diff --git a/cmake/CMakeLists.txt b/cmake/CMakeLists.txt
index 671b9341d524834e6e9ef8c0ee30a674818eaacb..d51108ba7aed1aae0a6040e7bda6f9d8dab20555 100644
--- a/cmake/CMakeLists.txt
+++ b/cmake/CMakeLists.txt
@@ -181,7 +181,6 @@ endmacro()
 pkg_depends(MPIIO MPI)
 pkg_depends(USER-ATC MANYBODY)
 pkg_depends(USER-LB MPI)
-pkg_depends(USER-MISC MANYBODY)
 pkg_depends(USER-PHONON KSPACE)
 
 ######################################################
diff --git a/doc/src/Section_commands.txt b/doc/src/Section_commands.txt
index 7948e0de32857547e1b9d01a6fa4bbf44194e342..daedb00a0a6f6b431356d04fece2dfaeddbb9f23 100644
--- a/doc/src/Section_commands.txt
+++ b/doc/src/Section_commands.txt
@@ -969,6 +969,7 @@ OPT.
 "dsmc"_pair_dsmc.html,
 "eam (gikot)"_pair_eam.html,
 "eam/alloy (gikot)"_pair_eam.html,
+"eam/cd (o)"_pair_eam.html,
 "eam/fs (gikot)"_pair_eam.html,
 "eim (o)"_pair_eim.html,
 "gauss (go)"_pair_gauss.html,
@@ -1069,7 +1070,6 @@ package"_Section_start.html#start_3.
 "coul/shield"_pair_coul_shield.html,
 "dpd/fdt"_pair_dpd_fdt.html,
 "dpd/fdt/energy (k)"_pair_dpd_fdt.html,
-"eam/cd (o)"_pair_eam.html,
 "edip (o)"_pair_edip.html,
 "edip/multi"_pair_edip.html,
 "edpd"_pair_meso.html,
diff --git a/doc/src/pair_eam.txt b/doc/src/pair_eam.txt
index 8d4d11341cd45dae75a2e48c7ec9d9e0e207055a..b3c770179fb948329d4b746b863041a101c83436 100644
--- a/doc/src/pair_eam.txt
+++ b/doc/src/pair_eam.txt
@@ -413,15 +413,10 @@ The eam pair styles can only be used via the {pair} keyword of the
 
 [Restrictions:]
 
-All of these styles except the {eam/cd} style are part of the MANYBODY
-package.  They are only enabled if LAMMPS was built with that package.
+All of these styles are part of the MANYBODY package.  They are only
+enabled if LAMMPS was built with that package.
 See the "Making LAMMPS"_Section_start.html#start_3 section for more info.
 
-The {eam/cd} style is part of the USER-MISC package and also requires
-the MANYBODY package.  It is only enabled if LAMMPS was built with
-those packages.  See the "Making LAMMPS"_Section_start.html#start_3
-section for more info.
-
 [Related commands:]
 
 "pair_coeff"_pair_coeff.html
diff --git a/src/MANYBODY/pair_eam_cd.cpp b/src/MANYBODY/pair_eam_cd.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..66ebad6244a9d16b939bfb61c63862742e709cc8
--- /dev/null
+++ b/src/MANYBODY/pair_eam_cd.cpp
@@ -0,0 +1,677 @@
+/* ----------------------------------------------------------------------
+   LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
+   http://lammps.sandia.gov, Sandia National Laboratories
+   Steve Plimpton, sjplimp@sandia.gov
+
+   Copyright (2003) Sandia Corporation.  Under the terms of Contract
+   DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
+   certain rights in this software.  This software is distributed under
+   the GNU General Public License.
+
+   See the README file in the top-level LAMMPS directory.
+------------------------------------------------------------------------- */
+
+/* ----------------------------------------------------------------------
+   Contributing author: Alexander Stukowski
+                        Technical University of Darmstadt,
+                        Germany Department of Materials Science
+------------------------------------------------------------------------- */
+
+#include <cmath>
+#include <cstdio>
+#include <cstdlib>
+#include <cstring>
+#include "pair_eam_cd.h"
+#include "atom.h"
+#include "force.h"
+#include "comm.h"
+#include "neighbor.h"
+#include "neigh_list.h"
+#include "memory.h"
+#include "error.h"
+
+using namespace LAMMPS_NS;
+
+#define ASSERT(cond)
+#define MAXLINE 1024        // This sets the maximum line length in EAM input files.
+
+PairEAMCD::PairEAMCD(LAMMPS *lmp, int _cdeamVersion)
+  : PairEAM(lmp), PairEAMAlloy(lmp), cdeamVersion(_cdeamVersion)
+{
+  single_enable = 0;
+  restartinfo = 0;
+
+  rhoB = NULL;
+  D_values = NULL;
+  hcoeff = NULL;
+
+  // Set communication buffer sizes needed by this pair style.
+
+  if (cdeamVersion == 1) {
+    comm_forward = 4;
+    comm_reverse = 3;
+  } else if (cdeamVersion == 2) {
+    comm_forward = 3;
+    comm_reverse = 2;
+  } else {
+    error->all(FLERR,"Invalid eam/cd potential version.");
+  }
+}
+
+PairEAMCD::~PairEAMCD()
+{
+  memory->destroy(rhoB);
+  memory->destroy(D_values);
+  if (hcoeff) delete[] hcoeff;
+}
+
+void PairEAMCD::compute(int eflag, int vflag)
+{
+  int i,j,ii,jj,inum,jnum,itype,jtype;
+  double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
+  double rsq,rhoip,rhojp,recip,phi;
+  int *ilist,*jlist,*numneigh,**firstneigh;
+
+  evdwl = 0.0;
+  if (eflag || vflag) ev_setup(eflag,vflag);
+  else evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
+
+  // Grow per-atom arrays if necessary
+
+  if (atom->nmax > nmax) {
+    memory->destroy(rho);
+    memory->destroy(fp);
+    memory->destroy(rhoB);
+    memory->destroy(D_values);
+    nmax = atom->nmax;
+    memory->create(rho,nmax,"pair:rho");
+    memory->create(rhoB,nmax,"pair:rhoB");
+    memory->create(fp,nmax,"pair:fp");
+    memory->create(D_values,nmax,"pair:D_values");
+  }
+
+  double **x = atom->x;
+  double **f = atom->f;
+  int *type = atom->type;
+  int nlocal = atom->nlocal;
+  int newton_pair = force->newton_pair;
+
+  inum = list->inum;
+  ilist = list->ilist;
+  numneigh = list->numneigh;
+  firstneigh = list->firstneigh;
+
+  // Zero out per-atom arrays.
+
+  int m = nlocal + atom->nghost;
+  for (i = 0; i < m; i++) {
+    rho[i] = 0.0;
+    rhoB[i] = 0.0;
+    D_values[i] = 0.0;
+  }
+
+  // Stage I
+
+  // Compute rho and rhoB at each local atom site.
+
+  // Additionally calculate the D_i values here if we are using the
+  // one-site formulation.  For the two-site formulation we have to
+  // calculate the D values in an extra loop (Stage II).
+
+  for (ii = 0; ii < inum; ii++) {
+    i = ilist[ii];
+    xtmp = x[i][0];
+    ytmp = x[i][1];
+    ztmp = x[i][2];
+    itype = type[i];
+    jlist = firstneigh[i];
+    jnum = numneigh[i];
+
+    for (jj = 0; jj < jnum; jj++) {
+      j = jlist[jj];
+      j &= NEIGHMASK;
+
+      delx = xtmp - x[j][0];
+      dely = ytmp - x[j][1];
+      delz = ztmp - x[j][2];
+      rsq = delx*delx + dely*dely + delz*delz;
+
+      if (rsq < cutforcesq) {
+        jtype = type[j];
+        double r = sqrt(rsq);
+        const EAMTableIndex index = radiusToTableIndex(r);
+        double localrho = RhoOfR(index, jtype, itype);
+        rho[i] += localrho;
+        if (jtype == speciesB) rhoB[i] += localrho;
+        if (newton_pair || j < nlocal) {
+          localrho = RhoOfR(index, itype, jtype);
+          rho[j] += localrho;
+          if (itype == speciesB) rhoB[j] += localrho;
+        }
+
+        if (cdeamVersion == 1 && itype != jtype) {
+
+          // Note: if the i-j interaction is not concentration dependent (because either
+          // i or j are not species A or B) then its contribution to D_i and D_j should
+          // be ignored.
+          // This if-clause is only required for a ternary.
+
+          if ((itype == speciesA && jtype == speciesB)
+              || (jtype == speciesA && itype == speciesB)) {
+            double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
+            D_values[i] += Phi_AB;
+            if (newton_pair || j < nlocal)
+              D_values[j] += Phi_AB;
+          }
+        }
+      }
+    }
+  }
+
+  // Communicate and sum densities.
+
+  if (newton_pair) {
+    communicationStage = 1;
+    comm->reverse_comm_pair(this);
+  }
+
+  // fp = derivative of embedding energy at each atom
+  // phi = embedding energy at each atom
+
+  for (ii = 0; ii < inum; ii++) {
+    i = ilist[ii];
+    EAMTableIndex index = rhoToTableIndex(rho[i]);
+    fp[i] = FPrimeOfRho(index, type[i]);
+    if (eflag) {
+      phi = FofRho(index, type[i]);
+      if (eflag_global) eng_vdwl += phi;
+      if (eflag_atom) eatom[i] += phi;
+    }
+  }
+
+  // Communicate derivative of embedding function and densities
+  // and D_values (this for one-site formulation only).
+
+  communicationStage = 2;
+  comm->forward_comm_pair(this);
+
+  // The electron densities may not drop to zero because then the
+  // concentration would no longer be defined.  But the concentration
+  // is not needed anyway if there is no interaction with another atom,
+  // which is the case if the electron density is exactly zero.
+  // That's why the following lines have been commented out.
+  //
+  //for (i = 0; i < nlocal + atom->nghost; i++) {
+  //        if (rho[i] == 0 && (type[i] == speciesA || type[i] == speciesB))
+  //                error->one(FLERR,"CD-EAM potential routine: Detected atom with zero electron density.");
+  //}
+
+  // Stage II
+  // This is only required for the original two-site formulation of the CD-EAM potential.
+
+  if (cdeamVersion == 2) {
+
+    // Compute intermediate value D_i for each atom.
+
+    for (ii = 0; ii < inum; ii++) {
+      i = ilist[ii];
+      xtmp = x[i][0];
+      ytmp = x[i][1];
+      ztmp = x[i][2];
+      itype = type[i];
+      jlist = firstneigh[i];
+      jnum = numneigh[i];
+
+      // This code line is required for ternary alloys.
+
+      if (itype != speciesA && itype != speciesB) continue;
+
+      double x_i = rhoB[i] / rho[i];        // Concentration at atom i.
+
+      for (jj = 0; jj < jnum; jj++) {
+        j = jlist[jj];
+        j &= NEIGHMASK;
+        jtype = type[j];
+        if (itype == jtype) continue;
+
+        // This code line is required for ternary alloys.
+
+        if (jtype != speciesA && jtype != speciesB) continue;
+
+        delx = xtmp - x[j][0];
+        dely = ytmp - x[j][1];
+        delz = ztmp - x[j][2];
+        rsq = delx*delx + dely*dely + delz*delz;
+
+        if (rsq < cutforcesq) {
+          double r = sqrt(rsq);
+          const EAMTableIndex index = radiusToTableIndex(r);
+
+          // The concentration independent part of the cross pair potential.
+
+          double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
+
+          // Average concentration of two sites
+
+          double x_ij = 0.5 * (x_i + rhoB[j]/rho[j]);
+
+          // Calculate derivative of h(x_ij) polynomial function.
+
+          double h_prime = evalHprime(x_ij);
+
+          D_values[i] += h_prime * Phi_AB / (2.0 * rho[i] * rho[i]);
+          if (newton_pair || j < nlocal)
+            D_values[j] += h_prime * Phi_AB / (2.0 * rho[j] * rho[j]);
+        }
+      }
+    }
+
+    // Communicate and sum D values.
+
+    if (newton_pair) {
+      communicationStage = 3;
+      comm->reverse_comm_pair(this);
+    }
+    communicationStage = 4;
+    comm->forward_comm_pair(this);
+  }
+
+  // Stage III
+
+  // Compute force acting on each atom.
+
+  for (ii = 0; ii < inum; ii++) {
+    i = ilist[ii];
+    xtmp = x[i][0];
+    ytmp = x[i][1];
+    ztmp = x[i][2];
+    itype = type[i];
+
+    jlist = firstneigh[i];
+    jnum = numneigh[i];
+
+    // Concentration at site i
+    // The value -1 indicates: no concentration dependence for all interactions of atom i.
+    // It will be replaced by the concentration at site i if atom i is either A or B.
+
+    double x_i = -1.0;
+    double D_i, h_prime_i;
+
+    // This if-clause is only required for ternary alloys.
+
+    if ((itype == speciesA || itype == speciesB) && rho[i] != 0.0) {
+
+      // Compute local concentration at site i.
+
+      x_i = rhoB[i]/rho[i];
+      ASSERT(x_i >= 0 && x_i<=1.0);
+
+      if (cdeamVersion == 1) {
+
+        // Calculate derivative of h(x_i) polynomial function.
+
+        h_prime_i = evalHprime(x_i);
+        D_i = D_values[i] * h_prime_i / (2.0 * rho[i] * rho[i]);
+      } else if (cdeamVersion == 2) {
+        D_i = D_values[i];
+      } else {
+        ASSERT(false);
+      }
+    }
+
+    for (jj = 0; jj < jnum; jj++) {
+      j = jlist[jj];
+      j &= NEIGHMASK;
+
+      delx = xtmp - x[j][0];
+      dely = ytmp - x[j][1];
+      delz = ztmp - x[j][2];
+      rsq = delx*delx + dely*dely + delz*delz;
+
+      if (rsq < cutforcesq) {
+        jtype = type[j];
+        double r = sqrt(rsq);
+        const EAMTableIndex index = radiusToTableIndex(r);
+
+        // rhoip = derivative of (density at atom j due to atom i)
+        // rhojp = derivative of (density at atom i due to atom j)
+        // psip needs both fp[i] and fp[j] terms since r_ij appears in two
+        //   terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
+        //   hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
+
+        rhoip = RhoPrimeOfR(index, itype, jtype);
+        rhojp = RhoPrimeOfR(index, jtype, itype);
+        fpair = fp[i]*rhojp + fp[j]*rhoip;
+        recip = 1.0/r;
+
+        // The value -1 indicates: no concentration dependence for this
+        // i-j pair because atom j is not of species A nor B.
+
+        double x_j = -1;
+
+        // This code line is required for ternary alloy.
+
+        if (jtype == speciesA || jtype == speciesB) {
+          ASSERT(rho[i] != 0.0);
+          ASSERT(rho[j] != 0.0);
+
+          // Compute local concentration at site j.
+
+          x_j = rhoB[j]/rho[j];
+          ASSERT(x_j >= 0 && x_j<=1.0);
+
+          double D_j=0.0;
+          if (cdeamVersion == 1) {
+
+            // Calculate derivative of h(x_j) polynomial function.
+
+            double h_prime_j = evalHprime(x_j);
+            D_j = D_values[j] * h_prime_j / (2.0 * rho[j] * rho[j]);
+          } else if (cdeamVersion == 2) {
+            D_j = D_values[j];
+          } else {
+            ASSERT(false);
+          }
+          double t2 = -rhoB[j];
+          if (itype == speciesB) t2 += rho[j];
+          fpair += D_j * rhoip * t2;
+        }
+
+        // This if-clause is only required for a ternary alloy.
+        // Actually we don't need it at all because D_i should be zero
+        // anyway if atom i has no concentration dependent interactions
+        // (because it is not species A or B).
+
+        if (x_i != -1.0) {
+          double t1 = -rhoB[i];
+          if (jtype == speciesB) t1 += rho[i];
+          fpair += D_i * rhojp * t1;
+        }
+
+        double phip;
+        double phi = PhiOfR(index, itype, jtype, recip, phip);
+        if (itype == jtype || x_i == -1.0 || x_j == -1.0) {
+
+          // Case of no concentration dependence.
+
+          fpair += phip;
+        } else {
+
+          // We have a concentration dependence for the i-j interaction.
+
+          double h=0.0;
+          if (cdeamVersion == 1) {
+
+            // Calculate h(x_i) polynomial function.
+
+            double h_i = evalH(x_i);
+
+            // Calculate h(x_j) polynomial function.
+
+            double h_j = evalH(x_j);
+            h = 0.5 * (h_i + h_j);
+          } else if (cdeamVersion == 2) {
+
+            // Average concentration.
+
+            double x_ij = 0.5 * (x_i + x_j);
+
+            // Calculate h(x_ij) polynomial function.
+
+            h = evalH(x_ij);
+          } else {
+            ASSERT(false);
+          }
+          fpair += h * phip;
+          phi *= h;
+        }
+
+        // Divide by r_ij and negate to get forces from gradient.
+
+        fpair /= -r;
+
+        f[i][0] += delx*fpair;
+        f[i][1] += dely*fpair;
+        f[i][2] += delz*fpair;
+        if (newton_pair || j < nlocal) {
+          f[j][0] -= delx*fpair;
+          f[j][1] -= dely*fpair;
+          f[j][2] -= delz*fpair;
+        }
+
+        if (eflag) evdwl = phi;
+        if (evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz);
+      }
+    }
+  }
+
+  if (vflag_fdotr) virial_fdotr_compute();
+}
+
+/* ---------------------------------------------------------------------- */
+
+void PairEAMCD::coeff(int narg, char **arg)
+{
+  PairEAMAlloy::coeff(narg, arg);
+
+  // Make sure the EAM file is a CD-EAM binary alloy.
+
+  if (setfl->nelements < 2)
+    error->all(FLERR,"The EAM file must contain at least 2 elements to be used with the eam/cd pair style.");
+
+  // Read in the coefficients of the h polynomial from the end of the EAM file.
+
+  read_h_coeff(arg[2]);
+
+  // Determine which atom type is the A species and which is the B
+  // species in the alloy.  By default take the first element (index 0)
+  // in the EAM file as the A species and the second element (index 1)
+  // in the EAM file as the B species.
+
+  speciesA = -1;
+  speciesB = -1;
+  for (int i = 1; i <= atom->ntypes; i++) {
+    if (map[i] == 0) {
+      if (speciesA >= 0)
+        error->all(FLERR,"The first element from the EAM file may only be mapped to a single atom type.");
+      speciesA = i;
+    }
+    if (map[i] == 1) {
+      if (speciesB >= 0)
+        error->all(FLERR,"The second element from the EAM file may only be mapped to a single atom type.");
+      speciesB = i;
+    }
+  }
+  if (speciesA < 0)
+    error->all(FLERR,"The first element from the EAM file must be mapped to exactly one atom type.");
+  if (speciesB < 0)
+    error->all(FLERR,"The second element from the EAM file must be mapped to exactly one atom type.");
+}
+
+/* ----------------------------------------------------------------------
+   Reads in the h(x) polynomial coefficients
+------------------------------------------------------------------------- */
+
+void PairEAMCD::read_h_coeff(char *filename)
+{
+  if (comm->me == 0) {
+
+    // Open potential file
+
+    FILE *fptr;
+    char line[MAXLINE];
+    char nextline[MAXLINE];
+    fptr = force->open_potential(filename);
+    if (fptr == NULL) {
+      char str[128];
+      sprintf(str,"Cannot open EAM potential file %s", filename);
+      error->one(FLERR,str);
+    }
+
+    // h coefficients are stored at the end of the file.
+    // Skip to last line of file.
+
+    while(fgets(nextline, MAXLINE, fptr) != NULL) {
+      strcpy(line, nextline);
+    }
+    char* ptr = strtok(line, " \t\n\r\f");
+    int degree = atoi(ptr);
+    nhcoeff = degree+1;
+    hcoeff = new double[nhcoeff];
+    int i = 0;
+    while((ptr = strtok(NULL," \t\n\r\f")) != NULL && i < nhcoeff) {
+      hcoeff[i++] = atof(ptr);
+    }
+    if (i != nhcoeff || nhcoeff < 1)
+      error->one(FLERR,"Failed to read h(x) function coefficients from EAM file.");
+
+    // Close the potential file.
+
+    fclose(fptr);
+  }
+
+  MPI_Bcast(&nhcoeff, 1, MPI_INT, 0, world);
+  if (comm->me != 0) hcoeff = new double[nhcoeff];
+  MPI_Bcast(hcoeff, nhcoeff, MPI_DOUBLE, 0, world);
+}
+
+
+/* ---------------------------------------------------------------------- */
+
+int PairEAMCD::pack_forward_comm(int n, int *list, double *buf,
+                                 int pbc_flag, int *pbc)
+{
+  int i,j,m;
+
+  m = 0;
+  if (communicationStage == 2) {
+    if (cdeamVersion == 1) {
+      for (i = 0; i < n; i++) {
+        j = list[i];
+        buf[m++] = fp[j];
+        buf[m++] = rho[j];
+        buf[m++] = rhoB[j];
+        buf[m++] = D_values[j];
+      }
+      return m;
+    } else if (cdeamVersion == 2) {
+      for (i = 0; i < n; i++) {
+        j = list[i];
+        buf[m++] = fp[j];
+        buf[m++] = rho[j];
+        buf[m++] = rhoB[j];
+      }
+      return m;
+    } else { ASSERT(false); return 0; }
+  } else if (communicationStage == 4) {
+    for (i = 0; i < n; i++) {
+      j = list[i];
+      buf[m++] = D_values[j];
+    }
+    return m;
+  } else return 0;
+}
+
+/* ---------------------------------------------------------------------- */
+
+void PairEAMCD::unpack_forward_comm(int n, int first, double *buf)
+{
+  int i,m,last;
+
+  m = 0;
+  last = first + n;
+  if (communicationStage == 2) {
+    if (cdeamVersion == 1) {
+      for (i = first; i < last; i++) {
+        fp[i] = buf[m++];
+        rho[i] = buf[m++];
+        rhoB[i] = buf[m++];
+        D_values[i] = buf[m++];
+      }
+    } else if (cdeamVersion == 2) {
+      for (i = first; i < last; i++) {
+        fp[i] = buf[m++];
+        rho[i] = buf[m++];
+        rhoB[i] = buf[m++];
+      }
+    } else {
+      ASSERT(false);
+    }
+  } else if (communicationStage == 4) {
+    for (i = first; i < last; i++) {
+      D_values[i] = buf[m++];
+    }
+  }
+}
+
+/* ---------------------------------------------------------------------- */
+int PairEAMCD::pack_reverse_comm(int n, int first, double *buf)
+{
+  int i,m,last;
+
+  m = 0;
+  last = first + n;
+
+  if (communicationStage == 1) {
+    if (cdeamVersion == 1) {
+      for (i = first; i < last; i++) {
+        buf[m++] = rho[i];
+        buf[m++] = rhoB[i];
+        buf[m++] = D_values[i];
+      }
+      return m;
+    } else if (cdeamVersion == 2) {
+      for (i = first; i < last; i++) {
+        buf[m++] = rho[i];
+        buf[m++] = rhoB[i];
+      }
+      return m;
+    } else { ASSERT(false); return 0; }
+  } else if (communicationStage == 3) {
+    for (i = first; i < last; i++) {
+      buf[m++] = D_values[i];
+    }
+    return m;
+  } else return 0;
+}
+
+/* ---------------------------------------------------------------------- */
+
+void PairEAMCD::unpack_reverse_comm(int n, int *list, double *buf)
+{
+  int i,j,m;
+
+  m = 0;
+  if (communicationStage == 1) {
+    if (cdeamVersion == 1) {
+      for (i = 0; i < n; i++) {
+        j = list[i];
+        rho[j] += buf[m++];
+        rhoB[j] += buf[m++];
+        D_values[j] += buf[m++];
+      }
+    } else if (cdeamVersion == 2) {
+      for (i = 0; i < n; i++) {
+        j = list[i];
+        rho[j] += buf[m++];
+        rhoB[j] += buf[m++];
+      }
+    } else {
+      ASSERT(false);
+    }
+  } else if (communicationStage == 3) {
+    for (i = 0; i < n; i++) {
+      j = list[i];
+      D_values[j] += buf[m++];
+    }
+  }
+}
+
+/* ----------------------------------------------------------------------
+   memory usage of local atom-based arrays
+------------------------------------------------------------------------- */
+double PairEAMCD::memory_usage()
+{
+  double bytes = 2 * nmax * sizeof(double);
+  return PairEAMAlloy::memory_usage() + bytes;
+}
diff --git a/src/USER-MISC/pair_cdeam.h b/src/MANYBODY/pair_eam_cd.h
similarity index 94%
rename from src/USER-MISC/pair_cdeam.h
rename to src/MANYBODY/pair_eam_cd.h
index 934b7601a4bfac37bbad057f94ed8a373a6848fe..15486aed6d96fafd13014296638bcdb82af30962 100644
--- a/src/USER-MISC/pair_cdeam.h
+++ b/src/MANYBODY/pair_eam_cd.h
@@ -13,8 +13,8 @@
 
 #ifdef PAIR_CLASS
 
-PairStyle(eam/cd,PairCDEAM_OneSite)
-PairStyle(eam/cd/old,PairCDEAM_TwoSite)
+PairStyle(eam/cd,PairEAMCD_OneSite)
+PairStyle(eam/cd/old,PairEAMCD_TwoSite)
 
 #else
 
@@ -25,14 +25,14 @@ PairStyle(eam/cd/old,PairCDEAM_TwoSite)
 
 namespace LAMMPS_NS {
 
-class PairCDEAM : public PairEAMAlloy
+class PairEAMCD : public PairEAMAlloy
 {
 public:
   /// Constructor.
-  PairCDEAM(class LAMMPS*, int cdeamVersion);
+  PairEAMCD(class LAMMPS*, int cdeamVersion);
 
   /// Destructor.
-  virtual ~PairCDEAM();
+  virtual ~PairEAMCD();
 
   /// Calculates the energies and forces for all atoms in the system.
   virtual void compute(int, int);
@@ -211,19 +211,19 @@ public:
 };
 
 /// The one-site concentration formulation of CD-EAM.
- class PairCDEAM_OneSite : public PairCDEAM
+ class PairEAMCD_OneSite : public PairEAMCD
    {
    public:
      /// Constructor.
-     PairCDEAM_OneSite(class LAMMPS* lmp) : PairEAM(lmp), PairCDEAM(lmp, 1) {}
+     PairEAMCD_OneSite(class LAMMPS* lmp) : PairEAM(lmp), PairEAMCD(lmp, 1) {}
    };
 
  /// The two-site concentration formulation of CD-EAM.
- class PairCDEAM_TwoSite : public PairCDEAM
+ class PairEAMCD_TwoSite : public PairEAMCD
    {
    public:
      /// Constructor.
-     PairCDEAM_TwoSite(class LAMMPS* lmp) : PairEAM(lmp), PairCDEAM(lmp, 2) {}
+     PairEAMCD_TwoSite(class LAMMPS* lmp) : PairEAM(lmp), PairEAMCD(lmp, 2) {}
    };
 
 }
diff --git a/src/USER-MISC/Install.sh b/src/USER-MISC/Install.sh
deleted file mode 100755
index 2d42125ec3a79cdb00cc88cb31d12b8be3959f4d..0000000000000000000000000000000000000000
--- a/src/USER-MISC/Install.sh
+++ /dev/null
@@ -1,40 +0,0 @@
-# Install/unInstall package files in LAMMPS
-# mode = 0/1/2 for uninstall/install/update
-
-mode=$1
-
-# enforce using portable C locale
-LC_ALL=C
-export LC_ALL
-
-# arg1 = file, arg2 = file it depends on
-
-action () {
-  if (test $mode = 0) then
-    rm -f ../$1
-  elif (! cmp -s $1 ../$1) then
-    if (test -z "$2" || test -e ../$2) then
-      cp $1 ..
-      if (test $mode = 2) then
-        echo "  updating src/$1"
-      fi
-    fi
-  elif (test ! -n "$2") then
-    if (test ! -e ../$2) then
-      rm -f ../$1
-    fi
-  fi
-}
-
-# all package files
-# only a few files have dependencies
-
-for file in *.cpp *.h; do
-  if (test $file = "pair_cdeam.cpp") then
-    action pair_cdeam.cpp pair_eam_alloy.cpp
-  elif (test $file = "pair_cdeam.h") then
-    action pair_cdeam.h pair_eam_alloy.cpp
-  else
-    test -f ${file} && action $file
-  fi
-done
diff --git a/src/USER-MISC/README b/src/USER-MISC/README
index 68a6252d8dc692285b5577c6281723c4515f8d54..0f9e7bf383bf3e005b828672ad24b360d6f9b440 100644
--- a/src/USER-MISC/README
+++ b/src/USER-MISC/README
@@ -65,7 +65,6 @@ pair_style buck/mdf, Paolo Raiteri, p.raiteri at curtin.edu.au, 2 Dec 15
 pair_style coul/diel, Axel Kohlmeyer, akohlmey at gmail.com, 1 Dec 11
 pair_style dipole/sf, Mario Orsi, orsimario at gmail.com, 8 Aug 11
 pair_style edip, Luca Ferraro, luca.ferraro at caspur.it, 15 Sep 11
-pair_style eam/cd, Alexander Stukowski, stukowski at mm.tu-darmstadt.de, 7 Nov 09
 pair_style extep, Jaap Kroes (Radboud U), jaapkroes at gmail dot com, 28 Nov 17
 pair_style gauss/cut, Axel Kohlmeyer, akohlmey at gmail.com, 1 Dec 11
 pair_style lennard/mdf, Paolo Raiteri, p.raiteri at curtin.edu.au, 2 Dec 15
diff --git a/src/USER-MISC/pair_cdeam.cpp b/src/USER-MISC/pair_cdeam.cpp
deleted file mode 100644
index 53d9036a61d44da205f921c3272ccf41b9075cde..0000000000000000000000000000000000000000
--- a/src/USER-MISC/pair_cdeam.cpp
+++ /dev/null
@@ -1,644 +0,0 @@
-/* ----------------------------------------------------------------------
-   LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
-   http://lammps.sandia.gov, Sandia National Laboratories
-   Steve Plimpton, sjplimp@sandia.gov
-
-   Copyright (2003) Sandia Corporation.  Under the terms of Contract
-   DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
-   certain rights in this software.  This software is distributed under
-   the GNU General Public License.
-
-   See the README file in the top-level LAMMPS directory.
-------------------------------------------------------------------------- */
-
-/* ----------------------------------------------------------------------
-   Contributing author: Alexander Stukowski
-                        Technical University of Darmstadt,
-                        Germany Department of Materials Science
-------------------------------------------------------------------------- */
-
-#include <cmath>
-#include <cstdio>
-#include <cstdlib>
-#include <cstring>
-#include "pair_cdeam.h"
-#include "atom.h"
-#include "force.h"
-#include "comm.h"
-#include "neighbor.h"
-#include "neigh_list.h"
-#include "memory.h"
-#include "error.h"
-
-using namespace LAMMPS_NS;
-
-// This is for debugging purposes. The ASSERT() macro is used in the code to check
-// if everything runs as expected. Change this to #if 0 if you don't need the checking.
-#if 0
-        #define ASSERT(cond) ((!(cond)) ? my_failure(error,__FILE__,__LINE__) : my_noop())
-
-        inline void my_noop() {}
-        inline void my_failure(Error* error, const char* file, int line) {
-                char str[1024];
-                sprintf(str,"Assertion failure: File %s, line %i", file, line);
-                error->one(FLERR,str);
-        }
-#else
-        #define ASSERT(cond)
-#endif
-
-#define MAXLINE 1024        // This sets the maximum line length in EAM input files.
-
-PairCDEAM::PairCDEAM(LAMMPS *lmp, int _cdeamVersion) : PairEAM(lmp), PairEAMAlloy(lmp), cdeamVersion(_cdeamVersion)
-{
-        single_enable = 0;
-        restartinfo = 0;
-
-        rhoB = NULL;
-        D_values = NULL;
-        hcoeff = NULL;
-
-        // Set communication buffer sizes needed by this pair style.
-        if(cdeamVersion == 1) {
-                comm_forward = 4;
-                comm_reverse = 3;
-        }
-        else if(cdeamVersion == 2) {
-                comm_forward = 3;
-                comm_reverse = 2;
-        }
-        else {
-                error->all(FLERR,"Invalid CD-EAM potential version.");
-        }
-}
-
-PairCDEAM::~PairCDEAM()
-{
-        memory->destroy(rhoB);
-        memory->destroy(D_values);
-        if(hcoeff) delete[] hcoeff;
-}
-
-void PairCDEAM::compute(int eflag, int vflag)
-{
-        int i,j,ii,jj,inum,jnum,itype,jtype;
-        double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
-        double rsq,rhoip,rhojp,recip,phi;
-        int *ilist,*jlist,*numneigh,**firstneigh;
-
-        evdwl = 0.0;
-        if (eflag || vflag) ev_setup(eflag,vflag);
-        else evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
-
-        // Grow per-atom arrays if necessary
-        if(atom->nmax > nmax) {
-                memory->destroy(rho);
-                memory->destroy(fp);
-                memory->destroy(rhoB);
-                memory->destroy(D_values);
-                nmax = atom->nmax;
-                memory->create(rho,nmax,"pair:rho");
-                memory->create(rhoB,nmax,"pair:rhoB");
-                memory->create(fp,nmax,"pair:fp");
-                memory->create(D_values,nmax,"pair:D_values");
-        }
-
-        double **x = atom->x;
-        double **f = atom->f;
-        int *type = atom->type;
-        int nlocal = atom->nlocal;
-        int newton_pair = force->newton_pair;
-
-        inum = list->inum;
-        ilist = list->ilist;
-        numneigh = list->numneigh;
-        firstneigh = list->firstneigh;
-
-        // Zero out per-atom arrays.
-        int m = nlocal + atom->nghost;
-        for(i = 0; i < m; i++) {
-                rho[i] = 0.0;
-                rhoB[i] = 0.0;
-                D_values[i] = 0.0;
-        }
-
-        // Stage I
-
-        // Compute rho and rhoB at each local atom site.
-        // Additionally calculate the D_i values here if we are using the one-site formulation.
-        // For the two-site formulation we have to calculate the D values in an extra loop (Stage II).
-        for(ii = 0; ii < inum; ii++) {
-                i = ilist[ii];
-                xtmp = x[i][0];
-                ytmp = x[i][1];
-                ztmp = x[i][2];
-                itype = type[i];
-                jlist = firstneigh[i];
-                jnum = numneigh[i];
-
-                for(jj = 0; jj < jnum; jj++) {
-                        j = jlist[jj];
-                        j &= NEIGHMASK;
-
-                        delx = xtmp - x[j][0];
-                        dely = ytmp - x[j][1];
-                        delz = ztmp - x[j][2];
-                        rsq = delx*delx + dely*dely + delz*delz;
-
-                        if(rsq < cutforcesq) {
-                                jtype = type[j];
-                                double r = sqrt(rsq);
-                                const EAMTableIndex index = radiusToTableIndex(r);
-                                double localrho = RhoOfR(index, jtype, itype);
-                                rho[i] += localrho;
-                                if(jtype == speciesB) rhoB[i] += localrho;
-                                if(newton_pair || j < nlocal) {
-                                        localrho = RhoOfR(index, itype, jtype);
-                                        rho[j] += localrho;
-                                        if(itype == speciesB) rhoB[j] += localrho;
-                                }
-
-                                if(cdeamVersion == 1 && itype != jtype) {
-                                        // Note: if the i-j interaction is not concentration dependent (because either
-                                        // i or j are not species A or B) then its contribution to D_i and D_j should
-                                        // be ignored.
-                                        // This if-clause is only required for a ternary.
-                                        if((itype == speciesA && jtype == speciesB) || (jtype == speciesA && itype == speciesB)) {
-                                                double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
-                                                D_values[i] += Phi_AB;
-                                                if(newton_pair || j < nlocal)
-                                                        D_values[j] += Phi_AB;
-                                        }
-                                }
-                        }
-                }
-        }
-
-        // Communicate and sum densities.
-        if(newton_pair) {
-                communicationStage = 1;
-                comm->reverse_comm_pair(this);
-        }
-
-        // fp = derivative of embedding energy at each atom
-        // phi = embedding energy at each atom
-        for(ii = 0; ii < inum; ii++) {
-                i = ilist[ii];
-                EAMTableIndex index = rhoToTableIndex(rho[i]);
-                fp[i] = FPrimeOfRho(index, type[i]);
-                if(eflag) {
-                        phi = FofRho(index, type[i]);
-                        if (eflag_global) eng_vdwl += phi;
-                        if (eflag_atom) eatom[i] += phi;
-                }
-        }
-
-        // Communicate derivative of embedding function and densities
-        // and D_values (this for one-site formulation only).
-        communicationStage = 2;
-        comm->forward_comm_pair(this);
-
-        // The electron densities may not drop to zero because then the concentration would no longer be defined.
-        // But the concentration is not needed anyway if there is no interaction with another atom, which is the case
-        // if the electron density is exactly zero. That's why the following lines have been commented out.
-        //
-        //for(i = 0; i < nlocal + atom->nghost; i++) {
-        //        if(rho[i] == 0 && (type[i] == speciesA || type[i] == speciesB))
-        //                error->one(FLERR,"CD-EAM potential routine: Detected atom with zero electron density.");
-        //}
-
-        // Stage II
-        // This is only required for the original two-site formulation of the CD-EAM potential.
-
-        if(cdeamVersion == 2) {
-                // Compute intermediate value D_i for each atom.
-                for(ii = 0; ii < inum; ii++) {
-                        i = ilist[ii];
-                        xtmp = x[i][0];
-                        ytmp = x[i][1];
-                        ztmp = x[i][2];
-                        itype = type[i];
-                        jlist = firstneigh[i];
-                        jnum = numneigh[i];
-
-                        // This code line is required for ternary alloys.
-                        if(itype != speciesA && itype != speciesB) continue;
-
-                        double x_i = rhoB[i] / rho[i];        // Concentration at atom i.
-
-                        for(jj = 0; jj < jnum; jj++) {
-                                j = jlist[jj];
-                                j &= NEIGHMASK;
-                                jtype = type[j];
-                                if(itype == jtype) continue;
-
-                                // This code line is required for ternary alloys.
-                                if(jtype != speciesA && jtype != speciesB) continue;
-
-                                delx = xtmp - x[j][0];
-                                dely = ytmp - x[j][1];
-                                delz = ztmp - x[j][2];
-                                rsq = delx*delx + dely*dely + delz*delz;
-
-                                if(rsq < cutforcesq) {
-                                        double r = sqrt(rsq);
-                                        const EAMTableIndex index = radiusToTableIndex(r);
-
-                                        // The concentration independent part of the cross pair potential.
-                                        double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
-
-                                        // Average concentration of two sites
-                                        double x_ij = 0.5 * (x_i + rhoB[j]/rho[j]);
-
-                                        // Calculate derivative of h(x_ij) polynomial function.
-                                        double h_prime = evalHprime(x_ij);
-
-                                        D_values[i] += h_prime * Phi_AB / (2.0 * rho[i] * rho[i]);
-                                        if(newton_pair || j < nlocal)
-                                                D_values[j] += h_prime * Phi_AB / (2.0 * rho[j] * rho[j]);
-                                }
-                        }
-                }
-
-                // Communicate and sum D values.
-                if(newton_pair) {
-                        communicationStage = 3;
-                        comm->reverse_comm_pair(this);
-                }
-                communicationStage = 4;
-                comm->forward_comm_pair(this);
-        }
-
-        // Stage III
-
-        // Compute force acting on each atom.
-        for(ii = 0; ii < inum; ii++) {
-                i = ilist[ii];
-                xtmp = x[i][0];
-                ytmp = x[i][1];
-                ztmp = x[i][2];
-                itype = type[i];
-
-                jlist = firstneigh[i];
-                jnum = numneigh[i];
-
-                // Concentration at site i
-                double x_i = -1.0;                // The value -1 indicates: no concentration dependence for all interactions of atom i.
-                                                                // It will be replaced by the concentration at site i if atom i is either A or B.
-
-                double D_i, h_prime_i;
-
-                // This if-clause is only required for ternary alloys.
-                if((itype == speciesA || itype == speciesB) && rho[i] != 0.0) {
-
-                        // Compute local concentration at site i.
-                        x_i = rhoB[i]/rho[i];
-                        ASSERT(x_i >= 0 && x_i<=1.0);
-
-                        if(cdeamVersion == 1) {
-                                // Calculate derivative of h(x_i) polynomial function.
-                                h_prime_i = evalHprime(x_i);
-                                D_i = D_values[i] * h_prime_i / (2.0 * rho[i] * rho[i]);
-                        } else if(cdeamVersion == 2) {
-                                D_i = D_values[i];
-                        } else {
-                          ASSERT(false);
-                        }
-                }
-
-                for(jj = 0; jj < jnum; jj++) {
-                        j = jlist[jj];
-                        j &= NEIGHMASK;
-
-                        delx = xtmp - x[j][0];
-                        dely = ytmp - x[j][1];
-                        delz = ztmp - x[j][2];
-                        rsq = delx*delx + dely*dely + delz*delz;
-
-                        if(rsq < cutforcesq) {
-                                jtype = type[j];
-                                double r = sqrt(rsq);
-                                const EAMTableIndex index = radiusToTableIndex(r);
-
-                                // rhoip = derivative of (density at atom j due to atom i)
-                                // rhojp = derivative of (density at atom i due to atom j)
-                                // psip needs both fp[i] and fp[j] terms since r_ij appears in two
-                                //   terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
-                                //   hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
-                                rhoip = RhoPrimeOfR(index, itype, jtype);
-                                rhojp = RhoPrimeOfR(index, jtype, itype);
-                                fpair = fp[i]*rhojp + fp[j]*rhoip;
-                                recip = 1.0/r;
-
-                                double x_j = -1;  // The value -1 indicates: no concentration dependence for this i-j pair
-                                                  // because atom j is not of species A nor B.
-
-                                // This code line is required for ternary alloy.
-                                if(jtype == speciesA || jtype == speciesB) {
-                                        ASSERT(rho[i] != 0.0);
-                                        ASSERT(rho[j] != 0.0);
-
-                                        // Compute local concentration at site j.
-                                        x_j = rhoB[j]/rho[j];
-                                        ASSERT(x_j >= 0 && x_j<=1.0);
-
-                                        double D_j=0.0;
-                                        if(cdeamVersion == 1) {
-                                                // Calculate derivative of h(x_j) polynomial function.
-                                                double h_prime_j = evalHprime(x_j);
-                                                D_j = D_values[j] * h_prime_j / (2.0 * rho[j] * rho[j]);
-                                        } else if(cdeamVersion == 2) {
-                                                D_j = D_values[j];
-                                        } else {
-                                          ASSERT(false);
-                                        }
-                                        double t2 = -rhoB[j];
-                                        if(itype == speciesB) t2 += rho[j];
-                                        fpair += D_j * rhoip * t2;
-                                }
-
-                                // This if-clause is only required for a ternary alloy.
-                                // Actually we don't need it at all because D_i should be zero anyway if
-                                // atom i has no concentration dependent interactions (because it is not species A or B).
-                                if(x_i != -1.0) {
-                                        double t1 = -rhoB[i];
-                                        if(jtype == speciesB) t1 += rho[i];
-                                        fpair += D_i * rhojp * t1;
-                                }
-
-                                double phip;
-                                double phi = PhiOfR(index, itype, jtype, recip, phip);
-                                if(itype == jtype || x_i == -1.0 || x_j == -1.0) {
-                                        // Case of no concentration dependence.
-                                        fpair += phip;
-                                } else {
-                                        // We have a concentration dependence for the i-j interaction.
-                                        double h=0.0;
-                                        if(cdeamVersion == 1) {
-                                                // Calculate h(x_i) polynomial function.
-                                                double h_i = evalH(x_i);
-                                                // Calculate h(x_j) polynomial function.
-                                                double h_j = evalH(x_j);
-                                                h = 0.5 * (h_i + h_j);
-                                        } else if(cdeamVersion == 2) {
-                                                // Average concentration.
-                                                double x_ij = 0.5 * (x_i + x_j);
-                                                // Calculate h(x_ij) polynomial function.
-                                                h = evalH(x_ij);
-                                        } else {
-                                          ASSERT(false);
-                                        }
-                                        fpair += h * phip;
-                                        phi *= h;
-                                }
-
-                                // Divide by r_ij and negate to get forces from gradient.
-                                fpair /= -r;
-
-                                f[i][0] += delx*fpair;
-                                f[i][1] += dely*fpair;
-                                f[i][2] += delz*fpair;
-                                if(newton_pair || j < nlocal) {
-                                        f[j][0] -= delx*fpair;
-                                        f[j][1] -= dely*fpair;
-                                        f[j][2] -= delz*fpair;
-                                }
-
-                                if(eflag) evdwl = phi;
-                                if(evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz);
-                        }
-                }
-        }
-
-        if(vflag_fdotr) virial_fdotr_compute();
-}
-
-/* ---------------------------------------------------------------------- */
-
-void PairCDEAM::coeff(int narg, char **arg)
-{
-        PairEAMAlloy::coeff(narg, arg);
-
-        // Make sure the EAM file is a CD-EAM binary alloy.
-        if(setfl->nelements < 2)
-                error->all(FLERR,"The EAM file must contain at least 2 elements to be used with the eam/cd pair style.");
-
-        // Read in the coefficients of the h polynomial from the end of the EAM file.
-        read_h_coeff(arg[2]);
-
-        // Determine which atom type is the A species and which is the B species in the alloy.
-        // By default take the first element (index 0) in the EAM file as the A species
-        // and the second element (index 1) in the EAM file as the B species.
-        speciesA = -1;
-        speciesB = -1;
-        for(int i = 1; i <= atom->ntypes; i++) {
-                if(map[i] == 0) {
-                        if(speciesA >= 0)
-                                error->all(FLERR,"The first element from the EAM file may only be mapped to a single atom type.");
-                        speciesA = i;
-                }
-                if(map[i] == 1) {
-                        if(speciesB >= 0)
-                                error->all(FLERR,"The second element from the EAM file may only be mapped to a single atom type.");
-                        speciesB = i;
-                }
-        }
-        if(speciesA < 0)
-                error->all(FLERR,"The first element from the EAM file must be mapped to exactly one atom type.");
-        if(speciesB < 0)
-                error->all(FLERR,"The second element from the EAM file must be mapped to exactly one atom type.");
-}
-
-/* ----------------------------------------------------------------------
-   Reads in the h(x) polynomial coefficients
-------------------------------------------------------------------------- */
-void PairCDEAM::read_h_coeff(char *filename)
-{
-        if(comm->me == 0) {
-                // Open potential file
-                FILE *fptr;
-                char line[MAXLINE];
-                char nextline[MAXLINE];
-                fptr = force->open_potential(filename);
-                if (fptr == NULL) {
-                        char str[128];
-                        sprintf(str,"Cannot open EAM potential file %s", filename);
-                        error->one(FLERR,str);
-                }
-
-                // h coefficients are stored at the end of the file.
-                // Skip to last line of file.
-                while(fgets(nextline, MAXLINE, fptr) != NULL) {
-                        strcpy(line, nextline);
-                }
-                char* ptr = strtok(line, " \t\n\r\f");
-                int degree = atoi(ptr);
-                nhcoeff = degree+1;
-                hcoeff = new double[nhcoeff];
-                int i = 0;
-                while((ptr = strtok(NULL," \t\n\r\f")) != NULL && i < nhcoeff) {
-                        hcoeff[i++] = atof(ptr);
-                }
-                if(i != nhcoeff || nhcoeff < 1)
-                        error->one(FLERR,"Failed to read h(x) function coefficients from EAM file.");
-
-                // Close the potential file.
-                fclose(fptr);
-        }
-
-        MPI_Bcast(&nhcoeff, 1, MPI_INT, 0, world);
-        if(comm->me != 0) hcoeff = new double[nhcoeff];
-        MPI_Bcast(hcoeff, nhcoeff, MPI_DOUBLE, 0, world);
-}
-
-
-/* ---------------------------------------------------------------------- */
-
-int PairCDEAM::pack_forward_comm(int n, int *list, double *buf,
-                                 int pbc_flag, int *pbc)
-{
-        int i,j,m;
-
-        m = 0;
-        if(communicationStage == 2) {
-                if(cdeamVersion == 1) {
-                        for (i = 0; i < n; i++) {
-                                j = list[i];
-                                buf[m++] = fp[j];
-                                buf[m++] = rho[j];
-                                buf[m++] = rhoB[j];
-                                buf[m++] = D_values[j];
-                        }
-                        return m;
-                }
-                else if(cdeamVersion == 2) {
-                        for (i = 0; i < n; i++) {
-                                j = list[i];
-                                buf[m++] = fp[j];
-                                buf[m++] = rho[j];
-                                buf[m++] = rhoB[j];
-                        }
-                        return m;
-                }
-                else { ASSERT(false); return 0; }
-        }
-        else if(communicationStage == 4) {
-                for (i = 0; i < n; i++) {
-                        j = list[i];
-                        buf[m++] = D_values[j];
-                }
-                return m;
-        }
-        else return 0;
-}
-
-/* ---------------------------------------------------------------------- */
-
-void PairCDEAM::unpack_forward_comm(int n, int first, double *buf)
-{
-        int i,m,last;
-
-        m = 0;
-        last = first + n;
-        if(communicationStage == 2) {
-                if(cdeamVersion == 1) {
-                        for(i = first; i < last; i++) {
-                                fp[i] = buf[m++];
-                                rho[i] = buf[m++];
-                                rhoB[i] = buf[m++];
-                                D_values[i] = buf[m++];
-                        }
-                }
-                else if(cdeamVersion == 2) {
-                        for(i = first; i < last; i++) {
-                                fp[i] = buf[m++];
-                                rho[i] = buf[m++];
-                                rhoB[i] = buf[m++];
-                        }
-                } else {
-                  ASSERT(false);
-                }
-        }
-        else if(communicationStage == 4) {
-                for(i = first; i < last; i++) {
-                        D_values[i] = buf[m++];
-                }
-        }
-}
-
-/* ---------------------------------------------------------------------- */
-int PairCDEAM::pack_reverse_comm(int n, int first, double *buf)
-{
-        int i,m,last;
-
-        m = 0;
-        last = first + n;
-
-        if(communicationStage == 1) {
-                if(cdeamVersion == 1) {
-                        for(i = first; i < last; i++) {
-                                buf[m++] = rho[i];
-                                buf[m++] = rhoB[i];
-                                buf[m++] = D_values[i];
-                        }
-                        return m;
-                }
-                else if(cdeamVersion == 2) {
-                        for(i = first; i < last; i++) {
-                                buf[m++] = rho[i];
-                                buf[m++] = rhoB[i];
-                        }
-                        return m;
-                }
-                else { ASSERT(false); return 0; }
-        }
-        else if(communicationStage == 3) {
-                for(i = first; i < last; i++) {
-                        buf[m++] = D_values[i];
-                }
-                return m;
-        }
-        else return 0;
-}
-
-/* ---------------------------------------------------------------------- */
-
-void PairCDEAM::unpack_reverse_comm(int n, int *list, double *buf)
-{
-        int i,j,m;
-
-        m = 0;
-        if(communicationStage == 1) {
-                if(cdeamVersion == 1) {
-                        for(i = 0; i < n; i++) {
-                                j = list[i];
-                                rho[j] += buf[m++];
-                                rhoB[j] += buf[m++];
-                                D_values[j] += buf[m++];
-                        }
-                } else if(cdeamVersion == 2) {
-                        for(i = 0; i < n; i++) {
-                                j = list[i];
-                                rho[j] += buf[m++];
-                                rhoB[j] += buf[m++];
-                        }
-                } else {
-                  ASSERT(false);
-                }
-        }
-        else if(communicationStage == 3) {
-                for(i = 0; i < n; i++) {
-                        j = list[i];
-                        D_values[j] += buf[m++];
-                }
-        }
-}
-
-/* ----------------------------------------------------------------------
-   memory usage of local atom-based arrays
-------------------------------------------------------------------------- */
-double PairCDEAM::memory_usage()
-{
-        double bytes = 2 * nmax * sizeof(double);
-        return PairEAMAlloy::memory_usage() + bytes;
-}