/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Variant of the harmonic angle potential for use with the lj/sdk potential for coarse grained MD simulations. Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include <math.h> #include <stdlib.h> #include "angle_sdk.h" #include "atom.h" #include "neighbor.h" #include "pair.h" #include "domain.h" #include "comm.h" #include "force.h" #include "math_const.h" #include "memory.h" #include "error.h" #include "lj_sdk_common.h" using namespace LAMMPS_NS; using namespace MathConst; using namespace LJSDKParms; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleSDK::AngleSDK(LAMMPS *lmp) : Angle(lmp) { repflag = 0;} /* ---------------------------------------------------------------------- */ AngleSDK::~AngleSDK() { if (allocated) { memory->destroy(setflag); memory->destroy(k); memory->destroy(theta0); memory->destroy(repscale); allocated = 0; } } /* ---------------------------------------------------------------------- */ void AngleSDK::compute(int eflag, int vflag) { int i1,i2,i3,n,type; double delx1,dely1,delz1,delx2,dely2,delz2,delx3,dely3,delz3; double eangle,f1[3],f3[3],e13,f13; double dtheta,tk; double rsq1,rsq2,rsq3,r1,r2,c,s,a,a11,a12,a22; eangle = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = 0; double **x = atom->x; double **f = atom->f; int **anglelist = neighbor->anglelist; int nanglelist = neighbor->nanglelist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nanglelist; n++) { i1 = anglelist[n][0]; i2 = anglelist[n][1]; i3 = anglelist[n][2]; type = anglelist[n][3]; // 1st bond delx1 = x[i1][0] - x[i2][0]; dely1 = x[i1][1] - x[i2][1]; delz1 = x[i1][2] - x[i2][2]; rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3][0] - x[i2][0]; dely2 = x[i3][1] - x[i2][1]; delz2 = x[i3][2] - x[i2][2]; rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // angle (cos and sin) c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; // 1-3 LJ interaction. // we only want to use the repulsive part, // and it can be scaled (or off). // so this has to be done here and not in the // general non-bonded code. f13 = e13 = delx3 = dely3 = delz3 = 0.0; if (repflag) { delx3 = x[i1][0] - x[i3][0]; dely3 = x[i1][1] - x[i3][1]; delz3 = x[i1][2] - x[i3][2]; rsq3 = delx3*delx3 + dely3*dely3 + delz3*delz3; const int type1 = atom->type[i1]; const int type3 = atom->type[i3]; f13=0.0; e13=0.0; if (rsq3 < rminsq[type1][type3]) { const int ljt = lj_type[type1][type3]; const double r2inv = 1.0/rsq3; if (ljt == LJ12_4) { const double r4inv=r2inv*r2inv; f13 = r4inv*(lj1[type1][type3]*r4inv*r4inv - lj2[type1][type3]); if (eflag) e13 = r4inv*(lj3[type1][type3]*r4inv*r4inv - lj4[type1][type3]); } else if (ljt == LJ9_6) { const double r3inv = r2inv*sqrt(r2inv); const double r6inv = r3inv*r3inv; f13 = r6inv*(lj1[type1][type3]*r3inv - lj2[type1][type3]); if (eflag) e13 = r6inv*(lj3[type1][type3]*r3inv - lj4[type1][type3]); } else if (ljt == LJ12_6) { const double r6inv = r2inv*r2inv*r2inv; f13 = r6inv*(lj1[type1][type3]*r6inv - lj2[type1][type3]); if (eflag) e13 = r6inv*(lj3[type1][type3]*r6inv - lj4[type1][type3]); } // make sure energy is 0.0 at the cutoff. if (eflag) e13 -= emin[type1][type3]; f13 *= r2inv; } } // force & energy dtheta = acos(c) - theta0[type]; tk = k[type] * dtheta; if (eflag) eangle = tk*dtheta; a = -2.0 * tk * s; a11 = a*c / rsq1; a12 = -a / (r1*r2); a22 = a*c / rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; // apply force to each of the 3 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0] + f13*delx3; f[i1][1] += f1[1] + f13*dely3; f[i1][2] += f1[2] + f13*delz3; } if (newton_bond || i2 < nlocal) { f[i2][0] -= f1[0] + f3[0]; f[i2][1] -= f1[1] + f3[1]; f[i2][2] -= f1[2] + f3[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0] - f13*delx3; f[i3][1] += f3[1] - f13*dely3; f[i3][2] += f3[2] - f13*delz3; } if (evflag) { ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2); if (repflag) ev_tally13(i1,i3,nlocal,newton_bond,e13,f13,delx3,dely3,delz3); } } } /* ---------------------------------------------------------------------- */ void AngleSDK::allocate() { allocated = 1; int n = atom->nangletypes; memory->create(k,n+1,"angle:k"); memory->create(theta0,n+1,"angle:theta0"); memory->create(repscale,n+1,"angle:repscale"); memory->create(setflag,n+1,"angle:setflag"); for (int i = 1; i <= n; i++) setflag[i] = 0; } /* ---------------------------------------------------------------------- set coeffs for one or more types ------------------------------------------------------------------------- */ void AngleSDK::coeff(int narg, char **arg) { if ((narg < 3) || (narg > 6)) error->all(FLERR,"Incorrect args for angle coefficients"); if (!allocated) allocate(); int ilo,ihi; force->bounds(arg[0],atom->nangletypes,ilo,ihi); double k_one = force->numeric(FLERR,arg[1]); double theta0_one = force->numeric(FLERR,arg[2]); double repscale_one=1.0; // backward compatibility with old cg/cmm style input: // this had <lj_type> <epsilon> <sigma> // if epsilon is set to 0.0 we accept it as repscale 0.0 // otherwise assume repscale 1.0, since we were using // epsilon to turn repulsion on or off. if (narg == 6) { repscale_one = force->numeric(FLERR,arg[4]); if (repscale_one > 0.0) repscale_one = 1.0; } else if (narg == 4) repscale_one = force->numeric(FLERR,arg[3]); else if (narg == 3) repscale_one = 1.0; else error->all(FLERR,"Incorrect args for angle coefficients"); // convert theta0 from degrees to radians and store coefficients int count = 0; for (int i = ilo; i <= ihi; i++) { k[i] = k_one; theta0[i] = theta0_one/180.0 * MY_PI; repscale[i] = repscale_one; setflag[i] = 1; count++; } if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients"); } /* ---------------------------------------------------------------------- error check and initialize all values needed for force computation ------------------------------------------------------------------------- */ void AngleSDK::init_style() { // make sure we use an SDK pair_style and that we need the 1-3 repulsion repflag = 0; for (int i = 1; i <= atom->nangletypes; i++) if (repscale[i] > 0.0) repflag = 1; // set up pointers to access SDK LJ parameters for 1-3 interactions if (repflag) { int itmp; if (force->pair == NULL) error->all(FLERR,"Angle style SDK requires use of a compatible with Pair style"); lj1 = (double **) force->pair->extract("lj1",itmp); lj2 = (double **) force->pair->extract("lj2",itmp); lj3 = (double **) force->pair->extract("lj3",itmp); lj4 = (double **) force->pair->extract("lj4",itmp); lj_type = (int **) force->pair->extract("lj_type",itmp); rminsq = (double **) force->pair->extract("rminsq",itmp); emin = (double **) force->pair->extract("emin",itmp); if (!lj1 || !lj2 || !lj3 || !lj4 || !lj_type || !rminsq || !emin) error->all(FLERR,"Angle style SDK is incompatible with Pair style"); } } /* ---------------------------------------------------------------------- */ double AngleSDK::equilibrium_angle(int i) { return theta0[i]; } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void AngleSDK::write_restart(FILE *fp) { fwrite(&k[1],sizeof(double),atom->nangletypes,fp); fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp); fwrite(&repscale[1],sizeof(double),atom->nangletypes,fp); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void AngleSDK::read_restart(FILE *fp) { allocate(); if (comm->me == 0) { fread(&k[1],sizeof(double),atom->nangletypes,fp); fread(&theta0[1],sizeof(double),atom->nangletypes,fp); fread(&repscale[1],sizeof(double),atom->nangletypes,fp); } MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&repscale[1],atom->nangletypes,MPI_DOUBLE,0,world); for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1; } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void AngleSDK::write_data(FILE *fp) { for (int i = 1; i <= atom->nangletypes; i++) fprintf(fp,"%d %g %g\n",i,k[i],theta0[i]/MY_PI*180.0); } /* ---------------------------------------------------------------------- */ void AngleSDK::ev_tally13(int i, int j, int nlocal, int newton_bond, double evdwl, double fpair, double delx, double dely, double delz) { double v[6]; if (eflag_either) { if (eflag_global) { if (newton_bond) { energy += evdwl; } else { if (i < nlocal) energy += 0.5*evdwl; if (j < nlocal) energy += 0.5*evdwl; } } if (eflag_atom) { if (newton_bond || i < nlocal) eatom[i] += 0.5*evdwl; if (newton_bond || j < nlocal) eatom[j] += 0.5*evdwl; } } if (vflag_either) { v[0] = delx*delx*fpair; v[1] = dely*dely*fpair; v[2] = delz*delz*fpair; v[3] = delx*dely*fpair; v[4] = delx*delz*fpair; v[5] = dely*delz*fpair; if (vflag_global) { if (newton_bond) { virial[0] += v[0]; virial[1] += v[1]; virial[2] += v[2]; virial[3] += v[3]; virial[4] += v[4]; virial[5] += v[5]; } else { if (i < nlocal) { virial[0] += 0.5*v[0]; virial[1] += 0.5*v[1]; virial[2] += 0.5*v[2]; virial[3] += 0.5*v[3]; virial[4] += 0.5*v[4]; virial[5] += 0.5*v[5]; } if (j < nlocal) { virial[0] += 0.5*v[0]; virial[1] += 0.5*v[1]; virial[2] += 0.5*v[2]; virial[3] += 0.5*v[3]; virial[4] += 0.5*v[4]; virial[5] += 0.5*v[5]; } } } if (vflag_atom) { if (newton_bond || i < nlocal) { vatom[i][0] += 0.5*v[0]; vatom[i][1] += 0.5*v[1]; vatom[i][2] += 0.5*v[2]; vatom[i][3] += 0.5*v[3]; vatom[i][4] += 0.5*v[4]; vatom[i][5] += 0.5*v[5]; } if (newton_bond || j < nlocal) { vatom[j][0] += 0.5*v[0]; vatom[j][1] += 0.5*v[1]; vatom[j][2] += 0.5*v[2]; vatom[j][3] += 0.5*v[3]; vatom[j][4] += 0.5*v[4]; vatom[j][5] += 0.5*v[5]; } } } } /* ---------------------------------------------------------------------- */ double AngleSDK::single(int type, int i1, int i2, int i3) { double **x = atom->x; double delx1 = x[i1][0] - x[i2][0]; double dely1 = x[i1][1] - x[i2][1]; double delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1); double delx2 = x[i3][0] - x[i2][0]; double dely2 = x[i3][1] - x[i2][1]; double delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2); double c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; double e13=0.0; if (repflag) { // 1-3 LJ interaction. double delx3 = x[i1][0] - x[i3][0]; double dely3 = x[i1][1] - x[i3][1]; double delz3 = x[i1][2] - x[i3][2]; domain->minimum_image(delx3,dely3,delz3); const int type1 = atom->type[i1]; const int type3 = atom->type[i3]; const double rsq3 = delx3*delx3 + dely3*dely3 + delz3*delz3; if (rsq3 < rminsq[type1][type3]) { const int ljt = lj_type[type1][type3]; const double r2inv = 1.0/rsq3; if (ljt == LJ12_4) { const double r4inv=r2inv*r2inv; e13 = r4inv*(lj3[type1][type3]*r4inv*r4inv - lj4[type1][type3]); } else if (ljt == LJ9_6) { const double r3inv = r2inv*sqrt(r2inv); const double r6inv = r3inv*r3inv; e13 = r6inv*(lj3[type1][type3]*r3inv - lj4[type1][type3]); } else if (ljt == LJ12_6) { const double r6inv = r2inv*r2inv*r2inv; e13 = r6inv*(lj3[type1][type3]*r6inv - lj4[type1][type3]); } // make sure energy is 0.0 at the cutoff. e13 -= emin[type1][type3]; } } double dtheta = acos(c) - theta0[type]; double tk = k[type] * dtheta; return tk*dtheta + e13; }