diff --git a/src/USER-UEF/fix_nh_uef.cpp b/src/USER-UEF/fix_nh_uef.cpp index cd0b2ba2683742ab1140ce3a41e0e7c506a40a33..bfa45492864ff4708fb0e22167b04b69ca95cbc1 100644 --- a/src/USER-UEF/fix_nh_uef.cpp +++ b/src/USER-UEF/fix_nh_uef.cpp @@ -536,10 +536,26 @@ void FixNHUef::pre_exchange() rotate_x(rot); rotate_f(rot); - // put all atoms in the new box - double **x = atom->x; + // this is a generalization of what is done in domain->image_flip(...) + int ri[3][3]; + uefbox->get_inverse_cob(ri); imageint *image = atom->image; int nlocal = atom->nlocal; + for (int i=0; i<nlocal; i++) { + int iold[3],inew[3]; + iold[0] = (image[i] & IMGMASK) - IMGMAX; + iold[1] = (image[i] >> IMGBITS & IMGMASK) - IMGMAX; + iold[2] = (image[i] >> IMG2BITS) - IMGMAX; + inew[0] = ri[0][0]*iold[0] + ri[0][1]*iold[1] + ri[0][2]*iold[2]; + inew[1] = ri[1][0]*iold[0] + ri[1][1]*iold[1] + ri[1][2]*iold[2]; + inew[2] = ri[2][0]*iold[0] + ri[2][1]*iold[1] + ri[2][2]*iold[2]; + image[i] = ((imageint) (inew[0] + IMGMAX) & IMGMASK) | + (((imageint) (inew[1] + IMGMAX) & IMGMASK) << IMGBITS) | + (((imageint) (inew[2] + IMGMAX) & IMGMASK) << IMG2BITS); + } + + // put all atoms in the new box + double **x = atom->x; for (int i=0; i<nlocal; i++) domain->remap(x[i],image[i]); // move atoms to the right processors diff --git a/src/USER-UEF/uef_utils.cpp b/src/USER-UEF/uef_utils.cpp index a5498d605f3d28291d91dcc320a4cd41dd999ce2..a2e6cb291e0cb4c7b4ff48e9d1d181d0b7f65e4a 100644 --- a/src/USER-UEF/uef_utils.cpp +++ b/src/USER-UEF/uef_utils.cpp @@ -30,47 +30,54 @@ namespace LAMMPS_NS { UEFBox::UEFBox() { + // initial box (also an inverse eigenvector matrix of automorphisms) + double x = 0.327985277605681; double y = 0.591009048506103; double z = 0.736976229099578; l0[0][0]= z; l0[0][1]= y; l0[0][2]= x; l0[1][0]=-x; l0[1][1]= z; l0[1][2]=-y; l0[2][0]=-y; l0[2][1]= x; l0[2][2]= z; + // spectra of the two automorpisms (log of eigenvalues) + w1[0]=-1.177725211523360; w1[1]=-0.441448620566067; w1[2]= 1.619173832089425; w2[0]= w1[1]; w2[1]= w1[2]; w2[2]= w1[0]; + // initialize theta // strain = w1 * theta1 + w2 * theta2 - theta[0]=theta[1]=0; + theta[0]=theta[1]=0; //set up the initial box l and change of basis matrix r + for (int k=0;k<3;k++) - for (int j=0;j<3;j++) - { + for (int j=0;j<3;j++) { l[k][j] = l0[k][j]; r[j][k]=(j==k); + ri[j][k]=(j==k); } // get the initial rotation and upper triangular matrix + rotation_matrix(rot, lrot ,l); // this is just a way to calculate the automorphisms // themselves, which play a minor role in the calculations // it's overkill, but only called once + double t1[3][3]; double t1i[3][3]; double t2[3][3]; double t2i[3][3]; double l0t[3][3]; for (int k=0; k<3; ++k) - for (int j=0; j<3; ++j) - { + for (int j=0; j<3; ++j) { t1[k][j] = exp(w1[k])*l0[k][j]; t1i[k][j] = exp(-w1[k])*l0[k][j]; t2[k][j] = exp(w2[k])*l0[k][j]; @@ -82,8 +89,7 @@ UEFBox::UEFBox() mul_m2(l0t,t2); mul_m2(l0t,t2i); for (int k=0; k<3; ++k) - for (int j=0; j<3; ++j) - { + for (int j=0; j<3; ++j) { a1[k][j] = round(t1[k][j]); a1i[k][j] = round(t1i[k][j]); a2[k][j] = round(t2[k][j]); @@ -92,6 +98,7 @@ UEFBox::UEFBox() // winv used to transform between // strain increments and theta increments + winv[0][0] = w2[1]; winv[0][1] = -w2[0]; winv[1][0] = -w1[1]; @@ -102,7 +109,9 @@ UEFBox::UEFBox() winv[k][j] /= d; } -// get volume-correct r basis in: basis*cbrt(vol) = q*r +/* ---------------------------------------------------------------------- + get volume-correct r basis in: basis*cbrt(vol) = q*r +------------------------------------------------------------------------- */ void UEFBox::get_box(double x[3][3], double v) { v = cbrtf(v); @@ -111,7 +120,9 @@ void UEFBox::get_box(double x[3][3], double v) x[k][j] = lrot[k][j]*v; } -// get rotation matrix q in: basis = q*r +/* ---------------------------------------------------------------------- + get rotation matrix q in: basis = q*r +------------------------------------------------------------------------- */ void UEFBox::get_rot(double x[3][3]) { for (int k=0;k<3;k++) @@ -119,20 +130,32 @@ void UEFBox::get_rot(double x[3][3]) x[k][j]=rot[k][j]; } -// diagonal, incompressible deformation +/* ---------------------------------------------------------------------- + get inverse change of basis matrix +------------------------------------------------------------------------- */ +void UEFBox::get_inverse_cob(int x[3][3]) +{ + for (int k=0;k<3;k++) + for (int j=0;j<3;j++) + x[k][j]=ri[k][j]; +} + +/* ---------------------------------------------------------------------- + apply diagonal, incompressible deformation +------------------------------------------------------------------------- */ void UEFBox::step_deform(const double ex, const double ey) { // increment theta values used in the reduction + theta[0] +=winv[0][0]*ex + winv[0][1]*ey; theta[1] +=winv[1][0]*ex + winv[1][1]*ey; - // deformation of the box. reduce() needs to - // be called regularly or calculation will become - // unstable + // deformation of the box. reduce() needs to be called regularly or + // calculation will become unstable + double eps[3]; eps[0]=ex; eps[1] = ey; eps[2] = -ex-ey; - for (int k=0;k<3;k++) - { + for (int k=0;k<3;k++) { eps[k] = exp(eps[k]); l[k][0] = eps[k]*l[k][0]; l[k][1] = eps[k]*l[k][1]; @@ -140,68 +163,84 @@ void UEFBox::step_deform(const double ex, const double ey) } rotation_matrix(rot,lrot, l); } -// reuduce the current basis + +/* ---------------------------------------------------------------------- + reduce the current basis +------------------------------------------------------------------------- */ bool UEFBox::reduce() { - // determine how many times to apply the automorphisms - // and find new theta values + // determine how many times to apply the automorphisms and find new theta + // values + int f1 = round(theta[0]); int f2 = round(theta[1]); theta[0] -= f1; theta[1] -= f2; - // store old change or basis matrix to determine if it - // changes + // store old change or basis matrix to determine if it changes + int r0[3][3]; for (int k=0;k<3;k++) for (int j=0;j<3;j++) r0[k][j]=r[k][j]; - // this modifies the old change basis matrix to - // handle the case where the automorphism transforms - // the box but the reduced basis doesn't change + // this modifies the old change basis matrix to handle the case where the + // automorphism transforms the box but the reduced basis doesn't change // (r0 should still equal r at the end) + if (f1 > 0) for (int k=0;k<f1;k++) mul_m2 (a1,r0); if (f1 < 0) for (int k=0;k<-f1;k++) mul_m2 (a1i,r0); if (f2 > 0) for (int k=0;k<f2;k++) mul_m2 (a2,r0); if (f2 < 0) for (int k=0;k<-f2;k++) mul_m2 (a2i,r0); // robust reduction to the box defined by Dobson - for (int k=0;k<3;k++) - { + + for (int k=0;k<3;k++) { double eps = exp(theta[0]*w1[k]+theta[1]*w2[k]); l[k][0] = eps*l0[k][0]; l[k][1] = eps*l0[k][1]; l[k][2] = eps*l0[k][2]; } + // further reduce the box using greedy reduction and check // if it changed from the last step using the change of basis // matrices r and r0 - greedy(l,r); + + greedy(l,r,ri); + + // multiplying the inverse by the old change of basis matrix gives + // the inverse of the transformation itself (should be identity if + // no reduction takes place). This is used for image flags only. + + mul_m1(ri,r0); rotation_matrix(rot,lrot, l); return !mat_same(r,r0); } + +/* ---------------------------------------------------------------------- + set the strain to a specific value +------------------------------------------------------------------------- */ void UEFBox::set_strain(const double ex, const double ey) { - theta[0] =winv[0][0]*ex + winv[0][1]*ey; - theta[1] =winv[1][0]*ex + winv[1][1]*ey; + theta[0] = winv[0][0]*ex + winv[0][1]*ey; + theta[1] = winv[1][0]*ex + winv[1][1]*ey; theta[0] -= round(theta[0]); theta[1] -= round(theta[1]); - for (int k=0;k<3;k++) - { + for (int k=0;k<3;k++) { double eps = exp(theta[0]*w1[k]+theta[1]*w2[k]); l[k][0] = eps*l0[k][0]; l[k][1] = eps*l0[k][1]; l[k][2] = eps*l0[k][2]; } - greedy(l,r); + greedy(l,r,ri); rotation_matrix(rot,lrot, l); } -// this is just qr reduction using householder reflections -// m is input matrix, q is a rotation, r is upper triangular -// q*m = r +/* ---------------------------------------------------------------------- + qr reduction using householder reflections + q*m = r. q is orthogonal. m is input matrix. r is upper triangular +------------------------------------------------------------------------- */ void rotation_matrix(double q[3][3], double r[3][3], const double m[3][3]) { for (int k=0;k<3;k++) @@ -217,8 +256,7 @@ void rotation_matrix(double q[3][3], double r[3][3], const double m[3][3]) v[0] /= a; v[1] /= a; v[2] /= a; double qt[3][3]; for (int k=0;k<3;k++) - for (int j=0;j<3;j++) - { + for (int j=0;j<3;j++) { qt[k][j] = (k==j) - 2*v[k]*v[j]; q[k][j]= qt[k][j]; } @@ -235,38 +273,42 @@ void rotation_matrix(double q[3][3], double r[3][3], const double m[3][3]) qt[k][j] = (k==j) - 2*v[k]*v[j]; mul_m2(qt,r); mul_m2(qt,q); + // this makes r have positive diagonals // q*m = r <==> (-q)*m = (-r) will hold row-wise + if (r[0][0] < 0){ neg_row(q,0); neg_row(r,0); } if (r[1][1] < 0){ neg_row(q,1); neg_row(r,1); } if (r[2][2] < 0){ neg_row(q,2); neg_row(r,2); } } - - -//sort columns in order of increasing length -void col_sort(double b[3][3],int r[3][3]) +/* ---------------------------------------------------------------------- + sort columns of b in order of increasing length + mimic column operations on ri and r +------------------------------------------------------------------------- */ +void col_sort(double b[3][3],int r[3][3],int ri[3][3]) { - if (col_prod(b,0,0)>col_prod(b,1,1)) - { + if (col_prod(b,0,0)>col_prod(b,1,1)) { col_swap(b,0,1); col_swap(r,0,1); + col_swap(ri,0,1); } - if (col_prod(b,0,0)>col_prod(b,2,2)) - { + if (col_prod(b,0,0)>col_prod(b,2,2)) { col_swap(b,0,2); col_swap(r,0,2); + col_swap(ri,0,2); } - if (col_prod(b,1,1)>col_prod(b,2,2)) - { + if (col_prod(b,1,1)>col_prod(b,2,2)) { col_swap(b,1,2); col_swap(r,1,2); + col_swap(ri,1,2); } } - -// 1-2 reduction (Graham-Schmidt) -void red12(double b[3][3],int r[3][3]) +/* ---------------------------------------------------------------------- + 1-2 reduction (Graham-Schmidt) +------------------------------------------------------------------------- */ +void red12(double b[3][3],int r[3][3],int ri[3][3]) { int y = round(col_prod(b,0,1)/col_prod(b,0,0)); b[0][1] -= y*b[0][0]; @@ -276,16 +318,23 @@ void red12(double b[3][3],int r[3][3]) r[0][1] -= y*r[0][0]; r[1][1] -= y*r[1][0]; r[2][1] -= y*r[2][0]; - if (col_prod(b,1,1) < col_prod(b,0,0)) - { + + ri[0][0] += y*ri[0][1]; + ri[1][0] += y*ri[1][1]; + ri[2][0] += y*ri[2][1]; + + if (col_prod(b,1,1) < col_prod(b,0,0)) { col_swap(b,0,1); col_swap(r,0,1); - red12(b,r); + col_swap(ri,0,1); + red12(b,r,ri); } } -// The Semaev condition for a 3-reduced basis -void red3(double b[3][3], int r[3][3]) +/* ---------------------------------------------------------------------- + Apply the Semaev condition for a 3-reduced basis +------------------------------------------------------------------------- */ +void red3(double b[3][3], int r[3][3], int ri[3][3]) { double b11 = col_prod(b,0,0); double b22 = col_prod(b,1,1); @@ -304,63 +353,97 @@ void red3(double b[3][3], int r[3][3]) x1v[0] = floor(y1); x1v[1] = x1v[0]+1; x2v[0] = floor(y2); x2v[1] = x2v[0]+1; for (int k=0;k<2;k++) - for (int j=0;j<2;j++) - { + for (int j=0;j<2;j++) { double a[3]; a[0] = b[0][2] + x1v[k]*b[0][0] + x2v[j]*b[0][1]; a[1] = b[1][2] + x1v[k]*b[1][0] + x2v[j]*b[1][1]; a[2] = b[2][2] + x1v[k]*b[2][0] + x2v[j]*b[2][1]; double val=a[0]*a[0]+a[1]*a[1]+a[2]*a[2]; - if (val<min) - { + if (val<min) { min = val; x1 = x1v[k]; x2 = x2v[j]; } } - if (x1 || x2) - { + if (x1 || x2) { b[0][2] += x1*b[0][0] + x2*b[0][1]; b[1][2] += x1*b[1][0] + x2*b[1][1]; b[2][2] += x1*b[2][0] + x2*b[2][1]; r[0][2] += x1*r[0][0] + x2*r[0][1]; r[1][2] += x1*r[1][0] + x2*r[1][1]; r[2][2] += x1*r[2][0] + x2*r[2][1]; - greedy_recurse(b,r); // note the recursion step is here + ri[0][0] += -x1*ri[0][2]; + ri[1][0] += -x1*ri[1][2]; + ri[2][0] += -x1*ri[2][2]; + ri[0][1] += -x2*ri[0][2]; + ri[1][1] += -x2*ri[1][2]; + ri[2][1] += -x2*ri[2][2]; + greedy_recurse(b,r,ri); // note the recursion step is here } } -// the meat of the greedy reduction algorithm -void greedy_recurse(double b[3][3], int r[3][3]) +/* ---------------------------------------------------------------------- + the meat of the greedy reduction algorithm +------------------------------------------------------------------------- */ +void greedy_recurse(double b[3][3], int r[3][3], int ri[3][3]) { - col_sort(b,r); - red12(b,r); - red3(b,r); // recursive caller + col_sort(b,r,ri); + red12(b,r,ri); + red3(b,r,ri); // recursive caller } -// set r (change of basis) to be identity then reduce basis and make it unique -void greedy(double b[3][3],int r[3][3]) +/* ---------------------------------------------------------------------- + reduce the basis b. also output the change of basis matrix r and its + inverse ri +------------------------------------------------------------------------- */ +void greedy(double b[3][3],int r[3][3],int ri[3][3]) { r[0][1]=r[0][2]=r[1][0]=r[1][2]=r[2][0]=r[2][1]=0; r[0][0]=r[1][1]=r[2][2]=1; - greedy_recurse(b,r); - make_unique(b,r); + ri[0][1]=ri[0][2]=ri[1][0]=ri[1][2]=ri[2][0]=ri[2][1]=0; + ri[0][0]=ri[1][1]=ri[2][2]=1; + greedy_recurse(b,r,ri); + make_unique(b,r,ri); + transpose(ri); } -// A reduced basis isn't unique. This procedure will make it -// "more" unique. Degenerate cases are possible, but unlikely -// with floating point math. -void make_unique(double b[3][3], int r[3][3]) +/* ---------------------------------------------------------------------- + A reduced basis isn't unique. This procedure will make it + "more" unique. Degenerate cases are possible, but unlikely + with floating point math. +------------------------------------------------------------------------- */ +void make_unique(double b[3][3], int r[3][3], int ri[3][3]) { - if (fabs(b[0][0]) < fabs(b[0][1])) - { col_swap(b,0,1); col_swap(r,0,1); } - if (fabs(b[0][0]) < fabs(b[0][2])) - { col_swap(b,0,2); col_swap(r,0,2); } - if (fabs(b[1][1]) < fabs(b[1][2])) - { col_swap(b,1,2); col_swap(r,1,2); } - - if (b[0][0] < 0){ neg_col(b,0); neg_col(r,0); } - if (b[1][1] < 0){ neg_col(b,1); neg_col(r,1); } - if (det(b) < 0){ neg_col(b,2); neg_col(r,2); } + if (fabs(b[0][0]) < fabs(b[0][1])) { + col_swap(b,0,1); + col_swap(r,0,1); + col_swap(ri,0,1); + } + if (fabs(b[0][0]) < fabs(b[0][2])) { + col_swap(b,0,2); + col_swap(r,0,2); + col_swap(ri,0,2); + } + if (fabs(b[1][1]) < fabs(b[1][2])) { + col_swap(b,1,2); + col_swap(r,1,2); + col_swap(ri,1,2); + } + + if (b[0][0] < 0) { + neg_col(b,0); + neg_col(r,0); + neg_col(ri,0); + } + if (b[1][1] < 0) { + neg_col(b,1); + neg_col(r,1); + neg_col(ri,1); + } + if (det(b) < 0) { + neg_col(b,2); + neg_col(r,2); + neg_col(ri,2); + } } }} diff --git a/src/USER-UEF/uef_utils.h b/src/USER-UEF/uef_utils.h index a16f6fff1a70f1e5e15b3f993efc702deaaf034f..0a1cfcc9b2ca9f897d9bf4caed142644d24cf3fe 100644 --- a/src/USER-UEF/uef_utils.h +++ b/src/USER-UEF/uef_utils.h @@ -27,26 +27,27 @@ class UEFBox bool reduce(); void get_box(double[3][3], double); void get_rot(double[3][3]); + void get_inverse_cob(int[3][3]); private: double l0[3][3]; // initial basis - double w1[3],w2[3], winv[3][3]; // omega1 and omega2 (spectra of automorphisms) - //double edot[3], delta[2]; + double w1[3],w2[3],winv[3][3];//omega1 and omega2 (spectra of automorphisms) double theta[2]; double l[3][3], rot[3][3], lrot[3][3]; - int r[3][3],a1[3][3],a2[3][3],a1i[3][3],a2i[3][3]; + int r[3][3],ri[3][3],a1[3][3],a2[3][3],a1i[3][3],a2i[3][3]; }; - // lattice reduction routines -void greedy(double[3][3],int[3][3]); -void col_sort(double[3][3],int[3][3]); -void red12(double[3][3],int[3][3]); -void greedy_recurse(double[3][3],int[3][3]); -void red3(double [3][3],int r[3][3]); -void make_unique(double[3][3],int[3][3]); + +void greedy(double[3][3],int[3][3],int[3][3]); +void col_sort(double[3][3],int[3][3],int[3][3]); +void red12(double[3][3],int[3][3],int[3][3]); +void greedy_recurse(double[3][3],int[3][3],int[3][3]); +void red3(double [3][3],int r[3][3],int[3][3]); +void make_unique(double[3][3],int[3][3],int[3][3]); void rotation_matrix(double[3][3],double[3][3],const double [3][3]); // A few utility functions for 3x3 arrays + template<typename T> T col_prod(T x[3][3], int c1, int c2) { @@ -56,8 +57,7 @@ T col_prod(T x[3][3], int c1, int c2) template<typename T> void col_swap(T x[3][3], int c1, int c2) { - for (int k=0;k<3;k++) - { + for (int k=0;k<3;k++) { T t = x[k][c2]; x[k][c2]=x[k][c1]; x[k][c1]=t; @@ -101,9 +101,21 @@ bool mat_same(T x1[3][3], T x2[3][3]) } template<typename T> -void mul_m1(T m1[3][3], const T m2[3][3]) +void transpose(T m[3][3]) { T t[3][3]; + for (int k=0;k<3;k++) + for (int j=k+1;j<3;j++) { + T x = m[k][j]; + m[k][j] = m[j][k]; + m[j][k] = x; + } +} + +template<typename T1,typename T2> +void mul_m1(T1 m1[3][3], const T2 m2[3][3]) +{ + T1 t[3][3]; for (int k=0;k<3;k++) for (int j=0;j<3;j++) t[k][j]=m1[k][j]; @@ -113,10 +125,10 @@ void mul_m1(T m1[3][3], const T m2[3][3]) m1[k][j] = t[k][0]*m2[0][j] + t[k][1]*m2[1][j] + t[k][2]*m2[2][j]; } -template<typename T> -void mul_m2(const T m1[3][3], T m2[3][3]) +template<typename T1, typename T2> +void mul_m2(const T1 m1[3][3], T2 m2[3][3]) { - T t[3][3]; + T2 t[3][3]; for (int k=0;k<3;k++) for (int j=0;j<3;j++) t[k][j]=m2[k][j];