From c6186bf00d5adcfd11d07c2393f306a1695d587e Mon Sep 17 00:00:00 2001
From: Axel Kohlmeyer <akohlmey@gmail.com>
Date: Tue, 31 Jul 2018 17:36:49 +0200
Subject: [PATCH] whitespace and formatting update

---
 src/MANYBODY/pair_eam_cd.cpp | 1111 +++++++++++++++++-----------------
 1 file changed, 572 insertions(+), 539 deletions(-)

diff --git a/src/MANYBODY/pair_eam_cd.cpp b/src/MANYBODY/pair_eam_cd.cpp
index c0e480488d..66ebad6244 100644
--- a/src/MANYBODY/pair_eam_cd.cpp
+++ b/src/MANYBODY/pair_eam_cd.cpp
@@ -32,463 +32,507 @@
 
 using namespace LAMMPS_NS;
 
-// This is for debugging purposes. The ASSERT() macro is used in the code to check
-// if everything runs as expected. Change this to #if 0 if you don't need the checking.
-#if 0
-        #define ASSERT(cond) ((!(cond)) ? my_failure(error,__FILE__,__LINE__) : my_noop())
-
-        inline void my_noop() {}
-        inline void my_failure(Error* error, const char* file, int line) {
-                char str[1024];
-                sprintf(str,"Assertion failure: File %s, line %i", file, line);
-                error->one(FLERR,str);
-        }
-#else
-        #define ASSERT(cond)
-#endif
-
+#define ASSERT(cond)
 #define MAXLINE 1024        // This sets the maximum line length in EAM input files.
 
-PairEAMCD::PairEAMCD(LAMMPS *lmp, int _cdeamVersion) : PairEAM(lmp), PairEAMAlloy(lmp), cdeamVersion(_cdeamVersion)
+PairEAMCD::PairEAMCD(LAMMPS *lmp, int _cdeamVersion)
+  : PairEAM(lmp), PairEAMAlloy(lmp), cdeamVersion(_cdeamVersion)
 {
-        single_enable = 0;
-        restartinfo = 0;
-
-        rhoB = NULL;
-        D_values = NULL;
-        hcoeff = NULL;
-
-        // Set communication buffer sizes needed by this pair style.
-        if(cdeamVersion == 1) {
-                comm_forward = 4;
-                comm_reverse = 3;
-        }
-        else if(cdeamVersion == 2) {
-                comm_forward = 3;
-                comm_reverse = 2;
-        }
-        else {
-                error->all(FLERR,"Invalid CD-EAM potential version.");
-        }
+  single_enable = 0;
+  restartinfo = 0;
+
+  rhoB = NULL;
+  D_values = NULL;
+  hcoeff = NULL;
+
+  // Set communication buffer sizes needed by this pair style.
+
+  if (cdeamVersion == 1) {
+    comm_forward = 4;
+    comm_reverse = 3;
+  } else if (cdeamVersion == 2) {
+    comm_forward = 3;
+    comm_reverse = 2;
+  } else {
+    error->all(FLERR,"Invalid eam/cd potential version.");
+  }
 }
 
 PairEAMCD::~PairEAMCD()
 {
-        memory->destroy(rhoB);
-        memory->destroy(D_values);
-        if(hcoeff) delete[] hcoeff;
+  memory->destroy(rhoB);
+  memory->destroy(D_values);
+  if (hcoeff) delete[] hcoeff;
 }
 
 void PairEAMCD::compute(int eflag, int vflag)
 {
-        int i,j,ii,jj,inum,jnum,itype,jtype;
-        double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
-        double rsq,rhoip,rhojp,recip,phi;
-        int *ilist,*jlist,*numneigh,**firstneigh;
-
-        evdwl = 0.0;
-        if (eflag || vflag) ev_setup(eflag,vflag);
-        else evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
-
-        // Grow per-atom arrays if necessary
-        if(atom->nmax > nmax) {
-                memory->destroy(rho);
-                memory->destroy(fp);
-                memory->destroy(rhoB);
-                memory->destroy(D_values);
-                nmax = atom->nmax;
-                memory->create(rho,nmax,"pair:rho");
-                memory->create(rhoB,nmax,"pair:rhoB");
-                memory->create(fp,nmax,"pair:fp");
-                memory->create(D_values,nmax,"pair:D_values");
+  int i,j,ii,jj,inum,jnum,itype,jtype;
+  double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
+  double rsq,rhoip,rhojp,recip,phi;
+  int *ilist,*jlist,*numneigh,**firstneigh;
+
+  evdwl = 0.0;
+  if (eflag || vflag) ev_setup(eflag,vflag);
+  else evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
+
+  // Grow per-atom arrays if necessary
+
+  if (atom->nmax > nmax) {
+    memory->destroy(rho);
+    memory->destroy(fp);
+    memory->destroy(rhoB);
+    memory->destroy(D_values);
+    nmax = atom->nmax;
+    memory->create(rho,nmax,"pair:rho");
+    memory->create(rhoB,nmax,"pair:rhoB");
+    memory->create(fp,nmax,"pair:fp");
+    memory->create(D_values,nmax,"pair:D_values");
+  }
+
+  double **x = atom->x;
+  double **f = atom->f;
+  int *type = atom->type;
+  int nlocal = atom->nlocal;
+  int newton_pair = force->newton_pair;
+
+  inum = list->inum;
+  ilist = list->ilist;
+  numneigh = list->numneigh;
+  firstneigh = list->firstneigh;
+
+  // Zero out per-atom arrays.
+
+  int m = nlocal + atom->nghost;
+  for (i = 0; i < m; i++) {
+    rho[i] = 0.0;
+    rhoB[i] = 0.0;
+    D_values[i] = 0.0;
+  }
+
+  // Stage I
+
+  // Compute rho and rhoB at each local atom site.
+
+  // Additionally calculate the D_i values here if we are using the
+  // one-site formulation.  For the two-site formulation we have to
+  // calculate the D values in an extra loop (Stage II).
+
+  for (ii = 0; ii < inum; ii++) {
+    i = ilist[ii];
+    xtmp = x[i][0];
+    ytmp = x[i][1];
+    ztmp = x[i][2];
+    itype = type[i];
+    jlist = firstneigh[i];
+    jnum = numneigh[i];
+
+    for (jj = 0; jj < jnum; jj++) {
+      j = jlist[jj];
+      j &= NEIGHMASK;
+
+      delx = xtmp - x[j][0];
+      dely = ytmp - x[j][1];
+      delz = ztmp - x[j][2];
+      rsq = delx*delx + dely*dely + delz*delz;
+
+      if (rsq < cutforcesq) {
+        jtype = type[j];
+        double r = sqrt(rsq);
+        const EAMTableIndex index = radiusToTableIndex(r);
+        double localrho = RhoOfR(index, jtype, itype);
+        rho[i] += localrho;
+        if (jtype == speciesB) rhoB[i] += localrho;
+        if (newton_pair || j < nlocal) {
+          localrho = RhoOfR(index, itype, jtype);
+          rho[j] += localrho;
+          if (itype == speciesB) rhoB[j] += localrho;
         }
 
-        double **x = atom->x;
-        double **f = atom->f;
-        int *type = atom->type;
-        int nlocal = atom->nlocal;
-        int newton_pair = force->newton_pair;
-
-        inum = list->inum;
-        ilist = list->ilist;
-        numneigh = list->numneigh;
-        firstneigh = list->firstneigh;
-
-        // Zero out per-atom arrays.
-        int m = nlocal + atom->nghost;
-        for(i = 0; i < m; i++) {
-                rho[i] = 0.0;
-                rhoB[i] = 0.0;
-                D_values[i] = 0.0;
+        if (cdeamVersion == 1 && itype != jtype) {
+
+          // Note: if the i-j interaction is not concentration dependent (because either
+          // i or j are not species A or B) then its contribution to D_i and D_j should
+          // be ignored.
+          // This if-clause is only required for a ternary.
+
+          if ((itype == speciesA && jtype == speciesB)
+              || (jtype == speciesA && itype == speciesB)) {
+            double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
+            D_values[i] += Phi_AB;
+            if (newton_pair || j < nlocal)
+              D_values[j] += Phi_AB;
+          }
         }
+      }
+    }
+  }
+
+  // Communicate and sum densities.
+
+  if (newton_pair) {
+    communicationStage = 1;
+    comm->reverse_comm_pair(this);
+  }
+
+  // fp = derivative of embedding energy at each atom
+  // phi = embedding energy at each atom
+
+  for (ii = 0; ii < inum; ii++) {
+    i = ilist[ii];
+    EAMTableIndex index = rhoToTableIndex(rho[i]);
+    fp[i] = FPrimeOfRho(index, type[i]);
+    if (eflag) {
+      phi = FofRho(index, type[i]);
+      if (eflag_global) eng_vdwl += phi;
+      if (eflag_atom) eatom[i] += phi;
+    }
+  }
+
+  // Communicate derivative of embedding function and densities
+  // and D_values (this for one-site formulation only).
+
+  communicationStage = 2;
+  comm->forward_comm_pair(this);
+
+  // The electron densities may not drop to zero because then the
+  // concentration would no longer be defined.  But the concentration
+  // is not needed anyway if there is no interaction with another atom,
+  // which is the case if the electron density is exactly zero.
+  // That's why the following lines have been commented out.
+  //
+  //for (i = 0; i < nlocal + atom->nghost; i++) {
+  //        if (rho[i] == 0 && (type[i] == speciesA || type[i] == speciesB))
+  //                error->one(FLERR,"CD-EAM potential routine: Detected atom with zero electron density.");
+  //}
+
+  // Stage II
+  // This is only required for the original two-site formulation of the CD-EAM potential.
+
+  if (cdeamVersion == 2) {
+
+    // Compute intermediate value D_i for each atom.
+
+    for (ii = 0; ii < inum; ii++) {
+      i = ilist[ii];
+      xtmp = x[i][0];
+      ytmp = x[i][1];
+      ztmp = x[i][2];
+      itype = type[i];
+      jlist = firstneigh[i];
+      jnum = numneigh[i];
+
+      // This code line is required for ternary alloys.
+
+      if (itype != speciesA && itype != speciesB) continue;
+
+      double x_i = rhoB[i] / rho[i];        // Concentration at atom i.
 
-        // Stage I
-
-        // Compute rho and rhoB at each local atom site.
-        // Additionally calculate the D_i values here if we are using the one-site formulation.
-        // For the two-site formulation we have to calculate the D values in an extra loop (Stage II).
-        for(ii = 0; ii < inum; ii++) {
-                i = ilist[ii];
-                xtmp = x[i][0];
-                ytmp = x[i][1];
-                ztmp = x[i][2];
-                itype = type[i];
-                jlist = firstneigh[i];
-                jnum = numneigh[i];
-
-                for(jj = 0; jj < jnum; jj++) {
-                        j = jlist[jj];
-                        j &= NEIGHMASK;
-
-                        delx = xtmp - x[j][0];
-                        dely = ytmp - x[j][1];
-                        delz = ztmp - x[j][2];
-                        rsq = delx*delx + dely*dely + delz*delz;
-
-                        if(rsq < cutforcesq) {
-                                jtype = type[j];
-                                double r = sqrt(rsq);
-                                const EAMTableIndex index = radiusToTableIndex(r);
-                                double localrho = RhoOfR(index, jtype, itype);
-                                rho[i] += localrho;
-                                if(jtype == speciesB) rhoB[i] += localrho;
-                                if(newton_pair || j < nlocal) {
-                                        localrho = RhoOfR(index, itype, jtype);
-                                        rho[j] += localrho;
-                                        if(itype == speciesB) rhoB[j] += localrho;
-                                }
-
-                                if(cdeamVersion == 1 && itype != jtype) {
-                                        // Note: if the i-j interaction is not concentration dependent (because either
-                                        // i or j are not species A or B) then its contribution to D_i and D_j should
-                                        // be ignored.
-                                        // This if-clause is only required for a ternary.
-                                        if((itype == speciesA && jtype == speciesB) || (jtype == speciesA && itype == speciesB)) {
-                                                double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
-                                                D_values[i] += Phi_AB;
-                                                if(newton_pair || j < nlocal)
-                                                        D_values[j] += Phi_AB;
-                                        }
-                                }
-                        }
-                }
+      for (jj = 0; jj < jnum; jj++) {
+        j = jlist[jj];
+        j &= NEIGHMASK;
+        jtype = type[j];
+        if (itype == jtype) continue;
+
+        // This code line is required for ternary alloys.
+
+        if (jtype != speciesA && jtype != speciesB) continue;
+
+        delx = xtmp - x[j][0];
+        dely = ytmp - x[j][1];
+        delz = ztmp - x[j][2];
+        rsq = delx*delx + dely*dely + delz*delz;
+
+        if (rsq < cutforcesq) {
+          double r = sqrt(rsq);
+          const EAMTableIndex index = radiusToTableIndex(r);
+
+          // The concentration independent part of the cross pair potential.
+
+          double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
+
+          // Average concentration of two sites
+
+          double x_ij = 0.5 * (x_i + rhoB[j]/rho[j]);
+
+          // Calculate derivative of h(x_ij) polynomial function.
+
+          double h_prime = evalHprime(x_ij);
+
+          D_values[i] += h_prime * Phi_AB / (2.0 * rho[i] * rho[i]);
+          if (newton_pair || j < nlocal)
+            D_values[j] += h_prime * Phi_AB / (2.0 * rho[j] * rho[j]);
         }
+      }
+    }
+
+    // Communicate and sum D values.
+
+    if (newton_pair) {
+      communicationStage = 3;
+      comm->reverse_comm_pair(this);
+    }
+    communicationStage = 4;
+    comm->forward_comm_pair(this);
+  }
+
+  // Stage III
+
+  // Compute force acting on each atom.
+
+  for (ii = 0; ii < inum; ii++) {
+    i = ilist[ii];
+    xtmp = x[i][0];
+    ytmp = x[i][1];
+    ztmp = x[i][2];
+    itype = type[i];
+
+    jlist = firstneigh[i];
+    jnum = numneigh[i];
+
+    // Concentration at site i
+    // The value -1 indicates: no concentration dependence for all interactions of atom i.
+    // It will be replaced by the concentration at site i if atom i is either A or B.
+
+    double x_i = -1.0;
+    double D_i, h_prime_i;
+
+    // This if-clause is only required for ternary alloys.
+
+    if ((itype == speciesA || itype == speciesB) && rho[i] != 0.0) {
+
+      // Compute local concentration at site i.
 
-        // Communicate and sum densities.
-        if(newton_pair) {
-                communicationStage = 1;
-                comm->reverse_comm_pair(this);
+      x_i = rhoB[i]/rho[i];
+      ASSERT(x_i >= 0 && x_i<=1.0);
+
+      if (cdeamVersion == 1) {
+
+        // Calculate derivative of h(x_i) polynomial function.
+
+        h_prime_i = evalHprime(x_i);
+        D_i = D_values[i] * h_prime_i / (2.0 * rho[i] * rho[i]);
+      } else if (cdeamVersion == 2) {
+        D_i = D_values[i];
+      } else {
+        ASSERT(false);
+      }
+    }
+
+    for (jj = 0; jj < jnum; jj++) {
+      j = jlist[jj];
+      j &= NEIGHMASK;
+
+      delx = xtmp - x[j][0];
+      dely = ytmp - x[j][1];
+      delz = ztmp - x[j][2];
+      rsq = delx*delx + dely*dely + delz*delz;
+
+      if (rsq < cutforcesq) {
+        jtype = type[j];
+        double r = sqrt(rsq);
+        const EAMTableIndex index = radiusToTableIndex(r);
+
+        // rhoip = derivative of (density at atom j due to atom i)
+        // rhojp = derivative of (density at atom i due to atom j)
+        // psip needs both fp[i] and fp[j] terms since r_ij appears in two
+        //   terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
+        //   hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
+
+        rhoip = RhoPrimeOfR(index, itype, jtype);
+        rhojp = RhoPrimeOfR(index, jtype, itype);
+        fpair = fp[i]*rhojp + fp[j]*rhoip;
+        recip = 1.0/r;
+
+        // The value -1 indicates: no concentration dependence for this
+        // i-j pair because atom j is not of species A nor B.
+
+        double x_j = -1;
+
+        // This code line is required for ternary alloy.
+
+        if (jtype == speciesA || jtype == speciesB) {
+          ASSERT(rho[i] != 0.0);
+          ASSERT(rho[j] != 0.0);
+
+          // Compute local concentration at site j.
+
+          x_j = rhoB[j]/rho[j];
+          ASSERT(x_j >= 0 && x_j<=1.0);
+
+          double D_j=0.0;
+          if (cdeamVersion == 1) {
+
+            // Calculate derivative of h(x_j) polynomial function.
+
+            double h_prime_j = evalHprime(x_j);
+            D_j = D_values[j] * h_prime_j / (2.0 * rho[j] * rho[j]);
+          } else if (cdeamVersion == 2) {
+            D_j = D_values[j];
+          } else {
+            ASSERT(false);
+          }
+          double t2 = -rhoB[j];
+          if (itype == speciesB) t2 += rho[j];
+          fpair += D_j * rhoip * t2;
         }
 
-        // fp = derivative of embedding energy at each atom
-        // phi = embedding energy at each atom
-        for(ii = 0; ii < inum; ii++) {
-                i = ilist[ii];
-                EAMTableIndex index = rhoToTableIndex(rho[i]);
-                fp[i] = FPrimeOfRho(index, type[i]);
-                if(eflag) {
-                        phi = FofRho(index, type[i]);
-                        if (eflag_global) eng_vdwl += phi;
-                        if (eflag_atom) eatom[i] += phi;
-                }
+        // This if-clause is only required for a ternary alloy.
+        // Actually we don't need it at all because D_i should be zero
+        // anyway if atom i has no concentration dependent interactions
+        // (because it is not species A or B).
+
+        if (x_i != -1.0) {
+          double t1 = -rhoB[i];
+          if (jtype == speciesB) t1 += rho[i];
+          fpair += D_i * rhojp * t1;
         }
 
-        // Communicate derivative of embedding function and densities
-        // and D_values (this for one-site formulation only).
-        communicationStage = 2;
-        comm->forward_comm_pair(this);
-
-        // The electron densities may not drop to zero because then the concentration would no longer be defined.
-        // But the concentration is not needed anyway if there is no interaction with another atom, which is the case
-        // if the electron density is exactly zero. That's why the following lines have been commented out.
-        //
-        //for(i = 0; i < nlocal + atom->nghost; i++) {
-        //        if(rho[i] == 0 && (type[i] == speciesA || type[i] == speciesB))
-        //                error->one(FLERR,"CD-EAM potential routine: Detected atom with zero electron density.");
-        //}
-
-        // Stage II
-        // This is only required for the original two-site formulation of the CD-EAM potential.
-
-        if(cdeamVersion == 2) {
-                // Compute intermediate value D_i for each atom.
-                for(ii = 0; ii < inum; ii++) {
-                        i = ilist[ii];
-                        xtmp = x[i][0];
-                        ytmp = x[i][1];
-                        ztmp = x[i][2];
-                        itype = type[i];
-                        jlist = firstneigh[i];
-                        jnum = numneigh[i];
-
-                        // This code line is required for ternary alloys.
-                        if(itype != speciesA && itype != speciesB) continue;
-
-                        double x_i = rhoB[i] / rho[i];        // Concentration at atom i.
-
-                        for(jj = 0; jj < jnum; jj++) {
-                                j = jlist[jj];
-                                j &= NEIGHMASK;
-                                jtype = type[j];
-                                if(itype == jtype) continue;
-
-                                // This code line is required for ternary alloys.
-                                if(jtype != speciesA && jtype != speciesB) continue;
-
-                                delx = xtmp - x[j][0];
-                                dely = ytmp - x[j][1];
-                                delz = ztmp - x[j][2];
-                                rsq = delx*delx + dely*dely + delz*delz;
-
-                                if(rsq < cutforcesq) {
-                                        double r = sqrt(rsq);
-                                        const EAMTableIndex index = radiusToTableIndex(r);
-
-                                        // The concentration independent part of the cross pair potential.
-                                        double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
-
-                                        // Average concentration of two sites
-                                        double x_ij = 0.5 * (x_i + rhoB[j]/rho[j]);
-
-                                        // Calculate derivative of h(x_ij) polynomial function.
-                                        double h_prime = evalHprime(x_ij);
-
-                                        D_values[i] += h_prime * Phi_AB / (2.0 * rho[i] * rho[i]);
-                                        if(newton_pair || j < nlocal)
-                                                D_values[j] += h_prime * Phi_AB / (2.0 * rho[j] * rho[j]);
-                                }
-                        }
-                }
-
-                // Communicate and sum D values.
-                if(newton_pair) {
-                        communicationStage = 3;
-                        comm->reverse_comm_pair(this);
-                }
-                communicationStage = 4;
-                comm->forward_comm_pair(this);
+        double phip;
+        double phi = PhiOfR(index, itype, jtype, recip, phip);
+        if (itype == jtype || x_i == -1.0 || x_j == -1.0) {
+
+          // Case of no concentration dependence.
+
+          fpair += phip;
+        } else {
+
+          // We have a concentration dependence for the i-j interaction.
+
+          double h=0.0;
+          if (cdeamVersion == 1) {
+
+            // Calculate h(x_i) polynomial function.
+
+            double h_i = evalH(x_i);
+
+            // Calculate h(x_j) polynomial function.
+
+            double h_j = evalH(x_j);
+            h = 0.5 * (h_i + h_j);
+          } else if (cdeamVersion == 2) {
+
+            // Average concentration.
+
+            double x_ij = 0.5 * (x_i + x_j);
+
+            // Calculate h(x_ij) polynomial function.
+
+            h = evalH(x_ij);
+          } else {
+            ASSERT(false);
+          }
+          fpair += h * phip;
+          phi *= h;
         }
 
-        // Stage III
-
-        // Compute force acting on each atom.
-        for(ii = 0; ii < inum; ii++) {
-                i = ilist[ii];
-                xtmp = x[i][0];
-                ytmp = x[i][1];
-                ztmp = x[i][2];
-                itype = type[i];
-
-                jlist = firstneigh[i];
-                jnum = numneigh[i];
-
-                // Concentration at site i
-                double x_i = -1.0;                // The value -1 indicates: no concentration dependence for all interactions of atom i.
-                                                                // It will be replaced by the concentration at site i if atom i is either A or B.
-
-                double D_i, h_prime_i;
-
-                // This if-clause is only required for ternary alloys.
-                if((itype == speciesA || itype == speciesB) && rho[i] != 0.0) {
-
-                        // Compute local concentration at site i.
-                        x_i = rhoB[i]/rho[i];
-                        ASSERT(x_i >= 0 && x_i<=1.0);
-
-                        if(cdeamVersion == 1) {
-                                // Calculate derivative of h(x_i) polynomial function.
-                                h_prime_i = evalHprime(x_i);
-                                D_i = D_values[i] * h_prime_i / (2.0 * rho[i] * rho[i]);
-                        } else if(cdeamVersion == 2) {
-                                D_i = D_values[i];
-                        } else {
-                          ASSERT(false);
-                        }
-                }
-
-                for(jj = 0; jj < jnum; jj++) {
-                        j = jlist[jj];
-                        j &= NEIGHMASK;
-
-                        delx = xtmp - x[j][0];
-                        dely = ytmp - x[j][1];
-                        delz = ztmp - x[j][2];
-                        rsq = delx*delx + dely*dely + delz*delz;
-
-                        if(rsq < cutforcesq) {
-                                jtype = type[j];
-                                double r = sqrt(rsq);
-                                const EAMTableIndex index = radiusToTableIndex(r);
-
-                                // rhoip = derivative of (density at atom j due to atom i)
-                                // rhojp = derivative of (density at atom i due to atom j)
-                                // psip needs both fp[i] and fp[j] terms since r_ij appears in two
-                                //   terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
-                                //   hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
-                                rhoip = RhoPrimeOfR(index, itype, jtype);
-                                rhojp = RhoPrimeOfR(index, jtype, itype);
-                                fpair = fp[i]*rhojp + fp[j]*rhoip;
-                                recip = 1.0/r;
-
-                                double x_j = -1;  // The value -1 indicates: no concentration dependence for this i-j pair
-                                                  // because atom j is not of species A nor B.
-
-                                // This code line is required for ternary alloy.
-                                if(jtype == speciesA || jtype == speciesB) {
-                                        ASSERT(rho[i] != 0.0);
-                                        ASSERT(rho[j] != 0.0);
-
-                                        // Compute local concentration at site j.
-                                        x_j = rhoB[j]/rho[j];
-                                        ASSERT(x_j >= 0 && x_j<=1.0);
-
-                                        double D_j=0.0;
-                                        if(cdeamVersion == 1) {
-                                                // Calculate derivative of h(x_j) polynomial function.
-                                                double h_prime_j = evalHprime(x_j);
-                                                D_j = D_values[j] * h_prime_j / (2.0 * rho[j] * rho[j]);
-                                        } else if(cdeamVersion == 2) {
-                                                D_j = D_values[j];
-                                        } else {
-                                          ASSERT(false);
-                                        }
-                                        double t2 = -rhoB[j];
-                                        if(itype == speciesB) t2 += rho[j];
-                                        fpair += D_j * rhoip * t2;
-                                }
-
-                                // This if-clause is only required for a ternary alloy.
-                                // Actually we don't need it at all because D_i should be zero anyway if
-                                // atom i has no concentration dependent interactions (because it is not species A or B).
-                                if(x_i != -1.0) {
-                                        double t1 = -rhoB[i];
-                                        if(jtype == speciesB) t1 += rho[i];
-                                        fpair += D_i * rhojp * t1;
-                                }
-
-                                double phip;
-                                double phi = PhiOfR(index, itype, jtype, recip, phip);
-                                if(itype == jtype || x_i == -1.0 || x_j == -1.0) {
-                                        // Case of no concentration dependence.
-                                        fpair += phip;
-                                } else {
-                                        // We have a concentration dependence for the i-j interaction.
-                                        double h=0.0;
-                                        if(cdeamVersion == 1) {
-                                                // Calculate h(x_i) polynomial function.
-                                                double h_i = evalH(x_i);
-                                                // Calculate h(x_j) polynomial function.
-                                                double h_j = evalH(x_j);
-                                                h = 0.5 * (h_i + h_j);
-                                        } else if(cdeamVersion == 2) {
-                                                // Average concentration.
-                                                double x_ij = 0.5 * (x_i + x_j);
-                                                // Calculate h(x_ij) polynomial function.
-                                                h = evalH(x_ij);
-                                        } else {
-                                          ASSERT(false);
-                                        }
-                                        fpair += h * phip;
-                                        phi *= h;
-                                }
-
-                                // Divide by r_ij and negate to get forces from gradient.
-                                fpair /= -r;
-
-                                f[i][0] += delx*fpair;
-                                f[i][1] += dely*fpair;
-                                f[i][2] += delz*fpair;
-                                if(newton_pair || j < nlocal) {
-                                        f[j][0] -= delx*fpair;
-                                        f[j][1] -= dely*fpair;
-                                        f[j][2] -= delz*fpair;
-                                }
-
-                                if(eflag) evdwl = phi;
-                                if(evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz);
-                        }
-                }
+        // Divide by r_ij and negate to get forces from gradient.
+
+        fpair /= -r;
+
+        f[i][0] += delx*fpair;
+        f[i][1] += dely*fpair;
+        f[i][2] += delz*fpair;
+        if (newton_pair || j < nlocal) {
+          f[j][0] -= delx*fpair;
+          f[j][1] -= dely*fpair;
+          f[j][2] -= delz*fpair;
         }
 
-        if(vflag_fdotr) virial_fdotr_compute();
+        if (eflag) evdwl = phi;
+        if (evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz);
+      }
+    }
+  }
+
+  if (vflag_fdotr) virial_fdotr_compute();
 }
 
 /* ---------------------------------------------------------------------- */
 
 void PairEAMCD::coeff(int narg, char **arg)
 {
-        PairEAMAlloy::coeff(narg, arg);
-
-        // Make sure the EAM file is a CD-EAM binary alloy.
-        if(setfl->nelements < 2)
-                error->all(FLERR,"The EAM file must contain at least 2 elements to be used with the eam/cd pair style.");
-
-        // Read in the coefficients of the h polynomial from the end of the EAM file.
-        read_h_coeff(arg[2]);
-
-        // Determine which atom type is the A species and which is the B species in the alloy.
-        // By default take the first element (index 0) in the EAM file as the A species
-        // and the second element (index 1) in the EAM file as the B species.
-        speciesA = -1;
-        speciesB = -1;
-        for(int i = 1; i <= atom->ntypes; i++) {
-                if(map[i] == 0) {
-                        if(speciesA >= 0)
-                                error->all(FLERR,"The first element from the EAM file may only be mapped to a single atom type.");
-                        speciesA = i;
-                }
-                if(map[i] == 1) {
-                        if(speciesB >= 0)
-                                error->all(FLERR,"The second element from the EAM file may only be mapped to a single atom type.");
-                        speciesB = i;
-                }
-        }
-        if(speciesA < 0)
-                error->all(FLERR,"The first element from the EAM file must be mapped to exactly one atom type.");
-        if(speciesB < 0)
-                error->all(FLERR,"The second element from the EAM file must be mapped to exactly one atom type.");
+  PairEAMAlloy::coeff(narg, arg);
+
+  // Make sure the EAM file is a CD-EAM binary alloy.
+
+  if (setfl->nelements < 2)
+    error->all(FLERR,"The EAM file must contain at least 2 elements to be used with the eam/cd pair style.");
+
+  // Read in the coefficients of the h polynomial from the end of the EAM file.
+
+  read_h_coeff(arg[2]);
+
+  // Determine which atom type is the A species and which is the B
+  // species in the alloy.  By default take the first element (index 0)
+  // in the EAM file as the A species and the second element (index 1)
+  // in the EAM file as the B species.
+
+  speciesA = -1;
+  speciesB = -1;
+  for (int i = 1; i <= atom->ntypes; i++) {
+    if (map[i] == 0) {
+      if (speciesA >= 0)
+        error->all(FLERR,"The first element from the EAM file may only be mapped to a single atom type.");
+      speciesA = i;
+    }
+    if (map[i] == 1) {
+      if (speciesB >= 0)
+        error->all(FLERR,"The second element from the EAM file may only be mapped to a single atom type.");
+      speciesB = i;
+    }
+  }
+  if (speciesA < 0)
+    error->all(FLERR,"The first element from the EAM file must be mapped to exactly one atom type.");
+  if (speciesB < 0)
+    error->all(FLERR,"The second element from the EAM file must be mapped to exactly one atom type.");
 }
 
 /* ----------------------------------------------------------------------
    Reads in the h(x) polynomial coefficients
 ------------------------------------------------------------------------- */
+
 void PairEAMCD::read_h_coeff(char *filename)
 {
-        if(comm->me == 0) {
-                // Open potential file
-                FILE *fptr;
-                char line[MAXLINE];
-                char nextline[MAXLINE];
-                fptr = force->open_potential(filename);
-                if (fptr == NULL) {
-                        char str[128];
-                        sprintf(str,"Cannot open EAM potential file %s", filename);
-                        error->one(FLERR,str);
-                }
-
-                // h coefficients are stored at the end of the file.
-                // Skip to last line of file.
-                while(fgets(nextline, MAXLINE, fptr) != NULL) {
-                        strcpy(line, nextline);
-                }
-                char* ptr = strtok(line, " \t\n\r\f");
-                int degree = atoi(ptr);
-                nhcoeff = degree+1;
-                hcoeff = new double[nhcoeff];
-                int i = 0;
-                while((ptr = strtok(NULL," \t\n\r\f")) != NULL && i < nhcoeff) {
-                        hcoeff[i++] = atof(ptr);
-                }
-                if(i != nhcoeff || nhcoeff < 1)
-                        error->one(FLERR,"Failed to read h(x) function coefficients from EAM file.");
-
-                // Close the potential file.
-                fclose(fptr);
-        }
-
-        MPI_Bcast(&nhcoeff, 1, MPI_INT, 0, world);
-        if(comm->me != 0) hcoeff = new double[nhcoeff];
-        MPI_Bcast(hcoeff, nhcoeff, MPI_DOUBLE, 0, world);
+  if (comm->me == 0) {
+
+    // Open potential file
+
+    FILE *fptr;
+    char line[MAXLINE];
+    char nextline[MAXLINE];
+    fptr = force->open_potential(filename);
+    if (fptr == NULL) {
+      char str[128];
+      sprintf(str,"Cannot open EAM potential file %s", filename);
+      error->one(FLERR,str);
+    }
+
+    // h coefficients are stored at the end of the file.
+    // Skip to last line of file.
+
+    while(fgets(nextline, MAXLINE, fptr) != NULL) {
+      strcpy(line, nextline);
+    }
+    char* ptr = strtok(line, " \t\n\r\f");
+    int degree = atoi(ptr);
+    nhcoeff = degree+1;
+    hcoeff = new double[nhcoeff];
+    int i = 0;
+    while((ptr = strtok(NULL," \t\n\r\f")) != NULL && i < nhcoeff) {
+      hcoeff[i++] = atof(ptr);
+    }
+    if (i != nhcoeff || nhcoeff < 1)
+      error->one(FLERR,"Failed to read h(x) function coefficients from EAM file.");
+
+    // Close the potential file.
+
+    fclose(fptr);
+  }
+
+  MPI_Bcast(&nhcoeff, 1, MPI_INT, 0, world);
+  if (comm->me != 0) hcoeff = new double[nhcoeff];
+  MPI_Bcast(hcoeff, nhcoeff, MPI_DOUBLE, 0, world);
 }
 
 
@@ -497,141 +541,130 @@ void PairEAMCD::read_h_coeff(char *filename)
 int PairEAMCD::pack_forward_comm(int n, int *list, double *buf,
                                  int pbc_flag, int *pbc)
 {
-        int i,j,m;
-
-        m = 0;
-        if(communicationStage == 2) {
-                if(cdeamVersion == 1) {
-                        for (i = 0; i < n; i++) {
-                                j = list[i];
-                                buf[m++] = fp[j];
-                                buf[m++] = rho[j];
-                                buf[m++] = rhoB[j];
-                                buf[m++] = D_values[j];
-                        }
-                        return m;
-                }
-                else if(cdeamVersion == 2) {
-                        for (i = 0; i < n; i++) {
-                                j = list[i];
-                                buf[m++] = fp[j];
-                                buf[m++] = rho[j];
-                                buf[m++] = rhoB[j];
-                        }
-                        return m;
-                }
-                else { ASSERT(false); return 0; }
-        }
-        else if(communicationStage == 4) {
-                for (i = 0; i < n; i++) {
-                        j = list[i];
-                        buf[m++] = D_values[j];
-                }
-                return m;
-        }
-        else return 0;
+  int i,j,m;
+
+  m = 0;
+  if (communicationStage == 2) {
+    if (cdeamVersion == 1) {
+      for (i = 0; i < n; i++) {
+        j = list[i];
+        buf[m++] = fp[j];
+        buf[m++] = rho[j];
+        buf[m++] = rhoB[j];
+        buf[m++] = D_values[j];
+      }
+      return m;
+    } else if (cdeamVersion == 2) {
+      for (i = 0; i < n; i++) {
+        j = list[i];
+        buf[m++] = fp[j];
+        buf[m++] = rho[j];
+        buf[m++] = rhoB[j];
+      }
+      return m;
+    } else { ASSERT(false); return 0; }
+  } else if (communicationStage == 4) {
+    for (i = 0; i < n; i++) {
+      j = list[i];
+      buf[m++] = D_values[j];
+    }
+    return m;
+  } else return 0;
 }
 
 /* ---------------------------------------------------------------------- */
 
 void PairEAMCD::unpack_forward_comm(int n, int first, double *buf)
 {
-        int i,m,last;
-
-        m = 0;
-        last = first + n;
-        if(communicationStage == 2) {
-                if(cdeamVersion == 1) {
-                        for(i = first; i < last; i++) {
-                                fp[i] = buf[m++];
-                                rho[i] = buf[m++];
-                                rhoB[i] = buf[m++];
-                                D_values[i] = buf[m++];
-                        }
-                }
-                else if(cdeamVersion == 2) {
-                        for(i = first; i < last; i++) {
-                                fp[i] = buf[m++];
-                                rho[i] = buf[m++];
-                                rhoB[i] = buf[m++];
-                        }
-                } else {
-                  ASSERT(false);
-                }
-        }
-        else if(communicationStage == 4) {
-                for(i = first; i < last; i++) {
-                        D_values[i] = buf[m++];
-                }
-        }
+  int i,m,last;
+
+  m = 0;
+  last = first + n;
+  if (communicationStage == 2) {
+    if (cdeamVersion == 1) {
+      for (i = first; i < last; i++) {
+        fp[i] = buf[m++];
+        rho[i] = buf[m++];
+        rhoB[i] = buf[m++];
+        D_values[i] = buf[m++];
+      }
+    } else if (cdeamVersion == 2) {
+      for (i = first; i < last; i++) {
+        fp[i] = buf[m++];
+        rho[i] = buf[m++];
+        rhoB[i] = buf[m++];
+      }
+    } else {
+      ASSERT(false);
+    }
+  } else if (communicationStage == 4) {
+    for (i = first; i < last; i++) {
+      D_values[i] = buf[m++];
+    }
+  }
 }
 
 /* ---------------------------------------------------------------------- */
 int PairEAMCD::pack_reverse_comm(int n, int first, double *buf)
 {
-        int i,m,last;
-
-        m = 0;
-        last = first + n;
-
-        if(communicationStage == 1) {
-                if(cdeamVersion == 1) {
-                        for(i = first; i < last; i++) {
-                                buf[m++] = rho[i];
-                                buf[m++] = rhoB[i];
-                                buf[m++] = D_values[i];
-                        }
-                        return m;
-                }
-                else if(cdeamVersion == 2) {
-                        for(i = first; i < last; i++) {
-                                buf[m++] = rho[i];
-                                buf[m++] = rhoB[i];
-                        }
-                        return m;
-                }
-                else { ASSERT(false); return 0; }
-        }
-        else if(communicationStage == 3) {
-                for(i = first; i < last; i++) {
-                        buf[m++] = D_values[i];
-                }
-                return m;
-        }
-        else return 0;
+  int i,m,last;
+
+  m = 0;
+  last = first + n;
+
+  if (communicationStage == 1) {
+    if (cdeamVersion == 1) {
+      for (i = first; i < last; i++) {
+        buf[m++] = rho[i];
+        buf[m++] = rhoB[i];
+        buf[m++] = D_values[i];
+      }
+      return m;
+    } else if (cdeamVersion == 2) {
+      for (i = first; i < last; i++) {
+        buf[m++] = rho[i];
+        buf[m++] = rhoB[i];
+      }
+      return m;
+    } else { ASSERT(false); return 0; }
+  } else if (communicationStage == 3) {
+    for (i = first; i < last; i++) {
+      buf[m++] = D_values[i];
+    }
+    return m;
+  } else return 0;
 }
 
 /* ---------------------------------------------------------------------- */
 
 void PairEAMCD::unpack_reverse_comm(int n, int *list, double *buf)
 {
-        int i,j,m;
-
-        m = 0;
-        if(communicationStage == 1) {
-                if(cdeamVersion == 1) {
-                        for(i = 0; i < n; i++) {
-                                j = list[i];
-                                rho[j] += buf[m++];
-                                rhoB[j] += buf[m++];
-                                D_values[j] += buf[m++];
-                        }
-                } else if(cdeamVersion == 2) {
-                        for(i = 0; i < n; i++) {
-                                j = list[i];
-                                rho[j] += buf[m++];
-                                rhoB[j] += buf[m++];
-                        }
-                } else {
-                  ASSERT(false);
-                }
-        }
-        else if(communicationStage == 3) {
-                for(i = 0; i < n; i++) {
-                        j = list[i];
-                        D_values[j] += buf[m++];
-                }
-        }
+  int i,j,m;
+
+  m = 0;
+  if (communicationStage == 1) {
+    if (cdeamVersion == 1) {
+      for (i = 0; i < n; i++) {
+        j = list[i];
+        rho[j] += buf[m++];
+        rhoB[j] += buf[m++];
+        D_values[j] += buf[m++];
+      }
+    } else if (cdeamVersion == 2) {
+      for (i = 0; i < n; i++) {
+        j = list[i];
+        rho[j] += buf[m++];
+        rhoB[j] += buf[m++];
+      }
+    } else {
+      ASSERT(false);
+    }
+  } else if (communicationStage == 3) {
+    for (i = 0; i < n; i++) {
+      j = list[i];
+      D_values[j] += buf[m++];
+    }
+  }
 }
 
 /* ----------------------------------------------------------------------
@@ -639,6 +672,6 @@ void PairEAMCD::unpack_reverse_comm(int n, int *list, double *buf)
 ------------------------------------------------------------------------- */
 double PairEAMCD::memory_usage()
 {
-        double bytes = 2 * nmax * sizeof(double);
-        return PairEAMAlloy::memory_usage() + bytes;
+  double bytes = 2 * nmax * sizeof(double);
+  return PairEAMAlloy::memory_usage() + bytes;
 }
-- 
GitLab