inline bool nplane(double x,double y,double z,double rsq,int p_id) { - return nplane(*this,x,y,z,rsq,p_id); - } - /** This routine calculates the modulus squared of the vector - * before passing it to the main nplane() routine with full - * arguments. - * \param[in] (x,y,z) the vector to cut the cell by. - * \param[in] p_id the plane ID (for neighbor tracking only). - * \return False if the plane cut deleted the cell entirely, - * true otherwise. */ - inline bool nplane(double x,double y,double z,int p_id) { - double rsq=x*x+y*y+z*z; - return nplane(*this,x,y,z,rsq,p_id); - } - /** This version of the plane routine just makes up the plane - * ID to be zero. It will only be referenced if neighbor - * tracking is enabled. - * \param[in] (x,y,z) the vector to cut the cell by. - * \param[in] rsq the modulus squared of the vector. - * \return False if the plane cut deleted the cell entirely, - * true otherwise. */ - inline bool plane(double x,double y,double z,double rsq) { - return nplane(*this,x,y,z,rsq,0); - } - /** Cuts a Voronoi cell using the influence of a particle at - * (x,y,z), first calculating the modulus squared of this - * vector before passing it to the main nplane() routine. Zero - * is supplied as the plane ID, which will be ignored unless - * neighbor tracking is enabled. - * \param[in] (x,y,z) the vector to cut the cell by. - * \return False if the plane cut deleted the cell entirely, - * true otherwise. */ - inline bool plane(double x,double y,double z) { - double rsq=x*x+y*y+z*z; - return nplane(*this,x,y,z,rsq,0); - } - void init(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax); - void check_facets(); - virtual void neighbors(std::vector<int> &v); - - private: - int *paux1; - int *paux2; - inline void n_allocate(int i,int m) {mne[i]=new int[m*i];} - inline void n_add_memory_vertices(int i) { - int **pp=new int*[i]; - for(int j=0;j<current_vertices;j++) pp[j]=ne[j]; - delete [] ne;ne=pp; - } - inline void n_add_memory_vorder(int i) { - int **p2=new int*[i]; - for(int j=0;j<current_vertex_order;j++) p2[j]=mne[j]; - delete [] mne;mne=p2; - } - inline void n_set_pointer(int p,int n) { - ne[p]=mne[n]+n*mec[n]; - } - inline void n_copy(int a,int b,int c,int d) {ne[a][b]=ne[c][d];} - inline void n_set(int a,int b,int c) {ne[a][b]=c;} - inline void n_set_aux1(int k) {paux1=mne[k]+k*mec[k];} - inline void n_copy_aux1(int a,int b) {paux1[b]=ne[a][b];} - inline void n_copy_aux1_shift(int a,int b) {paux1[b]=ne[a][b+1];} - inline void n_set_aux2_copy(int a,int b) { - paux2=mne[b]+b*mec[b]; - for(int i=0;i<b;i++) ne[a][i]=paux2[i]; - } - inline void n_copy_pointer(int a,int b) {ne[a]=ne[b];} - inline void n_set_to_aux1(int j) {ne[j]=paux1;} - inline void n_set_to_aux2(int j) {ne[j]=paux2;} - inline void n_allocate_aux1(int i) {paux1=new int[i*mem[i]];} - inline void n_switch_to_aux1(int i) {delete [] mne[i];mne[i]=paux1;} - inline void n_copy_to_aux1(int i,int m) {paux1[m]=mne[i][m];} - inline void n_set_to_aux1_offset(int k,int m) {ne[k]=paux1+m;} - friend class voronoicell_base; -}; - -} - -#endif - diff --git a/src/USER-PTM/config.h b/src/USER-PTM/config.h deleted file mode 100644 index eba69b3373..0000000000 --- a/src/USER-PTM/config.h +++ /dev/null @@ -1,129 +0,0 @@ -// Voro++, a 3D cell-based Voronoi library -// -// Author : Chris H. Rycroft (LBL / UC Berkeley) -// Email : chr@alum.mit.edu -// Date : August 30th 2011 -// -// Modified by PM Larsen for use in Polyhedral Template Matching - -/** \file config.hh - * \brief Master configuration file for setting various compile-time options. */ - -#ifndef VOROPP_CONFIG_HH -#define VOROPP_CONFIG_HH - -namespace voro { - -// These constants set the initial memory allocation for the Voronoi cell -/** The initial memory allocation for the number of vertices. */ -const int init_vertices=256; -/** The initial memory allocation for the maximum vertex order. */ -const int init_vertex_order=64; -/** The initial memory allocation for the number of regular vertices of order - * 3. */ -const int init_3_vertices=256; -/** The initial memory allocation for the number of vertices of higher order. - */ -const int init_n_vertices=8; -/** The initial buffer size for marginal cases used by the suretest class. */ -const int init_marginal=64; -/** The initial size for the delete stack. */ -const int init_delete_size=256; -/** The initial size for the auxiliary delete stack. */ -const int init_delete2_size=256; -/** The initial size for the wall pointer array. */ -const int init_wall_size=32; -/** The default initial size for the ordering class. */ -const int init_ordering_size=4096; -/** The initial size of the pre_container chunk index. */ -const int init_chunk_size=256; - -// If the initial memory is too small, the program dynamically allocates more. -// However, if the limits below are reached, then the program bails out. -/** The maximum memory allocation for the number of vertices. */ -const int max_vertices=16777216; -/** The maximum memory allocation for the maximum vertex order. */ -const int max_vertex_order=2048; -/** The maximum memory allocation for the any particular order of vertex. */ -const int max_n_vertices=16777216; -/** The maximum buffer size for marginal cases used by the suretest class. */ -const int max_marginal=16777216; -/** The maximum size for the delete stack. */ -const int max_delete_size=16777216; -/** The maximum size for the auxiliary delete stack. */ -const int max_delete2_size=16777216; -/** The maximum amount of particle memory allocated for a single region. */ -const int max_particle_memory=16777216; -/** The maximum size for the wall pointer array. */ -const int max_wall_size=2048; -/** The maximum size for the ordering class. */ -const int max_ordering_size=67108864; -/** The maximum size for the pre_container chunk index. */ -const int max_chunk_size=65536; - -/** The chunk size in the pre_container classes. */ -const int pre_container_chunk_size=1024; - -#ifndef VOROPP_VERBOSE -/** Voro++ can print a number of different status and debugging messages to - * notify the user of special behavior, and this macro sets the amount which - * are displayed. At level 0, no messages are printed. At level 1, messages - * about unusual cases during cell construction are printed, such as when the - * plane routine bails out due to floating point problems. At level 2, general - * messages about memory expansion are printed. At level 3, technical details - * about memory management are printed. */ -#define VOROPP_VERBOSE 0 -#endif - -/** If a point is within this distance of a cutting plane, then the code - * assumes that point exactly lies on the plane. */ -const double tolerance=1e-11; - -/** If a point is within this distance of a cutting plane, then the code stores - * whether this point is inside, outside, or exactly on the cutting plane in - * the marginal cases buffer, to prevent the test giving a different result on - * a subsequent evaluation due to floating point rounding errors. */ -const double tolerance2=2e-11; - -/** The square of the tolerance, used when deciding whether some squared - * quantities are large enough to be used. */ -const double tolerance_sq=tolerance*tolerance; - -/** A large number that is used in the computation. */ -const double large_number=1e30; - -/** A radius to use as a placeholder when no other information is available. */ -const double default_radius=0.5; - -/** The maximum number of shells of periodic images to test over. */ -const int max_unit_voro_shells=10; - -/** A guess for the optimal number of particles per block, used to set up the - * container grid. */ -const double optimal_particles=5.6; - -/** If this is set to 1, then the code reports any instances of particles being - * put outside of the container geometry. */ -#define VOROPP_REPORT_OUT_OF_BOUNDS 0 - -/** Voro++ returns this status code if there is a file-related error, such as - * not being able to open file. */ -#define VOROPP_FILE_ERROR 1 - -/** Voro++ returns this status code if there is a memory allocation error, if - * one of the safe memory limits is exceeded. */ -#define VOROPP_MEMORY_ERROR 2 - -/** Voro++ returns this status code if there is any type of internal error, if - * it detects that representation of the Voronoi cell is inconsistent. This - * status code will generally indicate a bug, and the developer should be - * contacted. */ -#define VOROPP_INTERNAL_ERROR 3 - -/** Voro++ returns this status code if it could not interpret the command line - * arguments passed to the command line utility. */ -#define VOROPP_CMD_LINE_ERROR 4 - -} - -#endif diff --git a/src/USER-PTM/convex_hull_incremental.cpp b/src/USER-PTM/convex_hull_incremental.cpp deleted file mode 100644 index bfe173cc02..0000000000 --- a/src/USER-PTM/convex_hull_incremental.cpp +++ /dev/null @@ -1,363 +0,0 @@ -#include <cmath> -#include <cfloat> -#include <string.h> -#include <cassert> -#include <algorithm> -#include "convex_hull_incremental.h" -#include "ptm_constants.h" - - -#define VISIBLE 1 -#define INVISIBLE 2 -#define BOTH 3 -#define TOLERANCE 1E-8 - -static double norm_squared(double* p) -{ - double x = p[0]; - double y = p[1]; - double z = p[2]; - - return x*x + y*y + z*z; -} - -static double dot_product(const double* a, const double* b) -{ - return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; -} - -static void cross_product(double* a, double* b, double* c) -{ - c[0] = a[1] * b[2] - a[2] * b[1]; - c[1] = a[2] * b[0] - a[0] * b[2]; - c[2] = a[0] * b[1] - a[1] * b[0]; -} - -static void calculate_plane_normal(const double (*points)[3], int a, int b, int c, double* plane_normal) -{ - double u[3] = { points[b][0] - points[a][0], - points[b][1] - points[a][1], - points[b][2] - points[a][2] }; - - double v[3] = { points[c][0] - points[a][0], - points[c][1] - points[a][1], - points[c][2] - points[a][2] }; - - cross_product(u, v, plane_normal); - double norm = sqrt(norm_squared(plane_normal)); - plane_normal[0] /= norm; - plane_normal[1] /= norm; - plane_normal[2] /= norm; -} - -static double point_plane_distance(const double* w, const double* plane_point, const double* plane_cross) -{ - return plane_cross[0] * (plane_point[0] - w[0]) - + plane_cross[1] * (plane_point[1] - w[1]) - + plane_cross[2] * (plane_point[2] - w[2]); -} - -static bool calc_max_extent(int num_points, const double (*points)[3], int* min_index, int* max_index) -{ - for (int j=0;j<3;j++) - { - double dmin = DBL_MAX, dmax = -DBL_MAX; - int imin = 0, imax = 0; - - for (int i = 0;i<num_points;i++) - { - double d = points[i][j]; - if (d < dmin) - { - dmin = d; - imin = i; - } - if (d > dmax) - { - dmax = d; - imax = i; - } - } - - if (imin == imax) - return false; //degenerate point set - - min_index[j] = imin; - max_index[j] = imax; - } - - return true; -} - -static bool find_third_point(int num_points, const double (*points)[3], int a, int b, int* p_c) -{ - const double* x1 = points[a]; - const double* x2 = points[b]; - - double x2x1[3] = {x2[0] - x1[0], x2[1] - x1[1], x2[2] - x1[2]}; - double ns_x2x1 = norm_squared(x2x1); - - int bi = -1; - double max_dist = 0.0; - for (int i = 0;i<num_points;i++) - { - if (i == a || i == b) - continue; - - const double* x0 = points[i]; - - double x1x0[3] = {x1[0] - x0[0], x1[1] - x0[1], x1[2] - x0[2]}; - double dot = dot_product(x1x0, x2x1); - double dist = (norm_squared(x1x0) * ns_x2x1 - dot*dot) / ns_x2x1; - - if (dist > max_dist) - { - max_dist = dist; - bi = i; - } - } - - *p_c = bi; - return max_dist > TOLERANCE; -} - -static bool find_fourth_point(int num_points, const double (*points)[3], int a, int b, int c, int* p_d) -{ - double plane_normal[3]; - calculate_plane_normal(points, a, b, c, plane_normal); - - - int bi = -1; - double max_dist = 0.0; - for (int i = 0;i<num_points;i++) - { - if (i == a || i == b || i == c) - continue; - - const double* x0 = points[i]; - double dist = fabs(point_plane_distance(x0, points[a], plane_normal)); - if (dist > max_dist) - { - max_dist = dist; - bi = i; - } - } - - *p_d = bi; - return max_dist > TOLERANCE; -} - -static int initial_simplex(int num_points, const double (*points)[3], int* initial_vertices) -{ - int min_index[3] = {0}; - int max_index[3] = {0}; - if (!calc_max_extent(num_points, points, min_index, max_index)) - return -1; - - int bi = -1; - double max_dist = 0.0; - for (int i = 0;i<3;i++) - { - int a = min_index[i], b = max_index[i]; - double delta[3] = { points[a][0] - points[b][0], - points[a][1] - points[b][1], - points[a][2] - points[b][2] }; - double dist = norm_squared(delta); - if (dist > max_dist) - { - bi = i; - max_dist = dist; - } - } - - //first two points are (a, b) - int a = min_index[bi], b = max_index[bi], c = -1, d = -1; - - if (!find_third_point(num_points, points, a, b, &c)) - return -2; - - if (!find_fourth_point(num_points, points, a, b, c, &d)) - return -3; - - initial_vertices[0] = a; - initial_vertices[1] = b; - initial_vertices[2] = c; - initial_vertices[3] = d; - return 0; -} - -static bool visible(const double* w, const double* plane_point, const double* plane_normal) -{ - return point_plane_distance(w, plane_point, plane_normal) > 0; -} - -void add_facet(const double (*points)[3], int a, int b, int c, int8_t* facet, double* plane_normal, double* barycentre) -{ - calculate_plane_normal(points, a, b, c, plane_normal); - if (visible(barycentre, points[a], plane_normal)) - { - plane_normal[0] = -plane_normal[0]; - plane_normal[1] = -plane_normal[1]; - plane_normal[2] = -plane_normal[2]; - - facet[0] = b; - facet[1] = a; - facet[2] = c; - } - else - { - facet[0] = a; - facet[1] = b; - facet[2] = c; - } -} - -static int initialize_convex_hull(int num_points, const double (*points)[3], int8_t facets[][3], double plane_normal[][3], bool* processed, int* initial_vertices, double* barycentre) -{ - memset(processed, 0, PTM_MAX_POINTS * sizeof(bool)); - memset(barycentre, 0, 3 * sizeof(double)); - int ret = initial_simplex(num_points, points, initial_vertices); - if (ret != 0) - return ret; - - for (int i = 0;i<4;i++) - { - int a = initial_vertices[i]; - processed[a] = true; - - barycentre[0] += points[a][0]; - barycentre[1] += points[a][1]; - barycentre[2] += points[a][2]; - } - barycentre[0] /= 4; - barycentre[1] /= 4; - barycentre[2] /= 4; - - add_facet(points, initial_vertices[0], initial_vertices[1], initial_vertices[2], facets[0], plane_normal[0], barycentre); - add_facet(points, initial_vertices[0], initial_vertices[1], initial_vertices[3], facets[1], plane_normal[1], barycentre); - add_facet(points, initial_vertices[0], initial_vertices[2], initial_vertices[3], facets[2], plane_normal[2], barycentre); - add_facet(points, initial_vertices[1], initial_vertices[2], initial_vertices[3], facets[3], plane_normal[3], barycentre); - return 0; -} - -int get_convex_hull(int num_points, const double (*points)[3], convexhull_t* ch, int8_t simplex[][3]) -{ - assert( num_points == PTM_NUM_POINTS_FCC - || num_points == PTM_NUM_POINTS_HCP - || num_points == PTM_NUM_POINTS_BCC - || num_points == PTM_NUM_POINTS_ICO - || num_points == PTM_NUM_POINTS_SC - || num_points == PTM_NUM_POINTS_DCUB - || num_points == PTM_NUM_POINTS_DHEX); - - int ret = 0; - int num_prev = ch->num_prev; - ch->num_prev = num_points; - if (!ch->ok || 0) - { - ret = initialize_convex_hull(num_points, points, ch->facets, ch->plane_normal, ch->processed, ch->initial_vertices, ch->barycentre); - if (ret != 0) - return ret; - - ch->num_facets = 4; - num_prev = 0; - } - - for (int i = num_prev;i<num_points;i++) - { - if (ch->processed[i]) - continue; - ch->processed[i] = true; - - int num_to_add = 0; - int8_t to_add[PTM_MAX_FACETS][3]; - int8_t edge_visible[PTM_MAX_POINTS][PTM_MAX_POINTS]; - memset(edge_visible, 0, sizeof(int8_t) * PTM_MAX_POINTS * PTM_MAX_POINTS); - for (int j = 0;j<ch->num_facets;j++) - { - int a = ch->facets[j][0]; - int b = ch->facets[j][1]; - int c = ch->facets[j][2]; - - int u = 0, v = 0, w = 0; - - double distance = point_plane_distance(points[i], points[a], ch->plane_normal[j]); - bool vis = distance > TOLERANCE; - if (vis) - { - u = edge_visible[a][b] |= VISIBLE; - edge_visible[b][a] |= VISIBLE; - - v = edge_visible[b][c] |= VISIBLE; - edge_visible[c][b] |= VISIBLE; - - w = edge_visible[c][a] |= VISIBLE; - edge_visible[a][c] |= VISIBLE; - - memcpy(ch->facets[j], ch->facets[ch->num_facets-1], 3 * sizeof(int8_t)); - memcpy(ch->plane_normal[j], ch->plane_normal[ch->num_facets-1], 3 * sizeof(double)); - ch->num_facets--; - j--; - } - else - { - u = edge_visible[a][b] |= INVISIBLE; - edge_visible[b][a] |= INVISIBLE; - - v = edge_visible[b][c] |= INVISIBLE; - edge_visible[c][b] |= INVISIBLE; - - w = edge_visible[c][a] |= INVISIBLE; - edge_visible[a][c] |= INVISIBLE; - } - - if (u == BOTH) - { - to_add[num_to_add][0] = i; - to_add[num_to_add][1] = a; - to_add[num_to_add][2] = b; - num_to_add++; - } - - if (v == BOTH) - { - to_add[num_to_add][0] = i; - to_add[num_to_add][1] = b; - to_add[num_to_add][2] = c; - num_to_add++; - } - - if (w == BOTH) - { - to_add[num_to_add][0] = i; - to_add[num_to_add][1] = c; - to_add[num_to_add][2] = a; - num_to_add++; - } - } - - for (int j = 0;j<num_to_add;j++) - { - if (ch->num_facets >= PTM_MAX_FACETS) - return -4; - - add_facet(points, to_add[j][0], to_add[j][1], to_add[j][2], ch->facets[ch->num_facets], ch->plane_normal[ch->num_facets], ch->barycentre); ch->num_facets++; - } - } - - for (int i=0;i<ch->num_facets;i++) - { - int a = ch->facets[i][0]; - int b = ch->facets[i][1]; - int c = ch->facets[i][2]; - if (a == 0 || b == 0 || c == 0) - return 1; //central atom contained in convex hull - - simplex[i][0] = a - 1; - simplex[i][1] = b - 1; - simplex[i][2] = c - 1; - } - - return ret; -} - diff --git a/src/USER-PTM/convex_hull_incremental.h b/src/USER-PTM/convex_hull_incremental.h deleted file mode 100644 index d384a0457e..0000000000 --- a/src/USER-PTM/convex_hull_incremental.h +++ /dev/null @@ -1,27 +0,0 @@ -#ifndef CONVEX_HULL_INCREMENTAL_H -#define CONVEX_HULL_INCREMENTAL_H - - -#include <stdint.h> -#include <stdbool.h> -#include "ptm_constants.h" - - -typedef struct -{ - int8_t facets[PTM_MAX_FACETS][3]; - double plane_normal[PTM_MAX_FACETS][3]; - bool processed[PTM_MAX_POINTS]; - int initial_vertices[4]; - double barycentre[3]; - int num_facets; - int num_prev; - bool ok; - -} convexhull_t; - -void add_facet(const double (*points)[3], int a, int b, int c, int8_t* facet, double* plane_normal, double* barycentre); -int get_convex_hull(int num_points, const double (*points)[3], convexhull_t* ch, int8_t simplex[][3]); - -#endif - diff --git a/src/USER-PTM/deformation_gradient.cpp b/src/USER-PTM/deformation_gradient.cpp deleted file mode 100644 index 9a86dff6a3..0000000000 --- a/src/USER-PTM/deformation_gradient.cpp +++ /dev/null @@ -1,37 +0,0 @@ -#include "deformation_gradient.h" - - -void calculate_deformation_gradient(int num_points, const double (*ideal_points)[3], int8_t* mapping, double (*normalized)[3], const double (*penrose)[3], double* F, double* res) -{ - for (int i = 0;i<3;i++) - { - for (int j = 0;j<3;j++) - { - double acc = 0.0; - for (int k = 0;k<num_points;k++) - acc += penrose[k][j] * normalized[mapping[k]][i]; - - F[i*3 + j] = acc; - } - } - - res[0] = 0; - res[1] = 0; - res[2] = 0; - - for (int k = 0;k<num_points;k++) - { - for (int i = 0;i<3;i++) - { - double acc = 0.0; - for (int j = 0;j<3;j++) - { - acc += F[i*3 + j] * ideal_points[k][j]; - } - - double delta = acc - normalized[mapping[k]][i]; - res[i] += delta * delta; - } - } -} - diff --git a/src/USER-PTM/deformation_gradient.h b/src/USER-PTM/deformation_gradient.h deleted file mode 100644 index 059a06fdec..0000000000 --- a/src/USER-PTM/deformation_gradient.h +++ /dev/null @@ -1,142 +0,0 @@ -#ifndef DEFORMATION_GRADIENT_H -#define DEFORMATION_GRADIENT_H - -#include <stdint.h> -#include "ptm_constants.h" - -void calculate_deformation_gradient(int num_points, const double (*ideal_points)[3], int8_t* mapping, double (*normalized)[3], const double (*penrose)[3], double* F, double* res); - -//sc -#define k_sc 0.5 -const double penrose_sc[PTM_NUM_POINTS_SC][3] = { - {0, 0, 0}, - {0, 0, -k_sc}, - {0, 0, k_sc}, - {0, -k_sc, 0}, - {0, k_sc, 0}, - {-k_sc, 0, 0}, - {k_sc, 0, 0}, - }; - -//fcc -#define k_fcc 0.17677669529663678216 -const double penrose_fcc[PTM_NUM_POINTS_FCC][3] = { - {0, 0, 0}, - {0, k_fcc, k_fcc}, - {0, -k_fcc, -k_fcc}, - {0, k_fcc, -k_fcc}, - {0, -k_fcc, k_fcc}, - {k_fcc, 0, k_fcc}, - {-k_fcc, 0, -k_fcc}, - {k_fcc, 0, -k_fcc}, - {-k_fcc, 0, k_fcc}, - {k_fcc, k_fcc, -0}, - {-k_fcc, -k_fcc, 0}, - {k_fcc, -k_fcc, 0}, - {-k_fcc, k_fcc, -0}, - }; - -//hcp -#define k_hcp 0.17677669529663678216 -const double penrose_hcp[PTM_NUM_POINTS_HCP][3] = { - {0, 0, 0}, - {k_hcp, 0, k_hcp}, - {-k_hcp/3, -4*k_hcp/3, -k_hcp/3}, - {k_hcp, k_hcp, 0}, - {-k_hcp/3, -k_hcp/3, -4*k_hcp/3}, - {0, k_hcp, k_hcp}, - {-4*k_hcp/3, -k_hcp/3, -k_hcp/3}, - {-k_hcp, k_hcp, -0}, - {0, k_hcp, -k_hcp}, - {k_hcp, 0, -k_hcp}, - {k_hcp, -k_hcp, 0}, - {-k_hcp, 0, k_hcp}, - {0, -k_hcp, k_hcp}, - }; - -//ico -#define k_ico 0.13143277802974323576 -#define phi 1.61803398874989490253 -//((1.0 + sqrt(5)) / 2) -const double penrose_ico[PTM_NUM_POINTS_ICO][3] = { - {0, 0, 0}, - {0, k_ico, phi*k_ico}, - {0, -k_ico, -phi*k_ico}, - {0, k_ico, -phi*k_ico}, - {0, -k_ico, phi*k_ico}, - {-k_ico, -phi*k_ico, -0}, - {k_ico, phi*k_ico, 0}, - {k_ico, -phi*k_ico, 0}, - {-k_ico, phi*k_ico, -0}, - {-phi*k_ico, 0, -k_ico}, - {phi*k_ico, 0, k_ico}, - {phi*k_ico, 0, -k_ico}, - {-phi*k_ico, 0, k_ico}, - }; - -//bcc -#define k_bcc 0.11543038598460284017 -const double penrose_bcc[PTM_NUM_POINTS_BCC][3] = { - {0, 0, 0}, - {-k_bcc, -k_bcc, -k_bcc}, - {k_bcc, k_bcc, k_bcc}, - {k_bcc, -k_bcc, -k_bcc}, - {-k_bcc, k_bcc, k_bcc}, - {-k_bcc, k_bcc, -k_bcc}, - {k_bcc, -k_bcc, k_bcc}, - {-k_bcc, -k_bcc, k_bcc}, - {k_bcc, k_bcc, -k_bcc}, - {0, 0, -2*k_bcc}, - {0, 0, 2*k_bcc}, - {0, -2*k_bcc, 0}, - {0, 2*k_bcc, 0}, - {-2*k_bcc, 0, 0}, - {2*k_bcc, 0, -0}, - }; - -//dcub -#define kdcub 0.07095369570691034689 -const double penrose_dcub[PTM_NUM_POINTS_DCUB][3] = { - { 0, 0, 0 }, - { -kdcub, kdcub, kdcub }, - { -kdcub, -kdcub, -kdcub }, - { kdcub, -kdcub, kdcub }, - { kdcub, kdcub, -kdcub }, - { -2 * kdcub, 0, 2 * kdcub }, - { -2 * kdcub, 2 * kdcub, 0 }, - { 0, 2 * kdcub, 2 * kdcub }, - { -2 * kdcub, -2 * kdcub, 0 }, - { -2 * kdcub, 0, -2 * kdcub }, - { 0, -2 * kdcub, -2 * kdcub }, - { 0, -2 * kdcub, 2 * kdcub }, - { 2 * kdcub, -2 * kdcub, 0 }, - { 2 * kdcub, 0, 2 * kdcub }, - { 0, 2 * kdcub, -2 * kdcub }, - { 2 * kdcub, 0, -2 * kdcub }, - { 2 * kdcub, 2 * kdcub, 0 }, - }; - - -#define kdhex 0.04730246380471011397 -const double penrose_dhex[PTM_NUM_POINTS_DHEX][3] = { - { 0, 0, 0 }, - { -kdcub, -kdcub, -kdcub }, - { kdcub, -kdcub, kdcub }, - { -kdcub, kdcub, kdcub }, - { kdcub, kdcub, -kdcub }, - { -kdhex, -4 * kdhex, -kdhex }, - { -4 * kdhex, -kdhex, -kdhex }, - { -kdhex, -kdhex, -4 * kdhex }, - { 2 * kdcub, 0, 2 * kdcub }, - { 2 * kdcub, -2 * kdcub, 0 }, - { 0, -2 * kdcub, 2 * kdcub }, - { 0, 2 * kdcub, 2 * kdcub }, - { -2 * kdcub, 2 * kdcub, 0 }, - { -2 * kdcub, 0, 2 * kdcub }, - { 2 * kdcub, 2 * kdcub, 0 }, - { 0, 2 * kdcub, -2 * kdcub }, - { 2 * kdcub, 0, -2 * kdcub }, - }; -#endif - - diff --git a/src/USER-PTM/fundamental_mappings.h b/src/USER-PTM/fundamental_mappings.h deleted file mode 100644 index 9030d3a2b2..0000000000 --- a/src/USER-PTM/fundamental_mappings.h +++ /dev/null @@ -1,180 +0,0 @@ -#ifndef FUNDAMENTAL_MAPPINGS_H -#define FUNDAMENTAL_MAPPINGS_H - -#include <stdint.h> - -#define NUM_CUBIC_MAPPINGS 24 -#define NUM_ICO_MAPPINGS 60 -#define NUM_HEX_MAPPINGS 6 -#define NUM_DCUB_MAPPINGS 12 -#define NUM_DHEX_MAPPINGS 3 - -const int8_t mapping_sc[NUM_CUBIC_MAPPINGS][PTM_MAX_POINTS] = { - {0, 1, 2, 3, 4, 5, 6}, - {0, 2, 1, 4, 3, 5, 6}, - {0, 2, 1, 3, 4, 6, 5}, - {0, 1, 2, 4, 3, 6, 5}, - {0, 3, 4, 5, 6, 1, 2}, - {0, 5, 6, 2, 1, 4, 3}, - {0, 6, 5, 1, 2, 4, 3}, - {0, 4, 3, 5, 6, 2, 1}, - {0, 5, 6, 1, 2, 3, 4}, - {0, 4, 3, 6, 5, 1, 2}, - {0, 3, 4, 6, 5, 2, 1}, - {0, 6, 5, 2, 1, 3, 4}, - {0, 3, 4, 2, 1, 5, 6}, - {0, 6, 5, 3, 4, 1, 2}, - {0, 1, 2, 5, 6, 4, 3}, - {0, 4, 3, 1, 2, 5, 6}, - {0, 5, 6, 3, 4, 2, 1}, - {0, 1, 2, 6, 5, 3, 4}, - {0, 2, 1, 5, 6, 3, 4}, - {0, 5, 6, 4, 3, 1, 2}, - {0, 3, 4, 1, 2, 6, 5}, - {0, 2, 1, 6, 5, 4, 3}, - {0, 6, 5, 4, 3, 2, 1}, - {0, 4, 3, 2, 1, 6, 5} }; - -const int8_t mapping_fcc[NUM_CUBIC_MAPPINGS][PTM_MAX_POINTS] = { - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, - {0, 2, 1, 4, 3, 7, 8, 5, 6, 11, 12, 9, 10}, - {0, 3, 4, 1, 2, 6, 5, 8, 7, 12, 11, 10, 9}, - {0, 4, 3, 2, 1, 8, 7, 6, 5, 10, 9, 12, 11}, - {0, 9, 10, 11, 12, 1, 2, 4, 3, 5, 6, 8, 7}, - {0, 7, 8, 6, 5, 11, 12, 10, 9, 2, 1, 4, 3}, - {0, 8, 7, 5, 6, 10, 9, 11, 12, 4, 3, 2, 1}, - {0, 11, 12, 9, 10, 2, 1, 3, 4, 7, 8, 6, 5}, - {0, 5, 6, 8, 7, 9, 10, 12, 11, 1, 2, 3, 4}, - {0, 10, 9, 12, 11, 4, 3, 1, 2, 8, 7, 5, 6}, - {0, 12, 11, 10, 9, 3, 4, 2, 1, 6, 5, 7, 8}, - {0, 6, 5, 7, 8, 12, 11, 9, 10, 3, 4, 1, 2}, - {0, 3, 4, 2, 1, 9, 10, 11, 12, 7, 8, 5, 6}, - {0, 12, 11, 9, 10, 8, 7, 5, 6, 1, 2, 4, 3}, - {0, 5, 6, 7, 8, 4, 3, 2, 1, 11, 12, 10, 9}, - {0, 4, 3, 1, 2, 11, 12, 9, 10, 5, 6, 7, 8}, - {0, 9, 10, 12, 11, 7, 8, 6, 5, 3, 4, 2, 1}, - {0, 8, 7, 6, 5, 1, 2, 3, 4, 12, 11, 9, 10}, - {0, 7, 8, 5, 6, 3, 4, 1, 2, 9, 10, 12, 11}, - {0, 11, 12, 10, 9, 5, 6, 8, 7, 4, 3, 1, 2}, - {0, 1, 2, 4, 3, 12, 11, 10, 9, 8, 7, 6, 5}, - {0, 6, 5, 8, 7, 2, 1, 4, 3, 10, 9, 11, 12}, - {0, 10, 9, 11, 12, 6, 5, 7, 8, 2, 1, 3, 4}, - {0, 2, 1, 3, 4, 10, 9, 12, 11, 6, 5, 8, 7} }; - -const int8_t mapping_bcc[NUM_CUBIC_MAPPINGS][PTM_MAX_POINTS] = { - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, - {0, 4, 3, 2, 1, 7, 8, 5, 6, 10, 9, 12, 11, 13, 14}, - {0, 6, 5, 7, 8, 2, 1, 3, 4, 10, 9, 11, 12, 14, 13}, - {0, 8, 7, 5, 6, 3, 4, 2, 1, 9, 10, 12, 11, 14, 13}, - {0, 1, 2, 7, 8, 3, 4, 5, 6, 11, 12, 13, 14, 9, 10}, - {0, 4, 3, 7, 8, 5, 6, 2, 1, 13, 14, 10, 9, 12, 11}, - {0, 8, 7, 3, 4, 2, 1, 5, 6, 14, 13, 9, 10, 12, 11}, - {0, 4, 3, 5, 6, 2, 1, 7, 8, 12, 11, 13, 14, 10, 9}, - {0, 1, 2, 5, 6, 7, 8, 3, 4, 13, 14, 9, 10, 11, 12}, - {0, 8, 7, 2, 1, 5, 6, 3, 4, 12, 11, 14, 13, 9, 10}, - {0, 6, 5, 3, 4, 7, 8, 2, 1, 11, 12, 14, 13, 10, 9}, - {0, 6, 5, 2, 1, 3, 4, 7, 8, 14, 13, 10, 9, 11, 12}, - {0, 7, 8, 6, 5, 1, 2, 4, 3, 11, 12, 10, 9, 13, 14}, - {0, 3, 4, 6, 5, 8, 7, 1, 2, 14, 13, 11, 12, 9, 10}, - {0, 5, 6, 1, 2, 8, 7, 4, 3, 9, 10, 13, 14, 12, 11}, - {0, 5, 6, 8, 7, 4, 3, 1, 2, 12, 11, 9, 10, 13, 14}, - {0, 7, 8, 1, 2, 4, 3, 6, 5, 13, 14, 11, 12, 10, 9}, - {0, 3, 4, 8, 7, 1, 2, 6, 5, 9, 10, 14, 13, 11, 12}, - {0, 7, 8, 4, 3, 6, 5, 1, 2, 10, 9, 13, 14, 11, 12}, - {0, 5, 6, 4, 3, 1, 2, 8, 7, 13, 14, 12, 11, 9, 10}, - {0, 3, 4, 1, 2, 6, 5, 8, 7, 11, 12, 9, 10, 14, 13}, - {0, 2, 1, 6, 5, 4, 3, 8, 7, 10, 9, 14, 13, 12, 11}, - {0, 2, 1, 8, 7, 6, 5, 4, 3, 14, 13, 12, 11, 10, 9}, - {0, 2, 1, 4, 3, 8, 7, 6, 5, 12, 11, 10, 9, 14, 13} }; - -const int8_t mapping_ico[NUM_ICO_MAPPINGS][PTM_MAX_POINTS] = { - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, - {0, 10, 9, 8, 7, 5, 6, 2, 1, 12, 11, 3, 4}, - {0, 1, 2, 9, 10, 7, 8, 11, 12, 5, 6, 3, 4}, - {0, 4, 3, 8, 7, 2, 1, 11, 12, 9, 10, 6, 5}, - {0, 6, 5, 9, 10, 4, 3, 7, 8, 12, 11, 2, 1}, - {0, 12, 11, 3, 4, 7, 8, 10, 9, 2, 1, 6, 5}, - {0, 4, 3, 6, 5, 9, 10, 2, 1, 8, 7, 11, 12}, - {0, 8, 7, 2, 1, 4, 3, 10, 9, 5, 6, 11, 12}, - {0, 10, 9, 3, 4, 12, 11, 5, 6, 8, 7, 2, 1}, - {0, 12, 11, 6, 5, 2, 1, 7, 8, 3, 4, 10, 9}, - {0, 1, 2, 11, 12, 9, 10, 5, 6, 3, 4, 7, 8}, - {0, 8, 7, 11, 12, 5, 6, 4, 3, 2, 1, 10, 9}, - {0, 6, 5, 2, 1, 12, 11, 4, 3, 9, 10, 7, 8}, - {0, 3, 4, 5, 6, 1, 2, 10, 9, 12, 11, 7, 8}, - {0, 3, 4, 7, 8, 12, 11, 1, 2, 5, 6, 10, 9}, - {0, 6, 5, 7, 8, 9, 10, 12, 11, 2, 1, 4, 3}, - {0, 9, 10, 11, 12, 4, 3, 1, 2, 7, 8, 6, 5}, - {0, 11, 12, 9, 10, 1, 2, 4, 3, 8, 7, 5, 6}, - {0, 8, 7, 5, 6, 10, 9, 11, 12, 4, 3, 2, 1}, - {0, 10, 9, 2, 1, 8, 7, 12, 11, 3, 4, 5, 6}, - {0, 12, 11, 2, 1, 10, 9, 6, 5, 7, 8, 3, 4}, - {0, 9, 10, 6, 5, 7, 8, 4, 3, 11, 12, 1, 2}, - {0, 8, 7, 10, 9, 2, 1, 5, 6, 11, 12, 4, 3}, - {0, 6, 5, 12, 11, 7, 8, 2, 1, 4, 3, 9, 10}, - {0, 11, 12, 8, 7, 4, 3, 5, 6, 1, 2, 9, 10}, - {0, 4, 3, 11, 12, 8, 7, 9, 10, 6, 5, 2, 1}, - {0, 4, 3, 9, 10, 11, 12, 6, 5, 2, 1, 8, 7}, - {0, 12, 11, 10, 9, 3, 4, 2, 1, 6, 5, 7, 8}, - {0, 5, 6, 8, 7, 11, 12, 10, 9, 3, 4, 1, 2}, - {0, 7, 8, 6, 5, 12, 11, 9, 10, 1, 2, 3, 4}, - {0, 10, 9, 12, 11, 2, 1, 3, 4, 5, 6, 8, 7}, - {0, 7, 8, 1, 2, 9, 10, 3, 4, 12, 11, 6, 5}, - {0, 5, 6, 1, 2, 3, 4, 11, 12, 8, 7, 10, 9}, - {0, 7, 8, 12, 11, 3, 4, 6, 5, 9, 10, 1, 2}, - {0, 1, 2, 5, 6, 11, 12, 3, 4, 7, 8, 9, 10}, - {0, 11, 12, 1, 2, 5, 6, 9, 10, 4, 3, 8, 7}, - {0, 5, 6, 3, 4, 10, 9, 1, 2, 11, 12, 8, 7}, - {0, 5, 6, 10, 9, 8, 7, 3, 4, 1, 2, 11, 12}, - {0, 3, 4, 12, 11, 10, 9, 7, 8, 1, 2, 5, 6}, - {0, 9, 10, 7, 8, 1, 2, 6, 5, 4, 3, 11, 12}, - {0, 9, 10, 1, 2, 11, 12, 7, 8, 6, 5, 4, 3}, - {0, 7, 8, 3, 4, 1, 2, 12, 11, 6, 5, 9, 10}, - {0, 11, 12, 5, 6, 8, 7, 1, 2, 9, 10, 4, 3}, - {0, 1, 2, 7, 8, 3, 4, 9, 10, 11, 12, 5, 6}, - {0, 3, 4, 10, 9, 5, 6, 12, 11, 7, 8, 1, 2}, - {0, 2, 1, 4, 3, 8, 7, 6, 5, 12, 11, 10, 9}, - {0, 2, 1, 12, 11, 6, 5, 10, 9, 8, 7, 4, 3}, - {0, 9, 10, 4, 3, 6, 5, 11, 12, 1, 2, 7, 8}, - {0, 11, 12, 4, 3, 9, 10, 8, 7, 5, 6, 1, 2}, - {0, 2, 1, 10, 9, 12, 11, 8, 7, 4, 3, 6, 5}, - {0, 5, 6, 11, 12, 1, 2, 8, 7, 10, 9, 3, 4}, - {0, 10, 9, 5, 6, 3, 4, 8, 7, 2, 1, 12, 11}, - {0, 12, 11, 7, 8, 6, 5, 3, 4, 10, 9, 2, 1}, - {0, 7, 8, 9, 10, 6, 5, 1, 2, 3, 4, 12, 11}, - {0, 2, 1, 8, 7, 10, 9, 4, 3, 6, 5, 12, 11}, - {0, 8, 7, 4, 3, 11, 12, 2, 1, 10, 9, 5, 6}, - {0, 6, 5, 4, 3, 2, 1, 9, 10, 7, 8, 12, 11}, - {0, 2, 1, 6, 5, 4, 3, 12, 11, 10, 9, 8, 7}, - {0, 3, 4, 1, 2, 7, 8, 5, 6, 10, 9, 12, 11}, - {0, 4, 3, 2, 1, 6, 5, 8, 7, 11, 12, 9, 10} }; - -const int8_t mapping_hcp[NUM_HEX_MAPPINGS][PTM_MAX_POINTS] = { - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, - {0, 5, 6, 1, 2, 3, 4, 9, 10, 12, 11, 8, 7}, - {0, 3, 4, 5, 6, 1, 2, 12, 11, 7, 8, 10, 9}, - {0, 4, 3, 2, 1, 6, 5, 11, 12, 10, 9, 7, 8}, - {0, 2, 1, 6, 5, 4, 3, 8, 7, 11, 12, 9, 10}, - {0, 6, 5, 4, 3, 2, 1, 10, 9, 8, 7, 12, 11} }; - -const int8_t mapping_dcub[NUM_DCUB_MAPPINGS][PTM_MAX_POINTS] = { - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, - {0, 2, 1, 4, 3, 9, 8, 10, 6, 5, 7, 14, 16, 15, 11, 13, 12}, - {0, 4, 3, 2, 1, 15, 16, 14, 12, 13, 11, 10, 8, 9, 7, 5, 6}, - {0, 3, 4, 1, 2, 13, 12, 11, 16, 15, 14, 7, 6, 5, 10, 9, 8}, - {0, 4, 2, 1, 3, 14, 15, 16, 9, 10, 8, 6, 5, 7, 12, 11, 13}, - {0, 4, 1, 3, 2, 16, 14, 15, 7, 6, 5, 13, 11, 12, 9, 8, 10}, - {0, 1, 4, 2, 3, 6, 7, 5, 14, 16, 15, 9, 10, 8, 13, 12, 11}, - {0, 3, 1, 2, 4, 11, 13, 12, 5, 7, 6, 8, 9, 10, 16, 14, 15}, - {0, 3, 2, 4, 1, 12, 11, 13, 10, 8, 9, 15, 14, 16, 5, 6, 7}, - {0, 2, 4, 3, 1, 10, 9, 8, 15, 14, 16, 12, 13, 11, 6, 7, 5}, - {0, 1, 3, 4, 2, 7, 5, 6, 13, 11, 12, 16, 15, 14, 8, 10, 9}, - {0, 2, 3, 1, 4, 8, 10, 9, 11, 12, 13, 5, 7, 6, 15, 16, 14} }; - -const int8_t mapping_dhex[NUM_DHEX_MAPPINGS][PTM_MAX_POINTS] = { - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, - {0, 1, 3, 4, 2, 6, 7, 5, 11, 13, 12, 14, 16, 15, 8, 9, 10}, - {0, 1, 4, 2, 3, 7, 5, 6, 14, 15, 16, 8, 10, 9, 11, 13, 12} }; - -#endif - diff --git a/src/USER-PTM/graph_data.cpp b/src/USER-PTM/graph_data.cpp deleted file mode 100644 index aea2e59eac..0000000000 --- a/src/USER-PTM/graph_data.cpp +++ /dev/null @@ -1,2059 +0,0 @@ -#include "graph_data.h" - - -int8_t automorphisms[65][17] = { - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1, -1}, - { 0, 4, 3, 10, 9, 5, 6, 12, 11, 8, 7, 1, 2, -1, -1, -1, -1}, - { 0, 5, 6, 11, 12, 8, 7, 2, 1, 4, 3, 10, 9, -1, -1, -1, -1}, - { 0, 8, 7, 1, 2, 4, 3, 9, 10, 5, 6, 11, 12, -1, -1, -1, -1}, - { 0, 8, 7, 10, 9, 1, 2, 6, 5, 12, 11, 3, 4, -1, -1, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1, -1}, - { 0, 12, 3, 2, 7, 10, 8, 4, 6, 11, 5, 9, 1, -1, -1, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1, -1}, - { 0, 4, 11, 8, 1, 9, 12, 10, 3, 5, 7, 2, 6, -1, -1, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1, -1}, - { 0, 2, 1, 6, 5, 4, 3, 9, 8, 7, 11, 10, 12, -1, -1, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1, -1}, - { 0, 1, 7, 10, 11, 9, 6, 4, 2, 12, 5, 8, 3, -1, -1, -1, -1}, - { 0, 1, 11, 9, 2, 3, 6, 8, 4, 10, 12, 7, 5, -1, -1, -1, -1}, - { 0, 3, 6, 1, 11, 9, 2, 10, 12, 5, 7, 4, 8, -1, -1, -1, -1}, - { 0, 3, 11, 9, 12, 8, 2, 4, 10, 1, 5, 6, 7, -1, -1, -1, -1}, - { 0, 8, 2, 3, 11, 9, 12, 1, 5, 7, 6, 10, 4, -1, -1, -1, -1}, - { 0, 9, 2, 3, 6, 1, 11, 5, 7, 8, 4, 12, 10, -1, -1, -1, -1}, - { 0, 9, 6, 1, 7, 10, 11, 12, 5, 3, 8, 2, 4, -1, -1, -1, -1}, - { 0, 9, 12, 8, 2, 3, 11, 7, 6, 4, 10, 5, 1, -1, -1, -1, -1}, - { 0, 10, 11, 9, 6, 1, 7, 3, 8, 4, 2, 5, 12, -1, -1, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1, -1}, - { 0, 3, 2, 8, 6, 5, 12, 11, 7, 4, 9, 1, 10, -1, -1, -1, -1}, - { 0, 3, 11, 10, 6, 9, 7, 4, 2, 12, 1, 8, 5, -1, -1, -1, -1}, - { 0, 3, 12, 9, 6, 8, 11, 7, 4, 2, 10, 5, 1, -1, -1, -1, -1}, - { 0, 5, 12, 3, 2, 8, 6, 4, 9, 10, 1, 7, 11, -1, -1, -1, -1}, - { 0, 8, 6, 5, 12, 3, 2, 10, 1, 11, 7, 9, 4, -1, -1, -1, -1}, - { 0, 8, 11, 3, 12, 9, 6, 2, 10, 1, 5, 4, 7, -1, -1, -1, -1}, - { 0, 9, 6, 8, 11, 3, 12, 1, 5, 7, 4, 10, 2, -1, -1, -1, -1}, - { 0, 9, 7, 3, 11, 10, 6, 12, 1, 5, 8, 2, 4, -1, -1, -1, -1}, - { 0, 10, 6, 9, 7, 3, 11, 5, 8, 4, 2, 1, 12, -1, -1, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1, -1}, - { 0, 3, 4, 6, 5, 2, 1, 9, 10, 14, 13, 11, 12, 8, 7, -1, -1}, - { 0, 4, 3, 1, 2, 5, 6, 10, 9, 13, 14, 7, 8, 12, 11, -1, -1}, - { 0, 6, 5, 1, 2, 4, 3, 14, 13, 7, 8, 11, 12, 10, 9, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1, -1}, - { 0, 12, 11, 10, 9, 13, 14, 8, 7, 4, 3, 2, 1, 5, 6, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1, -1}, - { 0, 9, 10, 13, 14, 11, 12, 8, 7, 1, 2, 5, 6, 3, 4, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1, -1}, - { 0, 6, 5, 4, 3, 2, 1, 11, 12, 10, 9, 7, 8, 14, 13, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1, -1}, - { 0, 12, 11, 10, 9, 13, 14, 8, 7, 4, 3, 2, 1, 5, 6, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1, -1}, - { 0, 9, 10, 13, 14, 11, 12, 8, 7, 1, 2, 5, 6, 3, 4, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1, -1}, - { 0, 3, 10, 14, 5, 9, 7, 13, 2, 8, 4, 11, 12, 1, 6, -1, -1}, - { 0, 13, 8, 1, 10, 4, 14, 6, 9, 5, 2, 11, 12, 7, 3, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1, -1}, - { 0, 11, 12, 14, 13, 9, 10, 7, 8, 3, 4, 6, 5, 1, 2, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1, -1}, - { 0, 13, 14, 11, 12, 5, 6, 10, 9, 1, 2, 7, 8, 4, 3, -1, -1}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, - { 0, 4, 3, 2, 1, 15, 14, 16, 13, 12, 11, 10, 9, 8, 6, 5, 7}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, - { 0, 4, 1, 3, 2, 15, 14, 16, 5, 7, 6, 13, 11, 12, 10, 8, 9}, - { 0, 4, 2, 1, 3, 16, 15, 14, 10, 8, 9, 5, 6, 7, 13, 12, 11}, - { 0, 4, 3, 2, 1, 14, 16, 15, 13, 12, 11, 10, 9, 8, 5, 7, 6}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, - { 0, 3, 4, 1, 2, 12, 13, 11, 16, 14, 15, 7, 5, 6, 9, 10, 8}, - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, - { 0, 4, 1, 3, 2, 16, 15, 14, 6, 5, 7, 13, 11, 12, 10, 8, 9}, - { 0, 4, 2, 1, 3, 14, 16, 15, 10, 8, 9, 6, 7, 5, 13, 12, 11}, - { 0, 4, 3, 2, 1, 15, 14, 16, 13, 12, 11, 10, 9, 8, 6, 5, 7}, -}; - -graph_t graphs_sc[NUM_SC_GRAPHS] = { - -{0, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,4},{1,3,5},{0,3,4},{0,3,5},{1,2,5},{1,2,4},{0,2,4},{0,2,5}}}, - -}; - -graph_t graphs_ico[NUM_ICO_GRAPHS] = { - -{0, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{0,5,9},{1,2,8},{0,5,7},{2,7,8},{2,5,7},{1,4,8},{1,2,10},{5,9,10},{2,5,10},{4,8,11},{7,8,11},{0,7,11},{0,3,9},{0,3,11},{3,4,11},{3,6,9},{3,4,6},{6,9,10},{1,4,6},{1,6,10}}}, - -}; - -graph_t graphs_fcc[NUM_FCC_GRAPHS] = { - -{0, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{1,2,6},{1,2,5},{1,3,10},{1,3,9},{4,6,10},{4,6,8}}}, - -{1, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{1,2,6},{1,2,5},{1,3,10},{1,3,9},{6,8,10},{4,8,10}}}, - -{2, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{1,2,6},{1,2,5},{3,9,10},{1,9,10},{6,8,10},{4,8,10}}}, - -{3, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{2,5,6},{1,5,6},{1,3,10},{1,3,9},{4,6,10},{4,6,8}}}, - -{4, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{2,5,6},{1,5,6},{1,3,10},{1,3,9},{6,8,10},{4,8,10}}}, - -{5, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{5,7,11},{5,7,9},{2,5,6},{1,5,6},{3,9,10},{1,9,10},{4,6,10},{4,6,8}}}, - -{6, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{7,9,11},{5,9,11},{1,2,6},{1,2,5},{3,9,10},{1,9,10},{4,6,10},{4,6,8}}}, - -{7, -0, -1, -5, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{0,4,8},{3,7,9},{2,5,11},{0,7,11},{1,5,9},{2,6,8},{3,4,10},{1,6,10},{3,4,7},{0,4,7},{0,2,11},{0,2,8},{7,9,11},{5,9,11},{2,5,6},{1,5,6},{1,3,10},{1,3,9},{6,8,10},{4,8,10}}}, - -}; - -graph_t graphs_hcp[NUM_HCP_GRAPHS] = { - -{0, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{2,6,7},{2,4,6}}}, - -{1, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}}, - -{2, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{2,8,9},{0,2,9},{4,10,11},{0,4,11},{2,6,7},{2,4,6}}}, - -{3, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{2,8,9},{0,2,9},{4,10,11},{0,4,11},{4,6,7},{2,4,7}}}, - -{4, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{0,8,9},{0,2,8},{0,10,11},{0,4,10},{2,6,7},{2,4,6}}}, - -{5, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{0,8,9},{0,2,8},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}}, - -{6, -0, -6, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{0,8,9},{0,2,8},{4,10,11},{0,4,11},{2,6,7},{2,4,6}}}, - -{7, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{3,8,9},{1,3,9},{0,8,9},{0,2,8},{4,10,11},{0,4,11},{4,6,7},{2,4,7}}}, - -{8, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{2,6,7},{2,4,6}}}, - -{9, -0, -8, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}}, - -{10, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{2,8,9},{0,2,9},{4,10,11},{0,4,11},{4,6,7},{2,4,7}}}, - -{11, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{0,8,9},{0,2,8},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}}, - -{12, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{0,8,9},{0,2,8},{4,10,11},{0,4,11},{2,6,7},{2,4,6}}}, - -{13, -0, -10, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{5,6,7},{3,5,7},{3,8,9},{1,3,9},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}}, - -{14, -0, -12, -10, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{1,10,11},{1,5,10},{5,6,7},{3,5,7},{3,8,9},{1,3,9},{0,8,9},{0,2,8},{4,10,11},{0,4,11},{2,6,7},{2,4,6}}}, - -{15, -0, -22, -10, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,5},{5,6,10},{0,9,11},{1,9,11},{3,7,8},{2,7,8},{4,6,10},{0,2,4},{5,10,11},{1,5,11},{3,6,7},{3,5,6},{1,8,9},{1,3,8},{2,8,9},{0,2,9},{0,10,11},{0,4,10},{4,6,7},{2,4,7}}}, - -}; - -graph_t graphs_bcc[NUM_BCC_GRAPHS] = { - -{0, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{1, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{2, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{3, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{4, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{5, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{6, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{7, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{8, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{9, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{10, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{11, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{12, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{13, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{14, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{15, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{16, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{17, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{18, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{19, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{20, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{21, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{22, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{23, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{24, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{25, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{26, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{27, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{28, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{29, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{30, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{31, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{32, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{33, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{34, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{35, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{36, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{37, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{38, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{39, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{40, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{41, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{42, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{43, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{44, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{45, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{46, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{47, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{48, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{49, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{50, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{51, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{52, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{53, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{54, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{55, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{56, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{57, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{58, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{59, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{60, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{61, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{62, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{63, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{64, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{65, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{66, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{67, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{68, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{69, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{70, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{71, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{72, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{73, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{74, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{75, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{76, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{77, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{78, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{79, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{80, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{81, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{82, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{83, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{84, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{85, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{86, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{87, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{88, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{89, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{90, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{91, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{92, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{93, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{94, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{95, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{96, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{97, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{98, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{99, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{100, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{101, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{102, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{103, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{104, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{105, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{106, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{107, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{108, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{109, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{110, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{111, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{112, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{113, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{114, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{115, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{116, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{117, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{118, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{119, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{120, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{121, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{122, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{123, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{124, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{125, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{126, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{127, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{128, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{129, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{130, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{131, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{132, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{133, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{134, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{135, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{136, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{137, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{138, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{139, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{140, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{141, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{142, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{143, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{144, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{145, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{146, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{147, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{148, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{149, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{150, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{151, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{152, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{153, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{154, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{155, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{156, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{157, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{158, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{159, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{160, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{161, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{162, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{163, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{164, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{165, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{7,11,13},{1,11,13},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{166, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{167, -0, -32, -4, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{168, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{169, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{170, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{171, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{172, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{173, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{174, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{175, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{176, -0, -36, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{5,9,13},{1,9,13},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{177, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{178, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{179, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{180, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{6,9,12},{3,9,12},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{181, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{182, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{183, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{184, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{185, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{186, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{187, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{188, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{189, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{190, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{191, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{192, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{193, -0, -38, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{194, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{195, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{196, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{197, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{198, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{199, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{200, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{201, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{202, -0, -40, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{2,8,10},{0,8,10}}}, - -{203, -0, -42, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{204, -0, -44, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{205, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{4,11,12},{3,11,12},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{206, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{207, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{6,9,10},{5,9,10},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{208, -0, -46, -3, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{209, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{210, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{7,8,11},{4,8,11},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{211, -0, -49, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{5,10,13},{2,10,13},{0,2,10},{0,2,8}}}, - -{212, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{4,8,12},{0,8,12},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{213, -0, -51, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{7,8,13},{2,8,13},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{214, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{6,10,12},{0,10,12},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{215, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{2,8,10},{0,8,10}}}, - -{216, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{3,9,11},{1,9,11},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -{217, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{1,3,11},{1,3,9},{3,4,12},{3,4,11},{1,7,13},{1,7,11},{4,7,11},{4,7,8},{1,5,13},{1,5,9},{3,6,12},{3,6,9},{5,6,10},{5,6,9},{0,4,12},{0,4,8},{0,6,12},{0,6,10},{2,7,13},{2,7,8},{2,5,13},{2,5,10},{0,2,10},{0,2,8}}}, - -}; - -graph_t graphs_dcub[NUM_DCUB_GRAPHS] = { - -{0, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{5,13,15},{5,6,15},{9,13,14},{8,9,13},{11,14,15},{11,12,15}}}, - -{1, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{5,13,15},{5,6,15},{9,13,14},{8,9,13},{12,14,15},{11,12,14}}}, - -{2, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{5,13,15},{5,6,15},{8,13,14},{8,9,14},{11,14,15},{11,12,15}}}, - -{3, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{5,13,15},{5,6,15},{8,13,14},{8,9,14},{12,14,15},{11,12,14}}}, - -{4, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{6,13,15},{5,6,13},{9,13,14},{8,9,13},{11,14,15},{11,12,15}}}, - -{5, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{6,13,15},{5,6,13},{8,13,14},{8,9,14},{11,14,15},{11,12,15}}}, - -{6, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{6,13,15},{5,6,13},{8,13,14},{8,9,14},{12,14,15},{11,12,14}}}, - -{7, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{9,10,11},{7,9,10},{5,13,15},{5,6,15},{8,13,14},{8,9,14},{12,14,15},{11,12,14}}}, - -{8, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{9,10,11},{7,9,10},{6,13,15},{5,6,13},{9,13,14},{8,9,13},{11,14,15},{11,12,15}}}, - -{9, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{6,10,12},{4,6,10},{9,10,11},{7,9,10},{6,13,15},{5,6,13},{8,13,14},{8,9,14},{11,14,15},{11,12,15}}}, - -{10, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{5,7,8},{4,5,7},{4,10,12},{4,6,12},{9,10,11},{7,9,10},{6,13,15},{5,6,13},{8,13,14},{8,9,14},{11,14,15},{11,12,15}}}, - -{11, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{4,7,10},{0,5,6},{0,4,5},{0,4,6},{2,11,12},{2,10,12},{2,10,11},{1,7,8},{1,8,9},{1,7,9},{6,12,15},{5,8,13},{3,13,15},{3,13,14},{9,11,14},{3,14,15},{4,7,8},{4,5,8},{6,10,12},{4,6,10},{7,10,11},{7,9,11},{5,13,15},{5,6,15},{9,13,14},{8,9,13},{12,14,15},{11,12,14}}}, - -}; - -graph_t graphs_dhex[NUM_DHEX_GRAPHS] = { - -{0, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{6,11,14},{5,6,11},{4,8,15},{4,6,15},{7,13,15},{7,8,15}}}, - -{1, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{6,11,14},{5,6,11},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}}, - -{2, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{7,13,15},{7,8,15}}}, - -{3, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}}, - -{4, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}}, - -{5, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{7,13,15},{7,8,15}}}, - -{6, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}}, - -{7, -0, -53, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}}, - -{8, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{7,13,15},{7,8,15}}}, - -{9, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}}, - -{10, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}}, - -{11, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{7,13,15},{7,8,15}}}, - -{12, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}}, - -{13, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}}, - -{14, -0, -55, -4, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{7,13,15},{7,8,15}}}, - -{15, -0, -59, -2, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{11,13,14},{10,11,13},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}}, - -{16, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}}, - -{17, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}}, - -{18, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}}, - -{19, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{9,10,12},{7,9,10},{4,9,12},{4,5,12},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}}, - -{20, -0, -61, -4, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{7,10,12},{7,9,12},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{4,8,15},{4,6,15},{8,13,15},{7,8,13}}}, - -{21, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{7,10,12},{7,9,12},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{6,11,14},{5,6,11},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}}, - -{22, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{7,10,12},{7,9,12},{5,9,12},{4,5,9},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}}, - -{23, -0, -0, -1, -{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, -{{7,10,13},{5,11,12},{6,14,15},{0,4,5},{0,5,6},{0,4,6},{4,8,9},{2,10,12},{2,10,11},{2,11,12},{3,13,14},{3,13,15},{3,14,15},{1,7,9},{1,7,8},{1,8,9},{7,10,12},{7,9,12},{4,9,12},{4,5,12},{10,13,14},{10,11,14},{5,11,14},{5,6,14},{6,8,15},{4,6,8},{8,13,15},{7,8,13}}}, - -}; - diff --git a/src/USER-PTM/graph_data.h b/src/USER-PTM/graph_data.h deleted file mode 100644 index 3a8a5c7ae7..0000000000 --- a/src/USER-PTM/graph_data.h +++ /dev/null @@ -1,37 +0,0 @@ -#ifndef GRAPH_DATA_H -#define GRAPH_DATA_H - -#include <stdint.h> -#include "ptm_constants.h" - - -typedef struct -{ - int id; - uint64_t hash; - int automorphism_index; - int num_automorphisms; - int8_t canonical_labelling[PTM_MAX_POINTS]; - int8_t facets[PTM_MAX_FACETS][3]; -} graph_t; - -#define NUM_SC_GRAPHS 1 -#define NUM_ICO_GRAPHS 1 -#define NUM_FCC_GRAPHS 8 -#define NUM_HCP_GRAPHS 16 -#define NUM_BCC_GRAPHS 218 -#define NUM_DCUB_GRAPHS 12 -#define NUM_DHEX_GRAPHS 24 - -extern int8_t automorphisms[][PTM_MAX_POINTS]; - -extern graph_t graphs_sc[NUM_SC_GRAPHS]; -extern graph_t graphs_fcc[NUM_FCC_GRAPHS]; -extern graph_t graphs_hcp[NUM_HCP_GRAPHS]; -extern graph_t graphs_ico[NUM_ICO_GRAPHS]; -extern graph_t graphs_bcc[NUM_BCC_GRAPHS]; -extern graph_t graphs_dcub[NUM_DCUB_GRAPHS]; -extern graph_t graphs_dhex[NUM_DHEX_GRAPHS]; - -#endif - diff --git a/src/USER-PTM/graph_tools.cpp b/src/USER-PTM/graph_tools.cpp deleted file mode 100644 index 864e921b51..0000000000 --- a/src/USER-PTM/graph_tools.cpp +++ /dev/null @@ -1,52 +0,0 @@ -#include <string.h> -#include <algorithm> -#include "graph_tools.h" -#include "ptm_constants.h" - - -bool build_facet_map(int num_facets, int8_t facets[][3], int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS]) -{ - memset(common, -1, sizeof(int8_t) * PTM_MAX_NBRS * PTM_MAX_NBRS); - - for (int i = 0;i<num_facets;i++) - { - int a = facets[i][0]; - int b = facets[i][1]; - int c = facets[i][2]; - - //assert(common[a][b] == -1); - //assert(common[b][c] == -1); - //assert(common[c][a] == -1); - if (common[a][b] != -1 || common[b][c] != -1 || common[c][a] != -1) - return false; - - common[a][b] = c; - common[b][c] = a; - common[c][a] = b; - } - - return true; -} - -int graph_degree(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree) -{ - memset(degree, 0, sizeof(int8_t) * num_nodes); - - for (int i = 0;i<num_facets;i++) - { - int a = facets[i][0]; - int b = facets[i][1]; - int c = facets[i][2]; - - degree[a]++; - degree[b]++; - degree[c]++; - } - - int8_t max_degree = 0; - for (int i = 0;i<num_nodes;i++) - max_degree = std::max(max_degree, degree[i]); - - return max_degree; -} - diff --git a/src/USER-PTM/graph_tools.h b/src/USER-PTM/graph_tools.h deleted file mode 100644 index 791a44f9a6..0000000000 --- a/src/USER-PTM/graph_tools.h +++ /dev/null @@ -1,11 +0,0 @@ -#ifndef GRAPH_TOOLS_H -#define GRAPH_TOOLS_H - -#include <stdint.h> -#include "ptm_constants.h" - -bool build_facet_map(int num_facets, int8_t facets[][3], int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS]); -int graph_degree(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree); - -#endif - diff --git a/src/USER-PTM/index_ptm.cpp b/src/USER-PTM/index_ptm.cpp deleted file mode 100644 index 2683323ac5..0000000000 --- a/src/USER-PTM/index_ptm.cpp +++ /dev/null @@ -1,218 +0,0 @@ -#include <cstdio> -#include <cstdlib> -#include <string.h> -#include <cmath> -#include <cfloat> -#include <cassert> -#include <algorithm> -#include "convex_hull_incremental.h" -#include "graph_data.h" -#include "deformation_gradient.h" -#include "alloy_types.h" -#include "neighbour_ordering.h" -#include "normalize_vertices.h" -#include "quat.h" -#include "polar.h" -#include "initialize_data.h" -#include "structure_matcher.h" -#include "ptm_functions.h" -#include "ptm_constants.h" - - -//todo: verify that c == norm(template[1]) -static double calculate_interatomic_distance(int type, double scale) -{ - assert(type >= 1 && type <= 7); - double c[8] = {0, 1, 1, (7. - 3.5 * sqrt(3)), 1, 1, sqrt(3) * 4. / (6 * sqrt(2) + sqrt(3)), sqrt(3) * 4. / (6 * sqrt(2) + sqrt(3))}; - return c[type] / scale; -} - -static double calculate_lattice_constant(int type, double interatomic_distance) -{ - assert(type >= 1 && type <= 7); - double c[8] = {0, 2 / sqrt(2), 2 / sqrt(2), 2. / sqrt(3), 2 / sqrt(2), 1, 4 / sqrt(3), 4 / sqrt(3)}; - return c[type] * interatomic_distance; -} - -static int rotate_into_fundamental_zone(int type, double* q) -{ - if (type == PTM_MATCH_SC) return rotate_quaternion_into_cubic_fundamental_zone(q); - if (type == PTM_MATCH_FCC) return rotate_quaternion_into_cubic_fundamental_zone(q); - if (type == PTM_MATCH_BCC) return rotate_quaternion_into_cubic_fundamental_zone(q); - if (type == PTM_MATCH_ICO) return rotate_quaternion_into_icosahedral_fundamental_zone(q); - if (type == PTM_MATCH_HCP) return rotate_quaternion_into_hcp_fundamental_zone(q); - if (type == PTM_MATCH_DCUB) return rotate_quaternion_into_diamond_cubic_fundamental_zone(q); - if (type == PTM_MATCH_DHEX) return rotate_quaternion_into_diamond_hexagonal_fundamental_zone(q); - return -1; -} - -static void order_points(ptm_local_handle_t local_handle, int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers, bool topological_ordering, - int8_t* ordering, double (*points)[3], int32_t* numbers) -{ - if (topological_ordering) - { - double normalized_points[PTM_MAX_INPUT_POINTS][3]; - normalize_vertices(num_points, unpermuted_points, normalized_points); - int ret = calculate_neighbour_ordering((void*)local_handle, num_points, (const double (*)[3])normalized_points, ordering); - if (ret != 0) - topological_ordering = false; - } - - if (!topological_ordering) - for (int i=0;i<num_points;i++) - ordering[i] = i; - - for (int i=0;i<num_points;i++) - { - memcpy(points[i], &unpermuted_points[ordering[i]], 3 * sizeof(double)); - - if (unpermuted_numbers != NULL) - numbers[i] = unpermuted_numbers[ordering[i]]; - } -} - -static void output_data(result_t* res, int num_points, int32_t* unpermuted_numbers, double (*points)[3], int32_t* numbers, int8_t* ordering, - int32_t* p_type, int32_t* p_alloy_type, double* p_scale, double* p_rmsd, double* q, double* F, double* F_res, - double* U, double* P, int8_t* mapping, double* p_interatomic_distance, double* p_lattice_constant) -{ - *p_type = PTM_MATCH_NONE; - if (p_alloy_type != NULL) - *p_alloy_type = PTM_ALLOY_NONE; - - if (mapping != NULL) - memset(mapping, -1, num_points * sizeof(int8_t)); - - const refdata_t* ref = res->ref_struct; - if (ref == NULL) - return; - - *p_type = ref->type; - if (p_alloy_type != NULL && unpermuted_numbers != NULL) - *p_alloy_type = find_alloy_type(ref, res->mapping, numbers); - - int bi = rotate_into_fundamental_zone(ref->type, res->q); - int8_t temp[PTM_MAX_POINTS]; - for (int i=0;i<ref->num_nbrs+1;i++) - temp[ref->mapping[bi][i]] = res->mapping[i]; - - memcpy(res->mapping, temp, (ref->num_nbrs+1) * sizeof(int8_t)); - - if (F != NULL && F_res != NULL) - { - double scaled_points[PTM_MAX_INPUT_POINTS][3]; - - subtract_barycentre(ref->num_nbrs + 1, points, scaled_points); - for (int i = 0;i<ref->num_nbrs + 1;i++) - { - scaled_points[i][0] *= res->scale; - scaled_points[i][1] *= res->scale; - scaled_points[i][2] *= res->scale; - } - calculate_deformation_gradient(ref->num_nbrs + 1, ref->points, res->mapping, scaled_points, ref->penrose, F, F_res); - - if (P != NULL && U != NULL) - polar_decomposition_3x3(F, false, U, P); - } - - if (mapping != NULL) - for (int i=0;i<ref->num_nbrs + 1;i++) - mapping[i] = ordering[res->mapping[i]]; - - double interatomic_distance = calculate_interatomic_distance(ref->type, res->scale); - double lattice_constant = calculate_lattice_constant(ref->type, interatomic_distance); - - if (p_interatomic_distance != NULL) - *p_interatomic_distance = interatomic_distance; - - if (p_lattice_constant != NULL) - *p_lattice_constant = lattice_constant; - - *p_rmsd = res->rmsd; - *p_scale = res->scale; - memcpy(q, res->q, 4 * sizeof(double)); -} - - -extern bool ptm_initialized; - -int ptm_index( ptm_local_handle_t local_handle, int32_t flags, - int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers, bool topological_ordering, - int32_t* p_type, int32_t* p_alloy_type, double* p_scale, double* p_rmsd, double* q, double* F, double* F_res, - double* U, double* P, int8_t* mapping, double* p_interatomic_distance, double* p_lattice_constant) -{ - assert(ptm_initialized); - assert(num_points <= PTM_MAX_INPUT_POINTS); - - if (flags & PTM_CHECK_SC) - assert(num_points >= PTM_NUM_POINTS_SC); - - if (flags & PTM_CHECK_BCC) - assert(num_points >= PTM_NUM_POINTS_BCC); - - if (flags & (PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO)) - assert(num_points >= PTM_NUM_POINTS_FCC); - - if (flags & (PTM_CHECK_DCUB | PTM_CHECK_DHEX)) - assert(num_points >= PTM_NUM_POINTS_DCUB); - - int ret = 0; - result_t res; - res.ref_struct = NULL; - res.rmsd = INFINITY; - - int8_t ordering[PTM_MAX_INPUT_POINTS]; - double points[PTM_MAX_POINTS][3]; - int32_t numbers[PTM_MAX_POINTS]; - - int8_t dordering[PTM_MAX_INPUT_POINTS]; - double dpoints[PTM_MAX_POINTS][3]; - int32_t dnumbers[PTM_MAX_POINTS]; - - convexhull_t ch; - double ch_points[PTM_MAX_INPUT_POINTS][3]; - - if (flags & (PTM_CHECK_SC | PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO | PTM_CHECK_BCC)) - { - int num_lpoints = std::min(std::min(PTM_MAX_POINTS, 20), num_points); - order_points(local_handle, num_lpoints, unpermuted_points, unpermuted_numbers, topological_ordering, ordering, points, numbers); - normalize_vertices(num_lpoints, points, ch_points); - ch.ok = false; - - if (flags & PTM_CHECK_SC) - ret = match_general(&structure_sc, ch_points, points, &ch, &res); - - if (flags & (PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO)) - ret = match_fcc_hcp_ico(ch_points, points, flags, &ch, &res); - - if (flags & PTM_CHECK_BCC) - ret = match_general(&structure_bcc, ch_points, points, &ch, &res); - } - - if (flags & (PTM_CHECK_DCUB | PTM_CHECK_DHEX)) - { - ret = calculate_diamond_neighbour_ordering(num_points, unpermuted_points, unpermuted_numbers, dordering, dpoints, dnumbers); - if (ret == 0) - { - normalize_vertices(PTM_NUM_NBRS_DCUB + 1, dpoints, ch_points); - ch.ok = false; - - ret = match_dcub_dhex(ch_points, dpoints, flags, &ch, &res); - } - } - - if (res.ref_struct != NULL && (res.ref_struct->type == PTM_MATCH_DCUB || res.ref_struct->type == PTM_MATCH_DHEX)) - { - output_data( &res, num_points, unpermuted_numbers, dpoints, dnumbers, dordering, - p_type, p_alloy_type, p_scale, p_rmsd, q, F, F_res, - U, P, mapping, p_interatomic_distance, p_lattice_constant); - } - else - { - output_data( &res, num_points, unpermuted_numbers, points, numbers, ordering, - p_type, p_alloy_type, p_scale, p_rmsd, q, F, F_res, - U, P, mapping, p_interatomic_distance, p_lattice_constant); - } - - return PTM_NO_ERROR; -} - diff --git a/src/USER-PTM/initialize_data.cpp b/src/USER-PTM/initialize_data.cpp deleted file mode 100644 index 6c177bfb70..0000000000 --- a/src/USER-PTM/initialize_data.cpp +++ /dev/null @@ -1,71 +0,0 @@ -#include <cstdio> -#include <cstdlib> -#include <string.h> -#include <cmath> -#include <cfloat> -#include <cassert> -#include <algorithm> -#include "initialize_data.h" - - -static void make_facets_clockwise(int num_facets, int8_t (*facets)[3], const double (*points)[3]) -{ - double plane_normal[3]; - double origin[3] = {0, 0, 0}; - - for (int i = 0;i<num_facets;i++) - add_facet(points, facets[i][0], facets[i][1], facets[i][2], facets[i], plane_normal, origin); -} - -static int initialize_graphs(const refdata_t* s, int8_t* colours) -{ - for (int i = 0;i<s->num_graphs;i++) - { - int8_t code[2 * PTM_MAX_EDGES]; - int8_t degree[PTM_MAX_NBRS]; - int _max_degree = graph_degree(s->num_facets, s->graphs[i].facets, s->num_nbrs, degree); - assert(_max_degree <= s->max_degree); - - make_facets_clockwise(s->num_facets, s->graphs[i].facets, &s->points[1]); - int ret = canonical_form_coloured(s->num_facets, s->graphs[i].facets, s->num_nbrs, degree, colours, s->graphs[i].canonical_labelling, (int8_t*)&code[0], &s->graphs[i].hash); - if (ret != 0) - return ret; - } - - return PTM_NO_ERROR; -} - -bool ptm_initialized = false; -int ptm_initialize_global() -{ - if (ptm_initialized) - return PTM_NO_ERROR; - - int8_t colours[PTM_MAX_POINTS] = {0}; - int8_t dcolours[PTM_MAX_POINTS] = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; - - int ret = initialize_graphs(&structure_sc, colours); - ret |= initialize_graphs(&structure_fcc, colours); - ret |= initialize_graphs(&structure_hcp, colours); - ret |= initialize_graphs(&structure_ico, colours); - ret |= initialize_graphs(&structure_bcc, colours); - ret |= initialize_graphs(&structure_dcub, dcolours); - ret |= initialize_graphs(&structure_dhex, dcolours); - - if (ret == PTM_NO_ERROR) - ptm_initialized = true; - - return ret; -} - -ptm_local_handle_t ptm_initialize_local() -{ - assert(ptm_initialized); - return (ptm_local_handle_t)voronoi_initialize_local(); -} - -void ptm_uninitialize_local(ptm_local_handle_t ptr) -{ - voronoi_uninitialize_local(ptr); -} - diff --git a/src/USER-PTM/initialize_data.h b/src/USER-PTM/initialize_data.h deleted file mode 100644 index 644dfea8c4..0000000000 --- a/src/USER-PTM/initialize_data.h +++ /dev/null @@ -1,61 +0,0 @@ -#ifndef INITIALIZE_DATA_H -#define INITIALIZE_DATA_H - - -#include "graph_data.h" -#include "graph_tools.h" -#include "deformation_gradient.h" -#include "fundamental_mappings.h" -#include "neighbour_ordering.h" -#include "canonical_coloured.h" -#include "convex_hull_incremental.h" - - -typedef struct -{ - int type; - int num_nbrs; - int num_facets; - int max_degree; - int num_graphs; - int num_mappings; - graph_t* graphs; - const double (*points)[3]; - const double (*penrose)[3]; - const int8_t (*mapping)[PTM_MAX_POINTS]; -} refdata_t; - - -//refdata_t structure_sc = { .type = PTM_MATCH_SC, .num_nbrs = 6, .num_facets = 8, .max_degree = 4, .num_graphs = NUM_SC_GRAPHS, .graphs = graphs_sc, .points = ptm_template_sc, .penrose = penrose_sc , .mapping = mapping_sc }; -const refdata_t structure_sc = { PTM_MATCH_SC, 6, 8, 4, NUM_SC_GRAPHS, NUM_CUBIC_MAPPINGS, graphs_sc, ptm_template_sc, penrose_sc, mapping_sc }; -const refdata_t structure_fcc = { PTM_MATCH_FCC, 12, 20, 6, NUM_FCC_GRAPHS, NUM_CUBIC_MAPPINGS, graphs_fcc, ptm_template_fcc, penrose_fcc, mapping_fcc }; -const refdata_t structure_hcp = { PTM_MATCH_HCP, 12, 20, 6, NUM_HCP_GRAPHS, NUM_HEX_MAPPINGS, graphs_hcp, ptm_template_hcp, penrose_hcp, mapping_hcp }; -const refdata_t structure_ico = { PTM_MATCH_ICO, 12, 20, 6, NUM_ICO_GRAPHS, NUM_ICO_MAPPINGS, graphs_ico, ptm_template_ico, penrose_ico, mapping_ico }; -const refdata_t structure_bcc = { PTM_MATCH_BCC, 14, 24, 8, NUM_BCC_GRAPHS, NUM_CUBIC_MAPPINGS, graphs_bcc, ptm_template_bcc, penrose_bcc, mapping_bcc }; -const refdata_t structure_dcub = { PTM_MATCH_DCUB, 16, 28, 8, NUM_DCUB_GRAPHS, NUM_DCUB_MAPPINGS, graphs_dcub, ptm_template_dcub, penrose_dcub, mapping_dcub }; -const refdata_t structure_dhex = { PTM_MATCH_DHEX, 16, 28, 8, NUM_DHEX_GRAPHS, NUM_DHEX_MAPPINGS, graphs_dhex, ptm_template_dhex, penrose_dhex, mapping_dhex }; - - -#ifdef __cplusplus -extern "C" { -#endif - -typedef struct ptm_local_handle* ptm_local_handle_t; -ptm_local_handle_t ptm_initialize_local(); -void ptm_uninitialize_local(ptm_local_handle_t ptr); - -int ptm_initialize_global(); - -//------------------------------------ -// global initialization switch -//------------------------------------ -extern bool ptm_initialized; - - -#ifdef __cplusplus -} -#endif - - -#endif - diff --git a/src/USER-PTM/neighbour_ordering.cpp b/src/USER-PTM/neighbour_ordering.cpp deleted file mode 100644 index 8e8b016cfc..0000000000 --- a/src/USER-PTM/neighbour_ordering.cpp +++ /dev/null @@ -1,203 +0,0 @@ -#include <cstdlib> -#include <cmath> -#include <cstring> -#include <cassert> -#include <algorithm> -#include "ptm_constants.h" -#include "cell.h" -using namespace voro; - - - -typedef struct -{ - double area; - double dist; - int index; -} sorthelper_t; - -static bool sorthelper_compare(sorthelper_t const& a, sorthelper_t const& b) -{ - if (a.area > b.area) - return true; - - if (a.area < b.area) - return false; - - if (a.dist < b.dist) - return true; - - return false; -} - -//todo: change voronoi code to return errors rather than exiting -static int calculate_voronoi_face_areas(int num_points, const double (*_points)[3], double* normsq, double max_norm, voronoicell_neighbor* v, std::vector<int>& nbr_indices, std::vector<double>& face_areas) -{ - const double k = 1000 * max_norm; //todo: reduce this constant - v->init(-k,k,-k,k,-k,k); - - for (int i=1;i<num_points;i++) - { - double x = _points[i][0] - _points[0][0]; - double y = _points[i][1] - _points[0][1]; - double z = _points[i][2] - _points[0][2]; - v->nplane(x,y,z,normsq[i],i); - } - - v->neighbors(nbr_indices); - v->face_areas(face_areas); - return 0; -} - -int calculate_neighbour_ordering(void* _voronoi_handle, int num_points, const double (*_points)[3], int8_t* ordering) -{ - assert(num_points <= PTM_MAX_INPUT_POINTS); - - voronoicell_neighbor* voronoi_handle = (voronoicell_neighbor*)_voronoi_handle; - - double max_norm = 0; - double points[PTM_MAX_INPUT_POINTS][3]; - double normsq[PTM_MAX_INPUT_POINTS]; - for (int i = 0;i<num_points;i++) - { - double x = _points[i][0] - _points[0][0]; - double y = _points[i][1] - _points[0][1]; - double z = _points[i][2] - _points[0][2]; - points[i][0] = x; - points[i][1] = y; - points[i][2] = z; - - normsq[i] = x*x + y*y + z*z; - max_norm = std::max(max_norm, normsq[i]); -#ifdef DEBUG - printf("point %d: %f\t%f\t%f\t%f\n", i, x, y, z, x*x + y*y + z*z); -#endif - } - - max_norm = sqrt(max_norm); - - std::vector<int> nbr_indices(num_points + 6); - std::vector<double> face_areas(num_points + 6); - int ret = calculate_voronoi_face_areas(num_points, points, normsq, max_norm, voronoi_handle, nbr_indices, face_areas); - if (ret != 0) - return ret; - - double areas[PTM_MAX_INPUT_POINTS]; - memset(areas, 0, num_points * sizeof(double)); - areas[0] = INFINITY; - for (size_t i=0;i<nbr_indices.size();i++) - { - int index = nbr_indices[i]; - if (index > 0) - areas[index] = face_areas[i]; - } - - sorthelper_t data[PTM_MAX_INPUT_POINTS]; - for (int i=0;i<num_points;i++) - { - assert(areas[i] == areas[i]); - data[i].area = areas[i]; - data[i].dist = normsq[i]; - data[i].index = i; - } - - std::sort(data, data + num_points, &sorthelper_compare); - -#ifdef DEBUG - for (int i=0;i<num_points;i++) - printf("%d %f\n", data[i].index, data[i].area); -#endif - - for (int i=0;i<num_points;i++) - ordering[i] = data[i].index; - - return ret; -} - -void* voronoi_initialize_local() -{ - voronoicell_neighbor* ptr = new voronoicell_neighbor; - return (void*)ptr; -} - -void voronoi_uninitialize_local(void* _ptr) -{ - voronoicell_neighbor* ptr = (voronoicell_neighbor*)_ptr; - delete ptr; -} - - -typedef struct -{ - double dist; - int p; - int index; -} diamond_t; - -static bool diamond_compare(diamond_t const& a, diamond_t const& b) -{ - return a.dist < b.dist; -} - -int calculate_diamond_neighbour_ordering( int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers, - int8_t* ordering, double (*points)[3], int32_t* numbers) -{ - assert(num_points <= PTM_MAX_INPUT_POINTS); - - diamond_t data[4 * (PTM_MAX_INPUT_POINTS - 5)]; - int index = 0; - for (int i=5;i<num_points;i++) - { - for (int j=1;j<5;j++) - { - double dx = unpermuted_points[i][0] - unpermuted_points[j][0]; - double dy = unpermuted_points[i][1] - unpermuted_points[j][1]; - double dz = unpermuted_points[i][2] - unpermuted_points[j][2]; - - double d = dx*dx + dy*dy + dz*dz; - - data[index].p = j - 1; - data[index].index = i; - data[index].dist = d; - index++; - } - } - int n = index; - - std::sort(data, data + n, &diamond_compare); - - for (index=0;index<5;index++) - ordering[index] = index; - - int num_found = 0; - bool hit[PTM_MAX_INPUT_POINTS] = {0}; - int counts[4] = {0}; - for (int i=0;i<n;i++) - { - int p = data[i].p; - int q = data[i].index; - if (hit[q] || counts[p] >= 3) - continue; - - ordering[1 + 4 + 3 * p + counts[p]] = q; - counts[p]++; - index++; - num_found++; - if (num_found >= 12) - break; - } - - if (num_found != 12) - return -1; - - for (int i=0;i<PTM_NUM_NBRS_DCUB+1;i++) - { - memcpy(points[i], &unpermuted_points[ordering[i]], 3 * sizeof(double)); - - if (unpermuted_numbers != NULL) - numbers[i] = unpermuted_numbers[ordering[i]]; - } - - return 0; -} - diff --git a/src/USER-PTM/neighbour_ordering.h b/src/USER-PTM/neighbour_ordering.h deleted file mode 100644 index 33160caa4f..0000000000 --- a/src/USER-PTM/neighbour_ordering.h +++ /dev/null @@ -1,13 +0,0 @@ -#ifndef NEIGHBOUR_ORDERING_H -#define NEIGHBOUR_ORDERING_H - -int calculate_neighbour_ordering(void* voronoi_handle, int num_points, const double (*_points)[3], int8_t* ordering); - -int calculate_diamond_neighbour_ordering( int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers, - int8_t* ordering, double (*points)[3], int32_t* numbers); - -void* voronoi_initialize_local(); -void voronoi_uninitialize_local(void* ptr); - -#endif - diff --git a/src/USER-PTM/normalize_vertices.cpp b/src/USER-PTM/normalize_vertices.cpp deleted file mode 100644 index 61dca5006f..0000000000 --- a/src/USER-PTM/normalize_vertices.cpp +++ /dev/null @@ -1,55 +0,0 @@ -#include <cmath> - - -void subtract_barycentre(int num, double (*points)[3], double (*normalized)[3]) -{ - //calculate barycentre - double sum[3] = {0, 0, 0}; - for (int i=0;i<num;i++) - { - sum[0] += points[i][0]; - sum[1] += points[i][1]; - sum[2] += points[i][2]; - } - - sum[0] /= num; - sum[1] /= num; - sum[2] /= num; - - //subtract barycentre - for (int i=0;i<num;i++) - { - normalized[i][0] = points[i][0] - sum[0]; - normalized[i][1] = points[i][1] - sum[1]; - normalized[i][2] = points[i][2] - sum[2]; - } -} - -double normalize_vertices(int num, double (*points)[3], double (*normalized)[3]) -{ - subtract_barycentre(num, points, normalized); - - //calculate mean length - double scale = 0.0; - for (int i=1;i<num;i++) - { - double x = normalized[i][0]; - double y = normalized[i][1]; - double z = normalized[i][2]; - - double norm = sqrt(x*x + y*y + z*z); - scale += norm; - } - scale /= num; - - //scale vertices such that mean length is 1 - for (int i=0;i<num;i++) - { - normalized[i][0] /= scale; - normalized[i][1] /= scale; - normalized[i][2] /= scale; - } - - return scale; -} - diff --git a/src/USER-PTM/normalize_vertices.h b/src/USER-PTM/normalize_vertices.h deleted file mode 100644 index e18990cd9b..0000000000 --- a/src/USER-PTM/normalize_vertices.h +++ /dev/null @@ -1,8 +0,0 @@ -#ifndef NORMALIZE_VERTICES_H -#define NORMALIZE_VERTICES_H - -void subtract_barycentre(int num, double (*points)[3], double (*normalized)[3]); -double normalize_vertices(int num, double (*points)[3], double (*normalized)[3]); - -#endif - diff --git a/src/USER-PTM/polar.cpp b/src/USER-PTM/polar.cpp deleted file mode 100644 index fdb759a1f3..0000000000 --- a/src/USER-PTM/polar.cpp +++ /dev/null @@ -1,337 +0,0 @@ -/******************************************************************************* - * -/_|:|_|_\- - * - * This code is a modification of D.L. Theobald's QCP rotation code. - * It has been adapted to calculate the polar decomposition of a 3x3 matrix - * Adaption by P.M. Larsen - * - * Original Author(s): Douglas L. Theobald - * Department of Biochemistry - * MS 009 - * Brandeis University - * 415 South St - * Waltham, MA 02453 - * USA - * - * dtheobald@brandeis.edu - * - * Pu Liu - * Johnson & Johnson Pharmaceutical Research and Development, L.L.C. - * 665 Stockton Drive - * Exton, PA 19341 - * USA - * - * pliu24@its.jnj.com - * - * - * If you use this QCP rotation calculation method in a publication, please - * reference: - * - * Douglas L. Theobald (2005) - * "Rapid calculation of RMSD using a quaternion-based characteristic - * polynomial." - * Acta Crystallographica A 61(4):478-480. - * - * Pu Liu, Dmitris K. Agrafiotis, and Douglas L. Theobald (2009) - * "Fast determination of the optimal rotational matrix for macromolecular - * superpositions." - * Journal of Computational Chemistry 31(7):1561-1563. - * - * - * Copyright (c) 2009-2013 Pu Liu and Douglas L. Theobald - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without modification, are permitted - * provided that the following conditions are met: - * - * * Redistributions of source code must retain the above copyright notice, this list of - * conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright notice, this list - * of conditions and the following disclaimer in the documentation and/or other materials - * provided with the distribution. - * * Neither the name of the <ORGANIZATION> nor the names of its contributors may be used to - * endorse or promote products derived from this software without specific prior written - * permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A - * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - * Source: started anew. - * - * Change History: - * 2009/04/13 Started source - * 2010/03/28 Modified FastCalcRMSDAndRotation() to handle tiny qsqr - * If trying all rows of the adjoint still gives too small - * qsqr, then just return identity matrix. (DLT) - * 2010/06/30 Fixed prob in assigning A[9] = 0 in InnerProduct() - * invalid mem access - * 2011/02/21 Made CenterCoords use weights - * 2011/05/02 Finally changed CenterCoords declaration in qcprot.h - * Also changed some functions to static - * 2011/07/08 put in fabs() to fix taking sqrt of small neg numbers, fp error - * 2012/07/26 minor changes to comments and main.c, more info (v.1.4) - * - * 2016/05/29 QCP method adapted for polar decomposition of a 3x3 matrix, - * for use in Polyhedral Template Matching. - * - ******************************************************************************/ - -#include <cmath> -#include <algorithm> -#include <string.h> -#include "quat.h" - - -static void matmul_3x3(double* A, double* x, double* b) -{ - b[0] = A[0] * x[0] + A[1] * x[3] + A[2] * x[6]; - b[3] = A[3] * x[0] + A[4] * x[3] + A[5] * x[6]; - b[6] = A[6] * x[0] + A[7] * x[3] + A[8] * x[6]; - - b[1] = A[0] * x[1] + A[1] * x[4] + A[2] * x[7]; - b[4] = A[3] * x[1] + A[4] * x[4] + A[5] * x[7]; - b[7] = A[6] * x[1] + A[7] * x[4] + A[8] * x[7]; - - b[2] = A[0] * x[2] + A[1] * x[5] + A[2] * x[8]; - b[5] = A[3] * x[2] + A[4] * x[5] + A[5] * x[8]; - b[8] = A[6] * x[2] + A[7] * x[5] + A[8] * x[8]; -} - -static double matrix_determinant_3x3(double* A) -{ - return A[0] * (A[4]*A[8] - A[5]*A[7]) - - A[1] * (A[3]*A[8] - A[5]*A[6]) - + A[2] * (A[3]*A[7] - A[4]*A[6]); -} - -static void flip_matrix(double* A) -{ - for (int i=0;i<9;i++) - A[i] = -A[i]; -} - -static bool optimal_quaternion(double* A, bool polar, double E0, double* p_nrmsdsq, double* qopt) -{ - const double evecprec = 1e-6; - const double evalprec = 1e-11; - - double Sxx = A[0], Sxy = A[1], Sxz = A[2], - Syx = A[3], Syy = A[4], Syz = A[5], - Szx = A[6], Szy = A[7], Szz = A[8]; - - double Sxx2 = Sxx * Sxx, Syy2 = Syy * Syy, Szz2 = Szz * Szz, - Sxy2 = Sxy * Sxy, Syz2 = Syz * Syz, Sxz2 = Sxz * Sxz, - Syx2 = Syx * Syx, Szy2 = Szy * Szy, Szx2 = Szx * Szx; - - double fnorm_squared = Sxx2 + Syy2 + Szz2 + Sxy2 + Syz2 + Sxz2 + Syx2 + Szy2 + Szx2; - - double SyzSzymSyySzz2 = 2.0 * (Syz * Szy - Syy * Szz); - double Sxx2Syy2Szz2Syz2Szy2 = Syy2 + Szz2 - Sxx2 + Syz2 + Szy2; - double SxzpSzx = Sxz + Szx; - double SyzpSzy = Syz + Szy; - double SxypSyx = Sxy + Syx; - double SyzmSzy = Syz - Szy; - double SxzmSzx = Sxz - Szx; - double SxymSyx = Sxy - Syx; - double SxxpSyy = Sxx + Syy; - double SxxmSyy = Sxx - Syy; - double Sxy2Sxz2Syx2Szx2 = Sxy2 + Sxz2 - Syx2 - Szx2; - - double C[3]; - C[0] = Sxy2Sxz2Syx2Szx2 * Sxy2Sxz2Syx2Szx2 - + (Sxx2Syy2Szz2Syz2Szy2 + SyzSzymSyySzz2) * (Sxx2Syy2Szz2Syz2Szy2 - SyzSzymSyySzz2) - + (-(SxzpSzx)*(SyzmSzy)+(SxymSyx)*(SxxmSyy-Szz)) * (-(SxzmSzx)*(SyzpSzy)+(SxymSyx)*(SxxmSyy+Szz)) - + (-(SxzpSzx)*(SyzpSzy)-(SxypSyx)*(SxxpSyy-Szz)) * (-(SxzmSzx)*(SyzmSzy)-(SxypSyx)*(SxxpSyy+Szz)) - + (+(SxypSyx)*(SyzpSzy)+(SxzpSzx)*(SxxmSyy+Szz)) * (-(SxymSyx)*(SyzmSzy)+(SxzpSzx)*(SxxpSyy+Szz)) - + (+(SxypSyx)*(SyzmSzy)+(SxzmSzx)*(SxxmSyy-Szz)) * (-(SxymSyx)*(SyzpSzy)+(SxzmSzx)*(SxxpSyy-Szz)); - - C[1] = 8.0 * (Sxx*Syz*Szy + Syy*Szx*Sxz + Szz*Sxy*Syx - Sxx*Syy*Szz - Syz*Szx*Sxy - Szy*Syx*Sxz); - C[2] = -2.0 * fnorm_squared; - - //Newton-Raphson - double mxEigenV = polar ? sqrt(3 * fnorm_squared) : E0; - if (mxEigenV > evalprec) - { - for (int i=0;i<50;i++) - { - double oldg = mxEigenV; - double x2 = mxEigenV*mxEigenV; - double b = (x2 + C[2])*mxEigenV; - double a = b + C[1]; - double delta = ((a * mxEigenV + C[0]) / (2 * x2 * mxEigenV + b + a)); - mxEigenV -= delta; - if (fabs(mxEigenV - oldg) < fabs(evalprec * mxEigenV)) - break; - } - } - else - { - mxEigenV = 0.0; - } - - (*p_nrmsdsq) = std::max(0.0, 2.0 * (E0 - mxEigenV)); - - double a11 = SxxpSyy + Szz - mxEigenV; - double a12 = SyzmSzy; - double a13 = -SxzmSzx; - double a14 = SxymSyx; - - double a21 = SyzmSzy; - double a22 = SxxmSyy - Szz -mxEigenV; - double a23 = SxypSyx; - double a24 = SxzpSzx; - - double a31 = a13; - double a32 = a23; - double a33 = Syy - Sxx - Szz - mxEigenV; - double a34 = SyzpSzy; - - double a41 = a14; - double a42 = a24; - double a43 = a34; - double a44 = Szz - SxxpSyy - mxEigenV; - - double a3344_4334 = a33 * a44 - a43 * a34; - double a3244_4234 = a32 * a44 - a42 * a34; - double a3243_4233 = a32 * a43 - a42 * a33; - double a3143_4133 = a31 * a43 - a41 * a33; - double a3144_4134 = a31 * a44 - a41 * a34; - double a3142_4132 = a31 * a42 - a41 * a32; - double a1324_1423 = a13 * a24 - a14 * a23; - double a1224_1422 = a12 * a24 - a14 * a22; - double a1223_1322 = a12 * a23 - a13 * a22; - double a1124_1421 = a11 * a24 - a14 * a21; - double a1123_1321 = a11 * a23 - a13 * a21; - double a1122_1221 = a11 * a22 - a12 * a21; - - double q[4][4]; - q[0][0] = a12 * a3344_4334 - a13 * a3244_4234 + a14 * a3243_4233; - q[0][1] = -a11 * a3344_4334 + a13 * a3144_4134 - a14 * a3143_4133; - q[0][2] = a11 * a3244_4234 - a12 * a3144_4134 + a14 * a3142_4132; - q[0][3] = -a11 * a3243_4233 + a12 * a3143_4133 - a13 * a3142_4132; - - q[1][0] = a22 * a3344_4334 - a23 * a3244_4234 + a24 * a3243_4233; - q[1][1] = -a21 * a3344_4334 + a23 * a3144_4134 - a24 * a3143_4133; - q[1][2] = a21 * a3244_4234 - a22 * a3144_4134 + a24 * a3142_4132; - q[1][3] = -a21 * a3243_4233 + a22 * a3143_4133 - a23 * a3142_4132; - - q[2][0] = a32 * a1324_1423 - a33 * a1224_1422 + a34 * a1223_1322; - q[2][1] = -a31 * a1324_1423 + a33 * a1124_1421 - a34 * a1123_1321; - q[2][2] = a31 * a1224_1422 - a32 * a1124_1421 + a34 * a1122_1221; - q[2][3] = -a31 * a1223_1322 + a32 * a1123_1321 - a33 * a1122_1221; - - q[3][0] = a42 * a1324_1423 - a43 * a1224_1422 + a44 * a1223_1322; - q[3][1] = -a41 * a1324_1423 + a43 * a1124_1421 - a44 * a1123_1321; - q[3][2] = a41 * a1224_1422 - a42 * a1124_1421 + a44 * a1122_1221; - q[3][3] = -a41 * a1223_1322 + a42 * a1123_1321 - a43 * a1122_1221; - - double qsqr[4]; - for (int i=0;i<4;i++) - qsqr[i] = q[i][0]*q[i][0] + q[i][1]*q[i][1] + q[i][2]*q[i][2] + q[i][3]*q[i][3]; - - int bi = 0; - double max = 0; - for (int i=0;i<4;i++) - { - if (qsqr[i] > max) - { - bi = i; - max = qsqr[i]; - } - } - - bool too_small = false; - if (qsqr[bi] < evecprec) - { - //if qsqr is still too small, return the identity rotation. - q[bi][0] = 1; - q[bi][1] = 0; - q[bi][2] = 0; - q[bi][3] = 0; - too_small = true; - } - else - { - double normq = sqrt(qsqr[bi]); - q[bi][0] /= normq; - q[bi][1] /= normq; - q[bi][2] /= normq; - q[bi][3] /= normq; - } - - memcpy(qopt, q[bi], 4 * sizeof(double)); - return !too_small; -} - -int polar_decomposition_3x3(double* _A, bool right_sided, double* U, double* P) -{ - double A[9]; - memcpy(A, _A, 9 * sizeof(double)); - - double det = matrix_determinant_3x3(A); - if (det < 0) - flip_matrix(A); - - double q[4]; - double nrmsdsq = 0; - optimal_quaternion(A, true, -1, &nrmsdsq, q); - q[0] = -q[0]; - quaternion_to_rotation_matrix(q, U); - - if (det < 0) - flip_matrix(U); - - double UT[9] = {U[0], U[3], U[6], U[1], U[4], U[7], U[2], U[5], U[8]}; - - if (right_sided) - matmul_3x3(UT, _A, P); - else - matmul_3x3(_A, UT, P); - - return 0; -} - -void InnerProduct(double *A, int num, const double (*coords1)[3], double (*coords2)[3], int8_t* permutation) -{ - A[0] = A[1] = A[2] = A[3] = A[4] = A[5] = A[6] = A[7] = A[8] = 0.0; - - for (int i = 0; i < num; ++i) - { - double x1 = coords1[i][0]; - double y1 = coords1[i][1]; - double z1 = coords1[i][2]; - - double x2 = coords2[permutation[i]][0]; - double y2 = coords2[permutation[i]][1]; - double z2 = coords2[permutation[i]][2]; - - A[0] += x1 * x2; - A[1] += x1 * y2; - A[2] += x1 * z2; - - A[3] += y1 * x2; - A[4] += y1 * y2; - A[5] += y1 * z2; - - A[6] += z1 * x2; - A[7] += z1 * y2; - A[8] += z1 * z2; - } -} - -int FastCalcRMSDAndRotation(double *A, double E0, double *p_nrmsdsq, double *q, double* U) -{ - optimal_quaternion(A, false, E0, p_nrmsdsq, q); - quaternion_to_rotation_matrix(q, U); - return 0; -} - diff --git a/src/USER-PTM/polar.h b/src/USER-PTM/polar.h deleted file mode 100644 index 3ec025b806..0000000000 --- a/src/USER-PTM/polar.h +++ /dev/null @@ -1,12 +0,0 @@ -#ifndef POLAR_H -#define POLAR_H - -#include <stdint.h> -#include <stdbool.h> - -int polar_decomposition_3x3(double* _A, bool right_sided, double* U, double* P); -void InnerProduct(double *A, int num, const double (*coords1)[3], double (*coords2)[3], int8_t* permutation); -int FastCalcRMSDAndRotation(double *A, double E0, double *p_nrmsdsq, double *q, double* U); - -#endif - diff --git a/src/PTM/ptm_alloy_types.cpp b/src/USER-PTM/ptm_alloy_types.cpp similarity index 100% rename from src/PTM/ptm_alloy_types.cpp rename to src/USER-PTM/ptm_alloy_types.cpp diff --git a/src/PTM/ptm_alloy_types.h b/src/USER-PTM/ptm_alloy_types.h similarity index 100% rename from src/PTM/ptm_alloy_types.h rename to src/USER-PTM/ptm_alloy_types.h diff --git a/src/PTM/ptm_canonical_coloured.cpp b/src/USER-PTM/ptm_canonical_coloured.cpp similarity index 100% rename from src/PTM/ptm_canonical_coloured.cpp rename to src/USER-PTM/ptm_canonical_coloured.cpp diff --git a/src/PTM/ptm_canonical_coloured.h b/src/USER-PTM/ptm_canonical_coloured.h similarity index 100% rename from src/PTM/ptm_canonical_coloured.h rename to src/USER-PTM/ptm_canonical_coloured.h diff --git a/src/PTM/ptm_convex_hull_incremental.cpp b/src/USER-PTM/ptm_convex_hull_incremental.cpp similarity index 100% rename from src/PTM/ptm_convex_hull_incremental.cpp rename to src/USER-PTM/ptm_convex_hull_incremental.cpp diff --git a/src/PTM/ptm_convex_hull_incremental.h b/src/USER-PTM/ptm_convex_hull_incremental.h similarity index 100% rename from src/PTM/ptm_convex_hull_incremental.h rename to src/USER-PTM/ptm_convex_hull_incremental.h diff --git a/src/PTM/ptm_deformation_gradient.cpp b/src/USER-PTM/ptm_deformation_gradient.cpp similarity index 100% rename from src/PTM/ptm_deformation_gradient.cpp rename to src/USER-PTM/ptm_deformation_gradient.cpp diff --git a/src/PTM/ptm_deformation_gradient.h b/src/USER-PTM/ptm_deformation_gradient.h similarity index 100% rename from src/PTM/ptm_deformation_gradient.h rename to src/USER-PTM/ptm_deformation_gradient.h diff --git a/src/USER-PTM/ptm_functions.h b/src/USER-PTM/ptm_functions.h index 69141a37c4..cd67d4940d 100644 --- a/src/USER-PTM/ptm_functions.h +++ b/src/USER-PTM/ptm_functions.h @@ -3,7 +3,7 @@ #include <stdint.h> #include <stdbool.h> -#include "initialize_data.h" +#include "ptm_initialize_data.h" #include "ptm_constants.h" diff --git a/src/PTM/ptm_fundamental_mappings.h b/src/USER-PTM/ptm_fundamental_mappings.h similarity index 100% rename from src/PTM/ptm_fundamental_mappings.h rename to src/USER-PTM/ptm_fundamental_mappings.h diff --git a/src/PTM/ptm_graph_data.cpp b/src/USER-PTM/ptm_graph_data.cpp similarity index 100% rename from src/PTM/ptm_graph_data.cpp rename to src/USER-PTM/ptm_graph_data.cpp diff --git a/src/PTM/ptm_graph_data.h b/src/USER-PTM/ptm_graph_data.h similarity index 100% rename from src/PTM/ptm_graph_data.h rename to src/USER-PTM/ptm_graph_data.h diff --git a/src/PTM/ptm_graph_tools.cpp b/src/USER-PTM/ptm_graph_tools.cpp similarity index 100% rename from src/PTM/ptm_graph_tools.cpp rename to src/USER-PTM/ptm_graph_tools.cpp diff --git a/src/PTM/ptm_graph_tools.h b/src/USER-PTM/ptm_graph_tools.h similarity index 100% rename from src/PTM/ptm_graph_tools.h rename to src/USER-PTM/ptm_graph_tools.h diff --git a/src/PTM/ptm_index.cpp b/src/USER-PTM/ptm_index.cpp similarity index 100% rename from src/PTM/ptm_index.cpp rename to src/USER-PTM/ptm_index.cpp diff --git a/src/PTM/ptm_initialize_data.cpp b/src/USER-PTM/ptm_initialize_data.cpp similarity index 100% rename from src/PTM/ptm_initialize_data.cpp rename to src/USER-PTM/ptm_initialize_data.cpp diff --git a/src/PTM/ptm_initialize_data.h b/src/USER-PTM/ptm_initialize_data.h similarity index 100% rename from src/PTM/ptm_initialize_data.h rename to src/USER-PTM/ptm_initialize_data.h diff --git a/src/PTM/ptm_neighbour_ordering.cpp b/src/USER-PTM/ptm_neighbour_ordering.cpp similarity index 100% rename from src/PTM/ptm_neighbour_ordering.cpp rename to src/USER-PTM/ptm_neighbour_ordering.cpp diff --git a/src/PTM/ptm_neighbour_ordering.h b/src/USER-PTM/ptm_neighbour_ordering.h similarity index 100% rename from src/PTM/ptm_neighbour_ordering.h rename to src/USER-PTM/ptm_neighbour_ordering.h diff --git a/src/PTM/ptm_normalize_vertices.cpp b/src/USER-PTM/ptm_normalize_vertices.cpp similarity index 100% rename from src/PTM/ptm_normalize_vertices.cpp rename to src/USER-PTM/ptm_normalize_vertices.cpp diff --git a/src/PTM/ptm_normalize_vertices.h b/src/USER-PTM/ptm_normalize_vertices.h similarity index 100% rename from src/PTM/ptm_normalize_vertices.h rename to src/USER-PTM/ptm_normalize_vertices.h diff --git a/src/PTM/ptm_polar.cpp b/src/USER-PTM/ptm_polar.cpp similarity index 100% rename from src/PTM/ptm_polar.cpp rename to src/USER-PTM/ptm_polar.cpp diff --git a/src/PTM/ptm_polar.h b/src/USER-PTM/ptm_polar.h similarity index 100% rename from src/PTM/ptm_polar.h rename to src/USER-PTM/ptm_polar.h diff --git a/src/PTM/ptm_quat.cpp b/src/USER-PTM/ptm_quat.cpp similarity index 100% rename from src/PTM/ptm_quat.cpp rename to src/USER-PTM/ptm_quat.cpp diff --git a/src/PTM/ptm_quat.h b/src/USER-PTM/ptm_quat.h similarity index 100% rename from src/PTM/ptm_quat.h rename to src/USER-PTM/ptm_quat.h diff --git a/src/PTM/ptm_structure_matcher.cpp b/src/USER-PTM/ptm_structure_matcher.cpp similarity index 100% rename from src/PTM/ptm_structure_matcher.cpp rename to src/USER-PTM/ptm_structure_matcher.cpp diff --git a/src/PTM/ptm_structure_matcher.h b/src/USER-PTM/ptm_structure_matcher.h similarity index 100% rename from src/PTM/ptm_structure_matcher.h rename to src/USER-PTM/ptm_structure_matcher.h diff --git a/src/PTM/ptm_voronoi_cell.cpp b/src/USER-PTM/ptm_voronoi_cell.cpp similarity index 100% rename from src/PTM/ptm_voronoi_cell.cpp rename to src/USER-PTM/ptm_voronoi_cell.cpp diff --git a/src/PTM/ptm_voronoi_cell.h b/src/USER-PTM/ptm_voronoi_cell.h similarity index 100% rename from src/PTM/ptm_voronoi_cell.h rename to src/USER-PTM/ptm_voronoi_cell.h diff --git a/src/PTM/ptm_voronoi_config.h b/src/USER-PTM/ptm_voronoi_config.h similarity index 100% rename from src/PTM/ptm_voronoi_config.h rename to src/USER-PTM/ptm_voronoi_config.h diff --git a/src/USER-PTM/quat.cpp b/src/USER-PTM/quat.cpp deleted file mode 100644 index f55aff3d2b..0000000000 --- a/src/USER-PTM/quat.cpp +++ /dev/null @@ -1,396 +0,0 @@ -#include <string.h> -#include <cmath> -#include <cfloat> - - -#define SIGN(x) (x >= 0 ? 1 : -1) -#define MIN(X, Y) (((X) < (Y)) ? (X) : (Y)) -#define MAX(X, Y) (((X) > (Y)) ? (X) : (Y)) - - -#define SQRT_2 1.4142135623730951454746218587388284504414 -#define HALF_SQRT_2 0.7071067811865474617150084668537601828575 - -#define PHI 1.6180339887498949025257388711906969547272 -#define HALF_PHI 0.8090169943749474512628694355953484773636 - -#define INV_PHI 0.6180339887498947915034364086750429123640 -#define HALF_INV_PHI 0.3090169943749473957517182043375214561820 - -#define SQRT_5_ 2.23606797749978969640917366873127623544061835961152572427089 -#define SQRT_2_3 0.8164965809277260344600790631375275552273 -#define SQRT_1_6 0.4082482904638630172300395315687637776136 - - -double generator_cubic[24][4] = { {1, 0, 0, 0 }, - {0, 1, 0, 0 }, - {0, 0, 1, 0 }, - {0, 0, 0, 1 }, - {0.5, 0.5, 0.5, 0.5 }, - {0.5, 0.5, -0.5, 0.5 }, - {0.5, -0.5, 0.5, 0.5 }, - {0.5, -0.5, -0.5, 0.5 }, - {-0.5, 0.5, 0.5, 0.5 }, - {-0.5, 0.5, -0.5, 0.5 }, - {-0.5, -0.5, 0.5, 0.5 }, - {-0.5, -0.5, -0.5, 0.5 }, - {HALF_SQRT_2, HALF_SQRT_2, 0, 0 }, - {HALF_SQRT_2, 0, HALF_SQRT_2, 0 }, - {HALF_SQRT_2, 0, 0, HALF_SQRT_2 }, - {-HALF_SQRT_2, HALF_SQRT_2, 0, 0 }, - {-HALF_SQRT_2, 0, HALF_SQRT_2, 0 }, - {-HALF_SQRT_2, 0, 0, HALF_SQRT_2 }, - {0, HALF_SQRT_2, HALF_SQRT_2, 0 }, - {0, HALF_SQRT_2, 0, HALF_SQRT_2 }, - {0, 0, HALF_SQRT_2, HALF_SQRT_2 }, - {0, -HALF_SQRT_2, HALF_SQRT_2, 0 }, - {0, -HALF_SQRT_2, 0, HALF_SQRT_2 }, - {0, 0, -HALF_SQRT_2, HALF_SQRT_2 } }; - -double generator_diamond_cubic[12][4] = { {1, 0, 0, 0 }, - {0, 1, 0, 0 }, - {0, 0, 1, 0 }, - {0, 0, 0, 1 }, - {0.5, 0.5, 0.5, 0.5 }, - {0.5, 0.5, -0.5, 0.5 }, - {0.5, -0.5, 0.5, 0.5 }, - {0.5, -0.5, -0.5, 0.5 }, - {-0.5, 0.5, 0.5, 0.5 }, - {-0.5, 0.5, -0.5, 0.5 }, - {-0.5, -0.5, 0.5, 0.5 }, - {-0.5, -0.5, -0.5, 0.5 } }; - -double generator_hcp[6][4] = { {1, 0, 0, 0}, - {0.5, 0.5, 0.5, 0.5}, - {0.5, -0.5, -0.5, -0.5}, - {0, SQRT_2_3, -SQRT_1_6, -SQRT_1_6}, - {0, SQRT_1_6, -SQRT_2_3, SQRT_1_6}, - {0, SQRT_1_6, SQRT_1_6, -SQRT_2_3} }; - -double generator_diamond_hexagonal[3][4] = { {1, 0, 0, 0}, - {0.5, 0.5, 0.5, 0.5}, - {0.5, -0.5, -0.5, -0.5} }; - -double generator_icosahedral[60][4] = { {1, 0, 0, 0}, - {HALF_PHI, -HALF_INV_PHI, -0.5, 0}, - {HALF_PHI, 0, -HALF_INV_PHI, -0.5}, - {HALF_PHI, -0.5, 0, -HALF_INV_PHI}, - {HALF_PHI, HALF_INV_PHI, -0.5, 0}, - {HALF_PHI, 0, HALF_INV_PHI, -0.5}, - {HALF_PHI, -0.5, 0, HALF_INV_PHI}, - {HALF_PHI, 0.5, 0, -HALF_INV_PHI}, - {HALF_PHI, 0, -HALF_INV_PHI, 0.5}, - {HALF_PHI, -HALF_INV_PHI, 0.5, 0}, - {HALF_PHI, 0, HALF_INV_PHI, 0.5}, - {HALF_PHI, HALF_INV_PHI, 0.5, 0}, - {HALF_PHI, 0.5, 0, HALF_INV_PHI}, - {0.5, HALF_PHI, -HALF_INV_PHI, 0}, - {0.5, HALF_PHI, HALF_INV_PHI, 0}, - {0.5, 0.5, 0.5, 0.5}, - {0.5, 0.5, 0.5, -0.5}, - {0.5, 0.5, -0.5, 0.5}, - {0.5, 0.5, -0.5, -0.5}, - {0.5, HALF_INV_PHI, 0, HALF_PHI}, - {0.5, HALF_INV_PHI, 0, -HALF_PHI}, - {0.5, 0, HALF_PHI, -HALF_INV_PHI}, - {0.5, 0, HALF_PHI, HALF_INV_PHI}, - {0.5, 0, -HALF_PHI, -HALF_INV_PHI}, - {0.5, 0, -HALF_PHI, HALF_INV_PHI}, - {0.5, -HALF_INV_PHI, 0, HALF_PHI}, - {0.5, -HALF_INV_PHI, 0, -HALF_PHI}, - {0.5, -0.5, 0.5, 0.5}, - {0.5, -0.5, 0.5, -0.5}, - {0.5, -0.5, -0.5, 0.5}, - {0.5, -0.5, -0.5, -0.5}, - {0.5, -HALF_PHI, -HALF_INV_PHI, 0}, - {0.5, -HALF_PHI, HALF_INV_PHI, 0}, - {HALF_INV_PHI, -HALF_PHI, 0, -0.5}, - {HALF_INV_PHI, 0, -0.5, -HALF_PHI}, - {HALF_INV_PHI, -0.5, -HALF_PHI, 0}, - {HALF_INV_PHI, 0, 0.5, -HALF_PHI}, - {HALF_INV_PHI, -HALF_PHI, 0, 0.5}, - {HALF_INV_PHI, 0.5, -HALF_PHI, 0}, - {HALF_INV_PHI, HALF_PHI, 0, -0.5}, - {HALF_INV_PHI, -0.5, HALF_PHI, 0}, - {HALF_INV_PHI, 0, -0.5, HALF_PHI}, - {HALF_INV_PHI, HALF_PHI, 0, 0.5}, - {HALF_INV_PHI, 0, 0.5, HALF_PHI}, - {HALF_INV_PHI, 0.5, HALF_PHI, 0}, - {0, 1, 0, 0}, - {0, HALF_PHI, -0.5, HALF_INV_PHI}, - {0, HALF_PHI, -0.5, -HALF_INV_PHI}, - {0, HALF_PHI, 0.5, HALF_INV_PHI}, - {0, HALF_PHI, 0.5, -HALF_INV_PHI}, - {0, 0.5, HALF_INV_PHI, -HALF_PHI}, - {0, 0.5, HALF_INV_PHI, HALF_PHI}, - {0, 0.5, -HALF_INV_PHI, -HALF_PHI}, - {0, 0.5, -HALF_INV_PHI, HALF_PHI}, - {0, HALF_INV_PHI, -HALF_PHI, 0.5}, - {0, HALF_INV_PHI, -HALF_PHI, -0.5}, - {0, HALF_INV_PHI, HALF_PHI, 0.5}, - {0, HALF_INV_PHI, HALF_PHI, -0.5}, - {0, 0, 1, 0}, - {0, 0, 0, 1} }; - -static void quat_rot(double* r, double* a, double* b) -{ - b[0] = (r[0] * a[0] - r[1] * a[1] - r[2] * a[2] - r[3] * a[3]); - b[1] = (r[0] * a[1] + r[1] * a[0] + r[2] * a[3] - r[3] * a[2]); - b[2] = (r[0] * a[2] - r[1] * a[3] + r[2] * a[0] + r[3] * a[1]); - b[3] = (r[0] * a[3] + r[1] * a[2] - r[2] * a[1] + r[3] * a[0]); -} - -static int rotate_quaternion_into_fundamental_zone(int num_generators, double (*generator)[4], double* q) -{ - double max = 0.0; - int i = 0, bi = -1; - for (i=0;i<num_generators;i++) - { - double* g = generator[i]; - double t = fabs(q[0] * g[0] - q[1] * g[1] - q[2] * g[2] - q[3] * g[3]); - if (t > max) - { - max = t; - bi = i; - } - } - - double f[4]; - quat_rot(q, generator[bi], f); - memcpy(q, &f, 4 * sizeof(double)); - if (q[0] < 0) - { - q[0] = -q[0]; - q[1] = -q[1]; - q[2] = -q[2]; - q[3] = -q[3]; - } - - return bi; -} - -int rotate_quaternion_into_cubic_fundamental_zone(double* q) -{ - return rotate_quaternion_into_fundamental_zone(24, generator_cubic, q); -} - -int rotate_quaternion_into_diamond_cubic_fundamental_zone(double* q) -{ - return rotate_quaternion_into_fundamental_zone(12, generator_diamond_cubic, q); -} - -int rotate_quaternion_into_icosahedral_fundamental_zone(double* q) -{ - return rotate_quaternion_into_fundamental_zone(60, generator_icosahedral, q); -} - -int rotate_quaternion_into_hcp_fundamental_zone(double* q) -{ - return rotate_quaternion_into_fundamental_zone(6, generator_hcp, q); -} - -int rotate_quaternion_into_diamond_hexagonal_fundamental_zone(double* q) -{ - return rotate_quaternion_into_fundamental_zone(3, generator_diamond_hexagonal, q); -} - -double quat_dot(double* a, double* b) -{ - return a[0] * b[0] - + a[1] * b[1] - + a[2] * b[2] - + a[3] * b[3]; -} - -double quat_size(double* q) -{ - return sqrt(quat_dot(q, q)); -} - -void normalize_quaternion(double* q) -{ - double size = quat_size(q); - - q[0] /= size; - q[1] /= size; - q[2] /= size; - q[3] /= size; -} - -void rotation_matrix_to_quaternion(double* u, double* q) -{ - double r11 = u[0]; - double r12 = u[1]; - double r13 = u[2]; - double r21 = u[3]; - double r22 = u[4]; - double r23 = u[5]; - double r31 = u[6]; - double r32 = u[7]; - double r33 = u[8]; - - q[0] = (1.0 + r11 + r22 + r33) / 4.0; - q[1] = (1.0 + r11 - r22 - r33) / 4.0; - q[2] = (1.0 - r11 + r22 - r33) / 4.0; - q[3] = (1.0 - r11 - r22 + r33) / 4.0; - - q[0] = sqrt(MAX(0, q[0])); - q[1] = sqrt(MAX(0, q[1])); - q[2] = sqrt(MAX(0, q[2])); - q[3] = sqrt(MAX(0, q[3])); - - double m0 = MAX(q[0], q[1]); - double m1 = MAX(q[2], q[3]); - double max = MAX(m0, m1); - - int i = 0; - for (i=0;i<4;i++) - if (q[i] == max) - break; - - if (i == 0) - { - q[1] *= SIGN(r32 - r23); - q[2] *= SIGN(r13 - r31); - q[3] *= SIGN(r21 - r12); - } - else if (i == 1) - { - q[0] *= SIGN(r32 - r23); - q[2] *= SIGN(r21 + r12); - q[3] *= SIGN(r13 + r31); - } - else if (i == 2) - { - q[0] *= SIGN(r13 - r31); - q[1] *= SIGN(r21 + r12); - q[3] *= SIGN(r32 + r23); - } - else if (i == 3) - { - q[0] *= SIGN(r21 - r12); - q[1] *= SIGN(r31 + r13); - q[2] *= SIGN(r32 + r23); - } - - normalize_quaternion(q); -} - -void quaternion_to_rotation_matrix(double* q, double* u) -{ - double a = q[0]; - double b = q[1]; - double c = q[2]; - double d = q[3]; - - u[0] = a*a + b*b - c*c - d*d; - u[1] = 2*b*c - 2*a*d; - u[2] = 2*b*d + 2*a*c; - - u[3] = 2*b*c + 2*a*d; - u[4] = a*a - b*b + c*c - d*d; - u[5] = 2*c*d - 2*a*b; - - u[6] = 2*b*d - 2*a*c; - u[7] = 2*c*d + 2*a*b; - u[8] = a*a - b*b - c*c + d*d; -} - -double quat_quick_misorientation(double* q1, double* q2) -{ - double t = quat_dot(q1, q2); - t = MIN(1, MAX(-1, t)); - return 2 * t * t - 1; -} - -double quat_misorientation(double* q1, double* q2) -{ - return acos(quat_quick_misorientation(q1, q2)); -} - - -double quat_quick_disorientation_cubic(double* q0, double* q1) -{ - double qrot[4]; - double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]}; - quat_rot(qinv, q1, qrot); - - rotate_quaternion_into_cubic_fundamental_zone(qrot); - double t = qrot[0]; - t = MIN(1, MAX(-1, t)); - return 2 * t * t - 1; -} - -double quat_disorientation_cubic(double* q0, double* q1) -{ - return acos(quat_quick_disorientation_cubic(q0, q1)); -} - -double quat_quick_disorientation_diamond_cubic(double* q0, double* q1) -{ - double qrot[4]; - double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]}; - quat_rot(qinv, q1, qrot); - - rotate_quaternion_into_diamond_cubic_fundamental_zone(qrot); - double t = qrot[0]; - t = MIN(1, MAX(-1, t)); - return 2 * t * t - 1; -} - -double quat_disorientation_diamond_cubic(double* q0, double* q1) -{ - return acos(quat_quick_disorientation_diamond_cubic(q0, q1)); -} - -double quat_quick_disorientation_hcp(double* q0, double* q1) -{ - double qrot[4]; - double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]}; - quat_rot(qinv, q1, qrot); - - rotate_quaternion_into_hcp_fundamental_zone(qrot); - double t = qrot[0]; - t = MIN(1, MAX(-1, t)); - return 2 * t * t - 1; -} - -double quat_disorientation_hcp(double* q0, double* q1) -{ - return acos(quat_quick_disorientation_hcp(q0, q1)); -} - -double quat_quick_disorientation_diamond_hexagonal(double* q0, double* q1) -{ - double qrot[4]; - double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]}; - quat_rot(qinv, q1, qrot); - - rotate_quaternion_into_diamond_hexagonal_fundamental_zone(qrot); - double t = qrot[0]; - t = MIN(1, MAX(-1, t)); - return 2 * t * t - 1; -} - -double quat_disorientation_diamond_hexagonal(double* q0, double* q1) -{ - return acos(quat_quick_disorientation_diamond_hexagonal(q0, q1)); -} - -double quat_quick_disorientation_icosahedral(double* q0, double* q1) -{ - double qrot[4]; - double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]}; - quat_rot(qinv, q1, qrot); - - rotate_quaternion_into_icosahedral_fundamental_zone(qrot); - double t = qrot[0]; - t = MIN(1, MAX(-1, t)); - return 2 * t * t - 1; -} - -double quat_disorientation_icosahedral(double* q0, double* q1) -{ - return acos(quat_quick_disorientation_icosahedral(q0, q1)); -} - diff --git a/src/USER-PTM/quat.h b/src/USER-PTM/quat.h deleted file mode 100644 index 725086322c..0000000000 --- a/src/USER-PTM/quat.h +++ /dev/null @@ -1,32 +0,0 @@ -#ifndef QUAT_H -#define QUAT_H - -int rotate_quaternion_into_cubic_fundamental_zone(double* q); -int rotate_quaternion_into_diamond_cubic_fundamental_zone(double* q); -int rotate_quaternion_into_icosahedral_fundamental_zone(double* q); -int rotate_quaternion_into_hcp_fundamental_zone(double* q); -int rotate_quaternion_into_diamond_hexagonal_fundamental_zone(double* q); - -void normalize_quaternion(double* q); -void quaternion_to_rotation_matrix(double* q, double* U); -void rotation_matrix_to_quaternion(double* u, double* q); -double quat_dot(double* a, double* b); -double quat_quick_misorientation(double* q1, double* q2); -double quat_misorientation(double* q1, double* q2); - -double quat_quick_disorientation_cubic(double* q0, double* q1); -double quat_disorientation_cubic(double* q0, double* q1); -double quat_quick_disorientation_diamond_cubic(double* q0, double* q1); -double quat_disorientation_diamond_cubic(double* q0, double* q1); -double quat_quick_disorientation_hcp(double* q0, double* q1); -double quat_disorientation_hcp(double* q0, double* q1); -double quat_quick_disorientation_diamond_hexagonal(double* q0, double* q1); -double quat_disorientation_diamond_hexagonal(double* q0, double* q1); -double quat_quick_disorientation_icosahedral(double* q0, double* q1); -double quat_disorientation_icosahedral(double* q0, double* q1); - -#endif - - - - diff --git a/src/USER-PTM/structure_matcher.cpp b/src/USER-PTM/structure_matcher.cpp deleted file mode 100644 index dad8e3599a..0000000000 --- a/src/USER-PTM/structure_matcher.cpp +++ /dev/null @@ -1,294 +0,0 @@ -#include <cstdio> -#include <cstdlib> -#include <string.h> -#include <cmath> -#include <cfloat> -#include <cassert> -#include <algorithm> -#include "convex_hull_incremental.h" -#include "canonical_coloured.h" -#include "graph_data.h" -#include "graph_tools.h" -#include "normalize_vertices.h" -#include "polar.h" -#include "structure_matcher.h" -#include "ptm_constants.h" - - -static double calc_rmsd(int num_points, const double (*ideal_points)[3], double (*normalized)[3], int8_t* mapping, - double G1, double G2, double E0, double* q, double* p_scale) -{ - double A0[9]; - InnerProduct(A0, num_points, ideal_points, normalized, mapping); - - double nrmsdsq, rot[9]; - FastCalcRMSDAndRotation(A0, E0, &nrmsdsq, q, rot); - - double k0 = 0; - for (int i=0;i<num_points;i++) - { - for (int j=0;j<3;j++) - { - double v = 0.0; - for (int k=0;k<3;k++) - v += rot[j*3+k] * ideal_points[i][k]; - - k0 += v * normalized[mapping[i]][j]; - } - } - - double scale = k0 / G2; - *p_scale = scale; - return sqrt(fabs(G1 - scale*k0) / num_points); -} - -static void check_graphs( const refdata_t* s, - uint64_t hash, - int8_t* canonical_labelling, - double (*normalized)[3], - result_t* res) -{ - int num_points = s->num_nbrs + 1; - const double (*ideal_points)[3] = s->points; - int8_t inverse_labelling[PTM_MAX_POINTS]; - int8_t mapping[PTM_MAX_POINTS]; - - for (int i=0; i<num_points; i++) - inverse_labelling[ canonical_labelling[i] ] = i; - - double G1 = 0, G2 = 0; - for (int i=0;i<num_points;i++) - { - double x1 = ideal_points[i][0]; - double y1 = ideal_points[i][1]; - double z1 = ideal_points[i][2]; - - double x2 = normalized[i][0]; - double y2 = normalized[i][1]; - double z2 = normalized[i][2]; - - G1 += x1 * x1 + y1 * y1 + z1 * z1; - G2 += x2 * x2 + y2 * y2 + z2 * z2; - } - double E0 = (G1 + G2) / 2; - - for (int i = 0;i<s->num_graphs;i++) - { - if (hash != s->graphs[i].hash) - continue; - - graph_t* gref = &s->graphs[i]; - for (int j = 0;j<gref->num_automorphisms;j++) - { - for (int k=0;k<num_points;k++) - mapping[automorphisms[gref->automorphism_index + j][k]] = inverse_labelling[ gref->canonical_labelling[k] ]; - - double q[4], scale = 0; - double rmsd = calc_rmsd(num_points, ideal_points, normalized, mapping, G1, G2, E0, q, &scale); - if (rmsd < res->rmsd) - { - res->rmsd = rmsd; - res->scale = scale; - res->ref_struct = s; - memcpy(res->q, q, 4 * sizeof(double)); - memcpy(res->mapping, mapping, sizeof(int8_t) * num_points); - } - } - } -} - -int match_general(const refdata_t* s, double (*ch_points)[3], double (*points)[3], convexhull_t* ch, result_t* res) -{ - int8_t degree[PTM_MAX_NBRS]; - int8_t facets[PTM_MAX_FACETS][3]; - - int ret = get_convex_hull(s->num_nbrs + 1, (const double (*)[3])ch_points, ch, facets); - ch->ok = ret >= 0; - if (ret != 0) - return PTM_NO_ERROR; - - if (ch->num_facets != s->num_facets) - return PTM_NO_ERROR; //incorrect number of facets in convex hull - - int max_degree = graph_degree(s->num_facets, facets, s->num_nbrs, degree); - if (max_degree > s->max_degree) - return PTM_NO_ERROR; - - if (s->type == PTM_MATCH_SC) - for (int i = 0;i<s->num_nbrs;i++) - if (degree[i] != 4) - return PTM_NO_ERROR; - - double normalized[PTM_MAX_POINTS][3]; - subtract_barycentre(s->num_nbrs + 1, points, normalized); - - int8_t code[2 * PTM_MAX_EDGES]; - int8_t colours[PTM_MAX_POINTS] = {0}; - int8_t canonical_labelling[PTM_MAX_POINTS]; - uint64_t hash = 0; - ret = canonical_form_coloured(s->num_facets, facets, s->num_nbrs, degree, colours, canonical_labelling, &code[0], &hash); - if (ret != PTM_NO_ERROR) - return ret; - - check_graphs(s, hash, canonical_labelling, normalized, res); - return PTM_NO_ERROR; -} - -int match_fcc_hcp_ico(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res) -{ - int num_nbrs = structure_fcc.num_nbrs; - int num_facets = structure_fcc.num_facets; - int max_degree = structure_fcc.max_degree; - - int8_t degree[PTM_MAX_NBRS]; - int8_t facets[PTM_MAX_FACETS][3]; - - int ret = get_convex_hull(num_nbrs + 1, (const double (*)[3])ch_points, ch, facets); - ch->ok = ret >= 0; - if (ret != 0) - return PTM_NO_ERROR; - - if (ch->num_facets != num_facets) - return PTM_NO_ERROR; //incorrect number of facets in convex hull - - int _max_degree = graph_degree(num_facets, facets, num_nbrs, degree); - if (_max_degree > max_degree) - return PTM_NO_ERROR; - - double normalized[PTM_MAX_POINTS][3]; - subtract_barycentre(num_nbrs + 1, points, normalized); - - int8_t code[2 * PTM_MAX_EDGES]; - int8_t colours[PTM_MAX_POINTS] = {0}; - int8_t canonical_labelling[PTM_MAX_POINTS]; - uint64_t hash = 0; - ret = canonical_form_coloured(num_facets, facets, num_nbrs, degree, colours, canonical_labelling, &code[0], &hash); - if (ret != PTM_NO_ERROR) - return ret; - - if (flags & PTM_CHECK_FCC) check_graphs(&structure_fcc, hash, canonical_labelling, normalized, res); - if (flags & PTM_CHECK_HCP) check_graphs(&structure_hcp, hash, canonical_labelling, normalized, res); - if (flags & PTM_CHECK_ICO) check_graphs(&structure_ico, hash, canonical_labelling, normalized, res); - return PTM_NO_ERROR; -} - -int match_dcub_dhex(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res) -{ - int num_nbrs = structure_dcub.num_nbrs; - int num_facets = structure_fcc.num_facets; - int max_degree = structure_dcub.max_degree; - - - int8_t facets[PTM_MAX_FACETS][3]; - int ret = get_convex_hull(num_nbrs + 1, (const double (*)[3])ch_points, ch, facets); - ch->ok = ret >= 0; - if (ret != 0) - return PTM_NO_ERROR; - - //check for facets with multiple inner atoms - bool inverted[4] = {false, false, false, false}; - for (int i=0;i<ch->num_facets;i++) - { - int n = 0; - for (int j=0;j<3;j++) - { - if (facets[i][j] <= 3) - { - inverted[facets[i][j]] = true; - n++; - } - } - if (n > 1) - return PTM_NO_ERROR; - } - - int num_inverted = 0; - for (int i=0;i<4;i++) - num_inverted += inverted[i] ? 1 : 0; - - if (ch->num_facets != num_facets + 2 * num_inverted) - return PTM_NO_ERROR; //incorrect number of facets in convex hull - - int8_t degree[PTM_MAX_NBRS]; - int _max_degree = graph_degree(num_facets, facets, num_nbrs, degree); - if (_max_degree > max_degree) - return PTM_NO_ERROR; - - int num_found = 0; - int8_t toadd[4][3]; - for (int i=0;i<ch->num_facets;i++) - { - int a = facets[i][0]; - int b = facets[i][1]; - int c = facets[i][2]; - if (a <= 3 || b <= 3 || c <= 3) - continue; - - int i0 = (a - 4) / 3; - int i1 = (b - 4) / 3; - int i2 = (c - 4) / 3; - - if (i0 == i1 && i0 == i2) - { - if (num_found + num_inverted >= 4) - return PTM_NO_ERROR; - - toadd[num_found][0] = a; - toadd[num_found][1] = b; - toadd[num_found][2] = c; - num_found++; - - memcpy(&facets[i], &facets[ch->num_facets - 1], 3 * sizeof(int8_t)); - ch->num_facets--; - i--; - } - } - - if (num_found + num_inverted != 4) - return PTM_NO_ERROR; - - for (int i=0;i<num_found;i++) - { - int a = toadd[i][0]; - int b = toadd[i][1]; - int c = toadd[i][2]; - - int i0 = (a - 4) / 3; - - facets[ch->num_facets][0] = i0; - facets[ch->num_facets][1] = b; - facets[ch->num_facets][2] = c; - ch->num_facets++; - - facets[ch->num_facets][0] = a; - facets[ch->num_facets][1] = i0; - facets[ch->num_facets][2] = c; - ch->num_facets++; - - facets[ch->num_facets][0] = a; - facets[ch->num_facets][1] = b; - facets[ch->num_facets][2] = i0; - ch->num_facets++; - } - - _max_degree = graph_degree(ch->num_facets, facets, num_nbrs, degree); - if (_max_degree > max_degree) - return PTM_NO_ERROR; - - double normalized[PTM_MAX_POINTS][3]; - subtract_barycentre(num_nbrs + 1, points, normalized); - - int8_t code[2 * PTM_MAX_EDGES]; - int8_t colours[PTM_MAX_POINTS] = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; - int8_t canonical_labelling[PTM_MAX_POINTS]; - uint64_t hash = 0; - ret = canonical_form_coloured(ch->num_facets, facets, num_nbrs, degree, colours, canonical_labelling, &code[0], &hash); - if (ret != PTM_NO_ERROR) - return ret; - - if (flags & PTM_CHECK_DCUB) check_graphs(&structure_dcub, hash, canonical_labelling, normalized, res); - if (flags & PTM_CHECK_DHEX) check_graphs(&structure_dhex, hash, canonical_labelling, normalized, res); - - return PTM_NO_ERROR; -} - diff --git a/src/USER-PTM/structure_matcher.h b/src/USER-PTM/structure_matcher.h deleted file mode 100644 index 25e80a94e1..0000000000 --- a/src/USER-PTM/structure_matcher.h +++ /dev/null @@ -1,21 +0,0 @@ -#ifndef STRUCTURE_MATCHER_H -#define STRUCTURE_MATCHER_H - -#include "initialize_data.h" -#include "ptm_constants.h" - -typedef struct -{ - double rmsd; - double scale; - double q[4]; //rotation in quaternion form (rigid body transformation) - int8_t mapping[PTM_MAX_POINTS]; - const refdata_t* ref_struct; -} result_t; - -int match_general(const refdata_t* s, double (*ch_points)[3], double (*points)[3], convexhull_t* ch, result_t* res); -int match_fcc_hcp_ico(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res); -int match_dcub_dhex(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res); - -#endif - -- GitLab