/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Carsten Svaneborg, science@zqex.dk ------------------------------------------------------------------------- */ #include <cmath> #include <cstdlib> #include "angle_cosine_shift_exp.h" #include "atom.h" #include "neighbor.h" #include "domain.h" #include "comm.h" #include "force.h" #include "math_const.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace MathConst; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleCosineShiftExp::AngleCosineShiftExp(LAMMPS *lmp) : Angle(lmp) { doExpansion = NULL; umin = NULL; a = NULL; opt1 = NULL; theta0 = NULL; sint = NULL; cost = NULL; } /* ---------------------------------------------------------------------- */ AngleCosineShiftExp::~AngleCosineShiftExp() { if (allocated) { memory->destroy(setflag); memory->destroy(umin); memory->destroy(a); memory->destroy(opt1); memory->destroy(cost); memory->destroy(sint); memory->destroy(theta0); memory->destroy(doExpansion); } } /* ---------------------------------------------------------------------- */ void AngleCosineShiftExp::compute(int eflag, int vflag) { int i1,i2,i3,n,type; double delx1,dely1,delz1,delx2,dely2,delz2; double eangle,f1[3],f3[3],ff; double rsq1,rsq2,r1,r2,c,s,a11,a12,a22; double exp2,aa,uumin,cccpsss,cssmscc; eangle = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = 0; double **x = atom->x; double **f = atom->f; int **anglelist = neighbor->anglelist; int nanglelist = neighbor->nanglelist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nanglelist; n++) { i1 = anglelist[n][0]; i2 = anglelist[n][1]; i3 = anglelist[n][2]; type = anglelist[n][3]; // 1st bond delx1 = x[i1][0] - x[i2][0]; dely1 = x[i1][1] - x[i2][1]; delz1 = x[i1][2] - x[i2][2]; rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3][0] - x[i2][0]; dely2 = x[i3][1] - x[i2][1]; delz2 = x[i3][2] - x[i2][2]; rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // c = cosine of angle c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; // C= sine of angle s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; // force & energy aa=a[type]; uumin=umin[type]; cccpsss = c*cost[type]+s*sint[type]; cssmscc = c*sint[type]-s*cost[type]; if (doExpansion[type]) { // |a|<0.01 so use expansions relative precision <1e-5 // std::cout << "Using expansion\n"; if (eflag) eangle = -0.125*(1+cccpsss)*(4+aa*(cccpsss-1))*uumin; ff=0.25*uumin*cssmscc*(2+aa*cccpsss)/s; } else { // std::cout << "Not using expansion\n"; exp2=exp(0.5*aa*(1+cccpsss)); if (eflag) eangle = opt1[type]*(1-exp2); ff=0.5*a[type]*opt1[type]*exp2*cssmscc/s; } a11 = ff*c/ rsq1; a12 = -ff / (r1*r2); a22 = ff*c/ rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; // apply force to each of 3 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0]; f[i1][1] += f1[1]; f[i1][2] += f1[2]; } if (newton_bond || i2 < nlocal) { f[i2][0] -= f1[0] + f3[0]; f[i2][1] -= f1[1] + f3[1]; f[i2][2] -= f1[2] + f3[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0]; f[i3][1] += f3[1]; f[i3][2] += f3[2]; } if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2); } } /* ---------------------------------------------------------------------- */ void AngleCosineShiftExp::allocate() { allocated = 1; int n = atom->nangletypes; memory->create(doExpansion, n+1, "angle:doExpansion"); memory->create(umin , n+1, "angle:umin"); memory->create(a , n+1, "angle:a"); memory->create(sint , n+1, "angle:sint"); memory->create(cost , n+1, "angle:cost"); memory->create(opt1 , n+1, "angle:opt1"); memory->create(theta0 , n+1, "angle:theta0"); memory->create(setflag , n+1, "angle:setflag"); for (int i = 1; i <= n; i++) setflag[i] = 0; } /* ---------------------------------------------------------------------- set coeffs for one type ------------------------------------------------------------------------- */ void AngleCosineShiftExp::coeff(int narg, char **arg) { if (narg != 4) error->all(FLERR,"Incorrect args for angle coefficients"); if (!allocated) allocate(); int ilo,ihi; force->bounds(FLERR,arg[0],atom->nangletypes,ilo,ihi); double umin_ = force->numeric(FLERR,arg[1]); double theta0_ = force->numeric(FLERR,arg[2]); double a_ = force->numeric(FLERR,arg[3]); int count = 0; for (int i = ilo; i <= ihi; i++) { doExpansion[i]=(fabs(a_)<0.001); umin[i] = umin_; a[i] = a_; cost[i] = cos(theta0_*MY_PI / 180.0); sint[i] = sin(theta0_*MY_PI / 180.0); theta0[i]= theta0_*MY_PI / 180.0; if (!doExpansion[i]) opt1[i]=umin_/(exp(a_)-1); setflag[i] = 1; count++; } if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients"); } /* ---------------------------------------------------------------------- */ double AngleCosineShiftExp::equilibrium_angle(int i) { return theta0[i]; } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void AngleCosineShiftExp::write_restart(FILE *fp) { fwrite(&umin[1],sizeof(double),atom->nangletypes,fp); fwrite(&a[1],sizeof(double),atom->nangletypes,fp); fwrite(&cost[1],sizeof(double),atom->nangletypes,fp); fwrite(&sint[1],sizeof(double),atom->nangletypes,fp); fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void AngleCosineShiftExp::read_restart(FILE *fp) { allocate(); if (comm->me == 0) { fread(&umin[1],sizeof(double),atom->nangletypes,fp); fread(&a[1],sizeof(double),atom->nangletypes,fp); fread(&cost[1],sizeof(double),atom->nangletypes,fp); fread(&sint[1],sizeof(double),atom->nangletypes,fp); fread(&theta0[1],sizeof(double),atom->nangletypes,fp); } MPI_Bcast(&umin[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&a[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&cost[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&sint[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world); for (int i = 1; i <= atom->nangletypes; i++) { setflag[i] = 1; doExpansion[i]=(fabs(a[i])<0.01); if (!doExpansion[i]) opt1[i]=umin[i]/(exp(a[i])-1); } } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void AngleCosineShiftExp::write_data(FILE *fp) { for (int i = 1; i <= atom->nangletypes; i++) fprintf(fp,"%d %g %g %g\n",i,umin[i],theta0[i]/MY_PI*180.0,a[i]); } /* ---------------------------------------------------------------------- */ double AngleCosineShiftExp::single(int type, int i1, int i2, int i3) { double **x = atom->x; double delx1 = x[i1][0] - x[i2][0]; double dely1 = x[i1][1] - x[i2][1]; double delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1); double delx2 = x[i3][0] - x[i2][0]; double dely2 = x[i3][1] - x[i2][1]; double delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2); double c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; double s=sqrt(1.0-c*c); double cccpsss=c*cost[type]+s*sint[type]; if (doExpansion[type]) { return -0.125*(1+cccpsss)*(4+a[type]*(cccpsss-1))*umin[type]; } else { return opt1[type]*(1-exp(0.5*a[type]*(1+cccpsss))); } }