/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: K. Michael Salerno (NRL) Based on tabulated dihedral (dihedral_table.cpp) by Andrew Jewett ------------------------------------------------------------------------- */ #include <cmath> #include <cstdlib> #include <cstring> #include <cassert> #include <string> #include <fstream> #include <iostream> #include <sstream> #include "dihedral_table_cut.h" #include "atom.h" #include "neighbor.h" #include "update.h" #include "domain.h" #include "comm.h" #include "force.h" #include "citeme.h" #include "math_const.h" #include "math_extra.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace MathConst; using namespace std; using namespace MathExtra; static const char cite_dihedral_tablecut[] = "dihedral_style tablecut command:\n\n" "@Article{Salerno17,\n" " author = {K. M. Salerno and N. Bernstein},\n" " title = {Persistence Length, End-to-End Distance, and Structure of Coarse-Grained Polymers},\n" " journal = {J.~Chem.~Theory Comput.},\n" " year = 2018,\n" " DOI = 10.1021/acs.jctc.7b01229" "}\n\n"; /* ---------------------------------------------------------------------- */ #define TOLERANCE 0.05 #define SMALL 0.0000001 // ------------------------------------------------------------------------ // The following auxiliary functions were left out of the // DihedralTable class either because they require template parameters, // or because they have nothing to do with dihedral angles. // ------------------------------------------------------------------------ // ------------------------------------------------------------------- // --------- The function was stolen verbatim from the --------- // --------- GNU Scientific Library (GSL, version 1.15) --------- // ------------------------------------------------------------------- /* Author: Gerard Jungman */ /* for description of method see [Engeln-Mullges + Uhlig, p. 96] * * diag[0] offdiag[0] 0 ..... offdiag[N-1] * offdiag[0] diag[1] offdiag[1] ..... * 0 offdiag[1] diag[2] * 0 0 offdiag[2] ..... * ... ... * offdiag[N-1] ... * */ // -- (A non-symmetric version of this function is also available.) -- enum { //GSL status return codes. GSL_FAILURE = -1, GSL_SUCCESS = 0, GSL_ENOMEM = 8, GSL_EZERODIV = 12, GSL_EBADLEN = 19 }; static int solve_cyc_tridiag( const double diag[], size_t d_stride, const double offdiag[], size_t o_stride, const double b[], size_t b_stride, double x[], size_t x_stride, size_t N, bool warn) { int status = GSL_SUCCESS; double * delta = (double *) malloc (N * sizeof (double)); double * gamma = (double *) malloc (N * sizeof (double)); double * alpha = (double *) malloc (N * sizeof (double)); double * c = (double *) malloc (N * sizeof (double)); double * z = (double *) malloc (N * sizeof (double)); if (delta == 0 || gamma == 0 || alpha == 0 || c == 0 || z == 0) { if (warn) fprintf(stderr,"Internal Cyclic Spline Error: failed to allocate working space\n"); if (delta) free(delta); if (gamma) free(gamma); if (alpha) free(alpha); if (c) free(c); if (z) free(z); return GSL_ENOMEM; } else { size_t i, j; double sum = 0.0; /* factor */ if (N == 1) { x[0] = b[0] / diag[0]; free(delta); free(gamma); free(alpha); free(c); free(z); return GSL_SUCCESS; } alpha[0] = diag[0]; gamma[0] = offdiag[0] / alpha[0]; delta[0] = offdiag[o_stride * (N-1)] / alpha[0]; if (alpha[0] == 0) { status = GSL_EZERODIV; } for (i = 1; i < N - 2; i++) { alpha[i] = diag[d_stride * i] - offdiag[o_stride * (i-1)] * gamma[i - 1]; gamma[i] = offdiag[o_stride * i] / alpha[i]; delta[i] = -delta[i - 1] * offdiag[o_stride * (i-1)] / alpha[i]; if (alpha[i] == 0) { status = GSL_EZERODIV; } } for (i = 0; i < N - 2; i++) { sum += alpha[i] * delta[i] * delta[i]; } alpha[N - 2] = diag[d_stride * (N - 2)] - offdiag[o_stride * (N - 3)] * gamma[N - 3]; gamma[N - 2] = (offdiag[o_stride * (N - 2)] - offdiag[o_stride * (N - 3)] * delta[N - 3]) / alpha[N - 2]; alpha[N - 1] = diag[d_stride * (N - 1)] - sum - alpha[(N - 2)] * gamma[N - 2] * gamma[N - 2]; /* update */ z[0] = b[0]; for (i = 1; i < N - 1; i++) { z[i] = b[b_stride * i] - z[i - 1] * gamma[i - 1]; } sum = 0.0; for (i = 0; i < N - 2; i++) { sum += delta[i] * z[i]; } z[N - 1] = b[b_stride * (N - 1)] - sum - gamma[N - 2] * z[N - 2]; for (i = 0; i < N; i++) { c[i] = z[i] / alpha[i]; } /* backsubstitution */ x[x_stride * (N - 1)] = c[N - 1]; x[x_stride * (N - 2)] = c[N - 2] - gamma[N - 2] * x[x_stride * (N - 1)]; if (N >= 3) { for (i = N - 3, j = 0; j <= N - 3; j++, i--) { x[x_stride * i] = c[i] - gamma[i] * x[x_stride * (i + 1)] - delta[i] * x[x_stride * (N - 1)]; } } } free (z); free (c); free (alpha); free (gamma); free (delta); if ((status == GSL_EZERODIV) && warn) fprintf(stderr, "Internal Cyclic Spline Error: Matrix must be positive definite.\n"); return status; } //solve_cyc_tridiag() /* ---------------------------------------------------------------------- spline and splint routines modified from Numerical Recipes ------------------------------------------------------------------------- */ static int cyc_spline(double const *xa, double const *ya, int n, double period, double *y2a, bool warn) { double *diag = new double[n]; double *offdiag = new double[n]; double *rhs = new double[n]; double xa_im1, xa_ip1; // In the cyclic case, there are n equations with n unknows. // The for loop sets up the equations we need to solve. // Later we invoke the GSL tridiagonal matrix solver to solve them. for(int i=0; i < n; i++) { // I have to lookup xa[i+1] and xa[i-1]. This gets tricky because of // periodic boundary conditions. We handle that now. int im1 = i-1; if (im1<0) { im1 += n; xa_im1 = xa[im1] - period; } else xa_im1 = xa[im1]; int ip1 = i+1; if (ip1>=n) { ip1 -= n; xa_ip1 = xa[ip1] + period; } else xa_ip1 = xa[ip1]; // Recall that we want to find the y2a[] parameters (there are n of them). // To solve for them, we have a linear equation with n unknowns // (in the cyclic case that is). For details, the non-cyclic case is // explained in equation 3.3.7 in Numerical Recipes in C, p. 115. diag[i] = (xa_ip1 - xa_im1) / 3.0; offdiag[i] = (xa_ip1 - xa[i]) / 6.0; rhs[i] = ((ya[ip1] - ya[i]) / (xa_ip1 - xa[i])) - ((ya[i] - ya[im1]) / (xa[i] - xa_im1)); } // Because this matrix is tridiagonal (and cyclic), we can use the following // cheap method to invert it. if (solve_cyc_tridiag(diag, 1, offdiag, 1, rhs, 1, y2a, 1, n, warn) != GSL_SUCCESS) { if (warn) fprintf(stderr,"Error in inverting matrix for splines.\n"); delete [] diag; delete [] offdiag; delete [] rhs; return 1; } delete [] diag; delete [] offdiag; delete [] rhs; return 0; } // cyc_spline() /* ---------------------------------------------------------------------- */ // cyc_splint(): Evaluates a spline at position x, with n control // points located at xa[], ya[], and with parameters y2a[] // The xa[] must be monotonically increasing and their // range should not exceed period (ie xa[n-1] < xa[0] + period). // x must lie in the range: [(xa[n-1]-period), (xa[0]+period)] // "period" is typically 2*PI. static double cyc_splint(double const *xa, double const *ya, double const *y2a, int n, double period, double x) { int klo = -1; int khi = n; int k; double xlo = xa[n-1] - period; double xhi = xa[0] + period; while (khi-klo > 1) { k = (khi+klo) >> 1; //(k=(khi+klo)/2) if (xa[k] > x) { khi = k; xhi = xa[k]; } else { klo = k; xlo = xa[k]; } } if (khi == n) khi = 0; if (klo ==-1) klo = n-1; double h = xhi-xlo; double a = (xhi-x) / h; double b = (x-xlo) / h; double y = a*ya[klo] + b*ya[khi] + ((a*a*a-a)*y2a[klo] + (b*b*b-b)*y2a[khi]) * (h*h)/6.0; return y; } // cyc_splint() static double cyc_lin(double const *xa, double const *ya, int n, double period, double x) { int klo = -1; int khi = n; int k; double xlo = xa[n-1] - period; double xhi = xa[0] + period; while (khi-klo > 1) { k = (khi+klo) >> 1; //(k=(khi+klo)/2) if (xa[k] > x) { khi = k; xhi = xa[k]; } else { klo = k; xlo = xa[k]; } } if (khi == n) khi = 0; if (klo ==-1) klo = n-1; double h = xhi-xlo; double a = (xhi-x) / h; double b = (x-xlo) / h; double y = a*ya[klo] + b*ya[khi]; return y; } // cyc_lin() // cyc_splintD(): Evaluate the deriviative of a cyclic spline at position x, // with n control points at xa[], ya[], with parameters y2a[]. // The xa[] must be monotonically increasing and their // range should not exceed period (ie xa[n-1] < xa[0] + period). // x must lie in the range: [(xa[n-1]-period), (xa[0]+period)] // "period" is typically 2*PI. static double cyc_splintD(double const *xa, double const *ya, double const *y2a, int n, double period, double x) { int klo = -1; int khi = n; // (not n-1) int k; double xlo = xa[n-1] - period; double xhi = xa[0] + period; while (khi-klo > 1) { k = (khi+klo) >> 1; //(k=(khi+klo)/2) if (xa[k] > x) { khi = k; xhi = xa[k]; } else { klo = k; xlo = xa[k]; } } if (khi == n) khi = 0; if (klo ==-1) klo = n-1; double yhi = ya[khi]; double ylo = ya[klo]; double h = xhi-xlo; double g = yhi-ylo; double a = (xhi-x) / h; double b = (x-xlo) / h; // Formula below taken from equation 3.3.5 of "numerical recipes in c" // "yD" = the derivative of y double yD = g/h - ( (3.0*a*a-1.0)*y2a[klo] - (3.0*b*b-1.0)*y2a[khi] ) * h/6.0; // For rerefence: y = a*ylo + b*yhi + // ((a*a*a-a)*y2a[klo] + (b*b*b-b)*y2a[khi]) * (h*h)/6.0; return yD; } // cyc_splintD() /* ---------------------------------------------------------------------- */ DihedralTableCut::DihedralTableCut(LAMMPS *lmp) : Dihedral(lmp) { if (lmp->citeme) lmp->citeme->add(cite_dihedral_tablecut); ntables = 0; tables = NULL; checkU_fname = checkF_fname = NULL; } /* ---------------------------------------------------------------------- */ DihedralTableCut::~DihedralTableCut() { if (allocated) { memory->destroy(setflag); memory->destroy(setflag_d); memory->destroy(setflag_aat); memory->destroy(k1); memory->destroy(k2); memory->destroy(k3); memory->destroy(phi1); memory->destroy(phi2); memory->destroy(phi3); memory->destroy(aat_k); memory->destroy(aat_theta0_1); memory->destroy(aat_theta0_2); for (int m = 0; m < ntables; m++) free_table(&tables[m]); memory->sfree(tables); memory->sfree(checkU_fname); memory->sfree(checkF_fname); memory->destroy(setflag); memory->destroy(tabindex); } } /* ---------------------------------------------------------------------- */ void DihedralTableCut::compute(int eflag, int vflag) { int i1,i2,i3,i4,i,j,k,n,type; double edihedral; double vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,vb2xm,vb2ym,vb2zm; double fphi,fpphi; double r1mag2,r1,r2mag2,r2,r3mag2,r3; double sb1,rb1,sb2,rb2,sb3,rb3,c0,r12c1; double r12c2,costh12,costh13,costh23,sc1,sc2,s1,s2,c; double phi,sinphi,a11,a22,a33,a12,a13,a23,sx1,sx2; double sx12,sy1,sy2,sy12,sz1,sz2,sz12; double t1,t2,t3,t4; double da1,da2; double s12,sin2; double dcosphidr[4][3],dphidr[4][3],dthetadr[2][4][3]; double fabcd[4][3]; edihedral = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = 0; double **x = atom->x; double **f = atom->f; int **dihedrallist = neighbor->dihedrallist; int ndihedrallist = neighbor->ndihedrallist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < ndihedrallist; n++) { i1 = dihedrallist[n][0]; i2 = dihedrallist[n][1]; i3 = dihedrallist[n][2]; i4 = dihedrallist[n][3]; type = dihedrallist[n][4]; // 1st bond vb1x = x[i1][0] - x[i2][0]; vb1y = x[i1][1] - x[i2][1]; vb1z = x[i1][2] - x[i2][2]; // 2nd bond vb2x = x[i3][0] - x[i2][0]; vb2y = x[i3][1] - x[i2][1]; vb2z = x[i3][2] - x[i2][2]; vb2xm = -vb2x; vb2ym = -vb2y; vb2zm = -vb2z; // 3rd bond vb3x = x[i4][0] - x[i3][0]; vb3y = x[i4][1] - x[i3][1]; vb3z = x[i4][2] - x[i3][2]; // distances r1mag2 = vb1x*vb1x + vb1y*vb1y + vb1z*vb1z; r1 = sqrt(r1mag2); r2mag2 = vb2x*vb2x + vb2y*vb2y + vb2z*vb2z; r2 = sqrt(r2mag2); r3mag2 = vb3x*vb3x + vb3y*vb3y + vb3z*vb3z; r3 = sqrt(r3mag2); sb1 = 1.0/r1mag2; rb1 = 1.0/r1; sb2 = 1.0/r2mag2; rb2 = 1.0/r2; sb3 = 1.0/r3mag2; rb3 = 1.0/r3; c0 = (vb1x*vb3x + vb1y*vb3y + vb1z*vb3z) * rb1*rb3; // angles r12c1 = rb1*rb2; r12c2 = rb2*rb3; costh12 = (vb1x*vb2x + vb1y*vb2y + vb1z*vb2z) * r12c1; costh13 = c0; costh23 = (vb2xm*vb3x + vb2ym*vb3y + vb2zm*vb3z) * r12c2; // cos and sin of 2 angles and final c sin2 = MAX(1.0 - costh12*costh12,0.0); sc1 = sqrt(sin2); if (sc1 < SMALL) sc1 = SMALL; sc1 = 1.0/sc1; sin2 = MAX(1.0 - costh23*costh23,0.0); sc2 = sqrt(sin2); if (sc2 < SMALL) sc2 = SMALL; sc2 = 1.0/sc2; s1 = sc1 * sc1; s2 = sc2 * sc2; s12 = sc1 * sc2; c = (c0 + costh12*costh23) * s12; // error check if (c > 1.0 + TOLERANCE || c < (-1.0 - TOLERANCE)) { int me; MPI_Comm_rank(world,&me); if (screen) { char str[128]; sprintf(str,"Dihedral problem: %d " BIGINT_FORMAT " " TAGINT_FORMAT " " TAGINT_FORMAT " " TAGINT_FORMAT " " TAGINT_FORMAT, me,update->ntimestep, atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]); error->warning(FLERR,str,0); fprintf(screen," 1st atom: %d %g %g %g\n", me,x[i1][0],x[i1][1],x[i1][2]); fprintf(screen," 2nd atom: %d %g %g %g\n", me,x[i2][0],x[i2][1],x[i2][2]); fprintf(screen," 3rd atom: %d %g %g %g\n", me,x[i3][0],x[i3][1],x[i3][2]); fprintf(screen," 4th atom: %d %g %g %g\n", me,x[i4][0],x[i4][1],x[i4][2]); } } if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; double phil = acos(c); phi = acos(c); sinphi = sqrt(1.0 - c*c); sinphi = MAX(sinphi,SMALL); // n123 = vb1 x vb2 double n123x = vb1y*vb2z - vb1z*vb2y; double n123y = vb1z*vb2x - vb1x*vb2z; double n123z = vb1x*vb2y - vb1y*vb2x; double n123_dot_vb3 = n123x*vb3x + n123y*vb3y + n123z*vb3z; if (n123_dot_vb3 > 0.0) { phil = -phil; phi = -phi; sinphi = -sinphi; } a11 = -c*sb1*s1; a22 = sb2 * (2.0*costh13*s12 - c*(s1+s2)); a33 = -c*sb3*s2; a12 = r12c1 * (costh12*c*s1 + costh23*s12); a13 = rb1*rb3*s12; a23 = r12c2 * (-costh23*c*s2 - costh12*s12); sx1 = a11*vb1x + a12*vb2x + a13*vb3x; sx2 = a12*vb1x + a22*vb2x + a23*vb3x; sx12 = a13*vb1x + a23*vb2x + a33*vb3x; sy1 = a11*vb1y + a12*vb2y + a13*vb3y; sy2 = a12*vb1y + a22*vb2y + a23*vb3y; sy12 = a13*vb1y + a23*vb2y + a33*vb3y; sz1 = a11*vb1z + a12*vb2z + a13*vb3z; sz2 = a12*vb1z + a22*vb2z + a23*vb3z; sz12 = a13*vb1z + a23*vb2z + a33*vb3z; // set up d(cos(phi))/d(r) and dphi/dr arrays dcosphidr[0][0] = -sx1; dcosphidr[0][1] = -sy1; dcosphidr[0][2] = -sz1; dcosphidr[1][0] = sx2 + sx1; dcosphidr[1][1] = sy2 + sy1; dcosphidr[1][2] = sz2 + sz1; dcosphidr[2][0] = sx12 - sx2; dcosphidr[2][1] = sy12 - sy2; dcosphidr[2][2] = sz12 - sz2; dcosphidr[3][0] = -sx12; dcosphidr[3][1] = -sy12; dcosphidr[3][2] = -sz12; for (i = 0; i < 4; i++) for (j = 0; j < 3; j++) dphidr[i][j] = -dcosphidr[i][j] / sinphi; for (i = 0; i < 4; i++) for (j = 0; j < 3; j++) fabcd[i][j] = 0; edihedral = 0; // set up d(theta)/d(r) array // dthetadr(i,j,k) = angle i, atom j, coordinate k for (i = 0; i < 2; i++) for (j = 0; j < 4; j++) for (k = 0; k < 3; k++) dthetadr[i][j][k] = 0.0; t1 = costh12 / r1mag2; t2 = costh23 / r2mag2; t3 = costh12 / r2mag2; t4 = costh23 / r3mag2; // angle12 dthetadr[0][0][0] = sc1 * ((t1 * vb1x) - (vb2x * r12c1)); dthetadr[0][0][1] = sc1 * ((t1 * vb1y) - (vb2y * r12c1)); dthetadr[0][0][2] = sc1 * ((t1 * vb1z) - (vb2z * r12c1)); dthetadr[0][1][0] = sc1 * ((-t1 * vb1x) + (vb2x * r12c1) + (-t3 * vb2x) + (vb1x * r12c1)); dthetadr[0][1][1] = sc1 * ((-t1 * vb1y) + (vb2y * r12c1) + (-t3 * vb2y) + (vb1y * r12c1)); dthetadr[0][1][2] = sc1 * ((-t1 * vb1z) + (vb2z * r12c1) + (-t3 * vb2z) + (vb1z * r12c1)); dthetadr[0][2][0] = sc1 * ((t3 * vb2x) - (vb1x * r12c1)); dthetadr[0][2][1] = sc1 * ((t3 * vb2y) - (vb1y * r12c1)); dthetadr[0][2][2] = sc1 * ((t3 * vb2z) - (vb1z * r12c1)); // angle23 dthetadr[1][1][0] = sc2 * ((t2 * vb2x) + (vb3x * r12c2)); dthetadr[1][1][1] = sc2 * ((t2 * vb2y) + (vb3y * r12c2)); dthetadr[1][1][2] = sc2 * ((t2 * vb2z) + (vb3z * r12c2)); dthetadr[1][2][0] = sc2 * ((-t2 * vb2x) - (vb3x * r12c2) + (t4 * vb3x) + (vb2x * r12c2)); dthetadr[1][2][1] = sc2 * ((-t2 * vb2y) - (vb3y * r12c2) + (t4 * vb3y) + (vb2y * r12c2)); dthetadr[1][2][2] = sc2 * ((-t2 * vb2z) - (vb3z * r12c2) + (t4 * vb3z) + (vb2z * r12c2)); dthetadr[1][3][0] = -sc2 * ((t4 * vb3x) + (vb2x * r12c2)); dthetadr[1][3][1] = -sc2 * ((t4 * vb3y) + (vb2y * r12c2)); dthetadr[1][3][2] = -sc2 * ((t4 * vb3z) + (vb2z * r12c2)); // angle/angle/torsion cutoff da1 = acos(costh12) - aat_theta0_1[type] ; da2 = acos(costh23) - aat_theta0_1[type] ; double dtheta = aat_theta0_2[type]-aat_theta0_1[type]; fphi = 0.0; fpphi = 0.0; if (phil < 0) phil +=MY_2PI; uf_lookup(type, phil, fphi, fpphi); double gt = aat_k[type]; double gtt = aat_k[type]; double gpt = 0; double gptt = 0; if ( acos(costh12) > aat_theta0_1[type]) { gt *= 1-da1*da1/dtheta/dtheta; gpt = -aat_k[type]*2*da1/dtheta/dtheta; } if ( acos(costh23) > aat_theta0_1[type]) { gtt *= 1-da2*da2/dtheta/dtheta; gptt = -aat_k[type]*2*da2/dtheta/dtheta; } if (eflag) edihedral = gt*gtt*fphi; for (i = 0; i < 4; i++) for (j = 0; j < 3; j++) fabcd[i][j] -= - gt*gtt*fpphi*dphidr[i][j] - gt*gptt*fphi*dthetadr[1][i][j] + gpt*gtt*fphi*dthetadr[0][i][j]; // apply force to each of 4 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += fabcd[0][0]; f[i1][1] += fabcd[0][1]; f[i1][2] += fabcd[0][2]; } if (newton_bond || i2 < nlocal) { f[i2][0] += fabcd[1][0]; f[i2][1] += fabcd[1][1]; f[i2][2] += fabcd[1][2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += fabcd[2][0]; f[i3][1] += fabcd[2][1]; f[i3][2] += fabcd[2][2]; } if (newton_bond || i4 < nlocal) { f[i4][0] += fabcd[3][0]; f[i4][1] += fabcd[3][1]; f[i4][2] += fabcd[3][2]; } if (evflag) ev_tally(i1,i2,i3,i4,nlocal,newton_bond,edihedral, fabcd[0],fabcd[2],fabcd[3], vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z); } } /* ---------------------------------------------------------------------- */ void DihedralTableCut::allocate() { allocated = 1; int n = atom->ndihedraltypes; memory->create(k1,n+1,"dihedral:k1"); memory->create(k2,n+1,"dihedral:k2"); memory->create(k3,n+1,"dihedral:k3"); memory->create(phi1,n+1,"dihedral:phi1"); memory->create(phi2,n+1,"dihedral:phi2"); memory->create(phi3,n+1,"dihedral:phi3"); memory->create(aat_k,n+1,"dihedral:aat_k"); memory->create(aat_theta0_1,n+1,"dihedral:aat_theta0_1"); memory->create(aat_theta0_2,n+1,"dihedral:aat_theta0_2"); memory->create(setflag,n+1,"dihedral:setflag"); memory->create(setflag_d,n+1,"dihedral:setflag_d"); memory->create(setflag_aat,n+1,"dihedral:setflag_aat"); memory->create(tabindex,n+1,"dihedral:tabindex"); //memory->create(phi0,n+1,"dihedral:phi0"); <-equilibrium angles not supported memory->create(setflag,n+1,"dihedral:setflag"); for (int i = 1; i <= n; i++) setflag[i] = setflag_d[i] = setflag_aat[i] = 0; } void DihedralTableCut::settings(int narg, char **arg) { if (narg != 2) error->all(FLERR,"Illegal dihedral_style command"); if (strcmp(arg[0],"linear") == 0) tabstyle = LINEAR; else if (strcmp(arg[0],"spline") == 0) tabstyle = SPLINE; else error->all(FLERR,"Unknown table style in dihedral style table_cut"); tablength = force->inumeric(FLERR,arg[1]); if (tablength < 3) error->all(FLERR,"Illegal number of dihedral table entries"); // delete old tables, since cannot just change settings for (int m = 0; m < ntables; m++) free_table(&tables[m]); memory->sfree(tables); if (allocated) { memory->destroy(setflag); memory->destroy(tabindex); } allocated = 0; ntables = 0; tables = NULL; } /* ---------------------------------------------------------------------- set coeffs for one or more types arg1 = "aat" -> AngleAngleTorsion coeffs arg1 -> Dihedral coeffs ------------------------------------------------------------------------- */ void DihedralTableCut::coeff(int narg, char **arg) { if (narg != 7) error->all(FLERR,"Incorrect args for dihedral coefficients"); if (!allocated) allocate(); int ilo,ihi; force->bounds(FLERR,arg[0],atom->ndihedraltypes,ilo,ihi); int count = 0; double k_one = force->numeric(FLERR,arg[2]); double theta0_1_one = force->numeric(FLERR,arg[3]); double theta0_2_one = force->numeric(FLERR,arg[4]); // convert theta0's from degrees to radians for (int i = ilo; i <= ihi; i++) { aat_k[i] = k_one; aat_theta0_1[i] = theta0_1_one/180.0 * MY_PI; aat_theta0_2[i] = theta0_2_one/180.0 * MY_PI; setflag_aat[i] = 1; count++; } int me; MPI_Comm_rank(world,&me); tables = (Table *) memory->srealloc(tables,(ntables+1)*sizeof(Table), "dihedral:tables"); Table *tb = &tables[ntables]; null_table(tb); if (me == 0) read_table(tb,arg[5],arg[6]); bcast_table(tb); // --- check the angle data for range errors --- // --- and resolve issues with periodicity --- if (tb->ninput < 2) { string err_msg; err_msg = string("Invalid dihedral table length (") + string(arg[5]) + string(")."); error->one(FLERR,err_msg.c_str()); } else if ((tb->ninput == 2) && (tabstyle == SPLINE)) { string err_msg; err_msg = string("Invalid dihedral spline table length. (Try linear)\n (") + string(arg[5]) + string(")."); error->one(FLERR,err_msg.c_str()); } // check for monotonicity for (int i=0; i < tb->ninput-1; i++) { if (tb->phifile[i] >= tb->phifile[i+1]) { stringstream i_str; i_str << i+1; string err_msg = string("Dihedral table values are not increasing (") + string(arg[5]) + string(", ")+i_str.str()+string("th entry)"); if (i==0) err_msg += string("\n(This is probably a mistake with your table format.)\n"); error->all(FLERR,err_msg.c_str()); } } // check the range of angles double philo = tb->phifile[0]; double phihi = tb->phifile[tb->ninput-1]; if (tb->use_degrees) { if ((phihi - philo) >= 360) { string err_msg; err_msg = string("Dihedral table angle range must be < 360 degrees (") +string(arg[5]) + string(")."); error->all(FLERR,err_msg.c_str()); } } else { if ((phihi - philo) >= MY_2PI) { string err_msg; err_msg = string("Dihedral table angle range must be < 2*PI radians (") + string(arg[5]) + string(")."); error->all(FLERR,err_msg.c_str()); } } // convert phi from degrees to radians if (tb->use_degrees) { for (int i=0; i < tb->ninput; i++) { tb->phifile[i] *= MY_PI/180.0; // I assume that if angles are in degrees, then the forces (f=dU/dphi) // are specified with "phi" in degrees as well. tb->ffile[i] *= 180.0/MY_PI; } } // We want all the phi dihedral angles to lie in the range from 0 to 2*PI. // But I don't want to restrict users to input their data in this range. // We also want the angles to be sorted in increasing order. // This messy code fixes these problems with the user's data: { double *phifile_tmp = new double [tb->ninput]; //temporary arrays double *ffile_tmp = new double [tb->ninput]; //used for sorting double *efile_tmp = new double [tb->ninput]; // After re-imaging, does the range of angles cross the 0 or 2*PI boundary? // If so, find the discontinuity: int i_discontinuity = tb->ninput; for (int i=0; i < tb->ninput; i++) { double phi = tb->phifile[i]; // Add a multiple of 2*PI to phi until it lies in the range [0, 2*PI). phi -= MY_2PI * floor(phi/MY_2PI); phifile_tmp[i] = phi; efile_tmp[i] = tb->efile[i]; ffile_tmp[i] = tb->ffile[i]; if ((i>0) && (phifile_tmp[i] < phifile_tmp[i-1])) { //There should only be at most one discontinuity, because we have //insured that the data was sorted before imaging, and because the //range of angle values does not exceed 2*PI. i_discontinuity = i; } } int I = 0; for (int i = i_discontinuity; i < tb->ninput; i++) { tb->phifile[I] = phifile_tmp[i]; tb->efile[I] = efile_tmp[i]; tb->ffile[I] = ffile_tmp[i]; I++; } for (int i = 0; i < i_discontinuity; i++) { tb->phifile[I] = phifile_tmp[i]; tb->efile[I] = efile_tmp[i]; tb->ffile[I] = ffile_tmp[i]; I++; } // clean up temporary storage delete[] phifile_tmp; delete[] ffile_tmp; delete[] efile_tmp; } // spline read-in and compute r,e,f vectors within table spline_table(tb); compute_table(tb); // Optional: allow the user to print out the interpolated spline tables if (me == 0) { if (checkU_fname && (strlen(checkU_fname) != 0)) { ofstream checkU_file; checkU_file.open(checkU_fname, ios::out); for (int i=0; i < tablength; i++) { double phi = i*MY_2PI/tablength; double u = tb->e[i]; if (tb->use_degrees) phi *= 180.0/MY_PI; checkU_file << phi << " " << u << "\n"; } checkU_file.close(); } if (checkF_fname && (strlen(checkF_fname) != 0)) { ofstream checkF_file; checkF_file.open(checkF_fname, ios::out); for (int i=0; i < tablength; i++) { double phi = i*MY_2PI/tablength; double f; if ((tabstyle == SPLINE) && (tb->f_unspecified)) { double dU_dphi = // (If the user did not specify the forces now, AND the user // selected the "spline" option, (as opposed to "linear") // THEN the tb->f array is uninitialized, so there's // no point to print out the contents of the tb->f[] array. // Instead, later on, we will calculate the force using the // -cyc_splintD() routine to calculate the derivative of the // energy spline, using the energy data (tb->e[]). // To be nice and report something, I do the same thing here.) cyc_splintD(tb->phi, tb->e, tb->e2, tablength, MY_2PI,phi); f = -dU_dphi; } else // Otherwise we calculated the tb->f[] array. Report its contents. f = tb->f[i]; if (tb->use_degrees) { phi *= 180.0/MY_PI; // If the user wants degree angle units, we should convert our // internal force tables (in energy/radians) to (energy/degrees) f *= MY_PI/180.0; } checkF_file << phi << " " << f << "\n"; } checkF_file.close(); } // if (checkF_fname && (strlen(checkF_fname) != 0)) } // if (me == 0) // store ptr to table in tabindex count = 0; for (int i = ilo; i <= ihi; i++) { tabindex[i] = ntables; //phi0[i] = tb->phi0; <- equilibrium dihedral angles not supported setflag[i] = 1; count++; } ntables++; if (count == 0) error->all(FLERR,"Incorrect args for dihedral coefficients"); for (int i = ilo; i <= ihi; i++) if (setflag_d[i] == 1 && setflag_aat[i] == 1 ) setflag[i] = 1; } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void DihedralTableCut::write_restart(FILE *fp) { fwrite(&tabstyle,sizeof(int),1,fp); fwrite(&tablength,sizeof(int),1,fp); fwrite(&k1[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&k2[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&k3[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&phi1[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&phi2[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&phi3[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&aat_k[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&aat_theta0_1[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&aat_theta0_2[1],sizeof(double),atom->ndihedraltypes,fp); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void DihedralTableCut::read_restart(FILE *fp) { allocate(); if (comm->me == 0) { fread(&tabstyle,sizeof(int),1,fp); fread(&tablength,sizeof(int),1,fp); fread(&k1[1],sizeof(double),atom->ndihedraltypes,fp); fread(&k2[1],sizeof(double),atom->ndihedraltypes,fp); fread(&k3[1],sizeof(double),atom->ndihedraltypes,fp); fread(&phi1[1],sizeof(double),atom->ndihedraltypes,fp); fread(&phi2[1],sizeof(double),atom->ndihedraltypes,fp); fread(&phi3[1],sizeof(double),atom->ndihedraltypes,fp); fread(&aat_k[1],sizeof(double),atom->ndihedraltypes,fp); fread(&aat_theta0_1[1],sizeof(double),atom->ndihedraltypes,fp); fread(&aat_theta0_2[1],sizeof(double),atom->ndihedraltypes,fp); } MPI_Bcast(&k1[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&k2[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&k3[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&phi1[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&phi2[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&phi3[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&aat_k[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&aat_theta0_1[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&aat_theta0_2[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&tabstyle,1,MPI_INT,0,world); MPI_Bcast(&tablength,1,MPI_INT,0,world); allocate(); for (int i = 1; i <= atom->ndihedraltypes; i++) setflag[i] = 1; } /* ---------------------------------------------------------------------- */ void DihedralTableCut::null_table(Table *tb) { tb->phifile = tb->efile = tb->ffile = NULL; tb->e2file = tb->f2file = NULL; tb->phi = tb->e = tb->de = NULL; tb->f = tb->df = tb->e2 = tb->f2 = NULL; } /* ---------------------------------------------------------------------- */ void DihedralTableCut::free_table(Table *tb) { memory->destroy(tb->phifile); memory->destroy(tb->efile); memory->destroy(tb->ffile); memory->destroy(tb->e2file); memory->destroy(tb->f2file); memory->destroy(tb->phi); memory->destroy(tb->e); memory->destroy(tb->de); memory->destroy(tb->f); memory->destroy(tb->df); memory->destroy(tb->e2); memory->destroy(tb->f2); } /* ---------------------------------------------------------------------- read table file, only called by proc 0 ------------------------------------------------------------------------- */ static const int MAXLINE=2048; void DihedralTableCut::read_table(Table *tb, char *file, char *keyword) { char line[MAXLINE]; // open file FILE *fp = force->open_potential(file); if (fp == NULL) { string err_msg = string("Cannot open file ") + string(file); error->one(FLERR,err_msg.c_str()); } // loop until section found with matching keyword while (1) { if (fgets(line,MAXLINE,fp) == NULL) { string err_msg=string("Did not find keyword \"") +string(keyword)+string("\" in dihedral table file."); error->one(FLERR, err_msg.c_str()); } if (strspn(line," \t\n\r") == strlen(line)) continue; // blank line if (line[0] == '#') continue; // comment char *word = strtok(line," \t\n\r"); if (strcmp(word,keyword) == 0) break; // matching keyword fgets(line,MAXLINE,fp); // no match, skip section param_extract(tb,line); fgets(line,MAXLINE,fp); for (int i = 0; i < tb->ninput; i++) fgets(line,MAXLINE,fp); } // read args on 2nd line of section // allocate table arrays for file values fgets(line,MAXLINE,fp); param_extract(tb,line); memory->create(tb->phifile,tb->ninput,"dihedral:phifile"); memory->create(tb->efile,tb->ninput,"dihedral:efile"); memory->create(tb->ffile,tb->ninput,"dihedral:ffile"); // read a,e,f table values from file int itmp; for (int i = 0; i < tb->ninput; i++) { // Read the next line. Make sure the file is long enough. if (! fgets(line,MAXLINE,fp)) error->one(FLERR, "Dihedral table does not contain enough entries."); // Skip blank lines and delete text following a '#' character char *pe = strchr(line, '#'); if (pe != NULL) *pe = '\0'; //terminate string at '#' character char *pc = line; while ((*pc != '\0') && isspace(*pc)) pc++; if (*pc != '\0') { //If line is not a blank line stringstream line_ss(line); if (tb->f_unspecified) { //sscanf(line,"%d %lg %lg", // &itmp,&tb->phifile[i],&tb->efile[i]); line_ss >> itmp; line_ss >> tb->phifile[i]; line_ss >> tb->efile[i]; } else { //sscanf(line,"%d %lg %lg %lg", // &itmp,&tb->phifile[i],&tb->efile[i],&tb->ffile[i]); line_ss >> itmp; line_ss >> tb->phifile[i]; line_ss >> tb->efile[i]; line_ss >> tb->ffile[i]; } if (! line_ss) { stringstream err_msg; err_msg << "Read error in table "<< keyword<<", near line "<<i+1<<"\n" << " (Check to make sure the number of colums is correct.)"; if ((! tb->f_unspecified) && (i==0)) err_msg << "\n (This sometimes occurs if users forget to specify the \"NOF\" option.)\n"; error->one(FLERR, err_msg.str().c_str()); } } else //if it is a blank line, then skip it. i--; } //for (int i = 0; (i < tb->ninput) && fp; i++) { fclose(fp); } /* ---------------------------------------------------------------------- build spline representation of e,f over entire range of read-in table this function sets these values in e2file,f2file. I also perform a crude check for force & energy consistency. ------------------------------------------------------------------------- */ void DihedralTableCut::spline_table(Table *tb) { memory->create(tb->e2file,tb->ninput,"dihedral:e2file"); memory->create(tb->f2file,tb->ninput,"dihedral:f2file"); if (cyc_spline(tb->phifile, tb->efile, tb->ninput, MY_2PI,tb->e2file,comm->me == 0)) error->one(FLERR,"Error computing dihedral spline tables"); if (! tb->f_unspecified) { if (cyc_spline(tb->phifile, tb->ffile, tb->ninput, MY_2PI, tb->f2file, comm->me == 0)) error->one(FLERR,"Error computing dihedral spline tables"); } // CHECK to help make sure the user calculated forces in a way // which is grossly numerically consistent with the energy table. if (! tb->f_unspecified) { int num_disagreements = 0; for (int i=0; i<tb->ninput; i++) { // Calculate what the force should be at the control points // by using linear interpolation of the derivatives of the energy: double phi_i = tb->phifile[i]; // First deal with periodicity double phi_im1, phi_ip1; int im1 = i-1; if (im1 < 0) { im1 += tb->ninput; phi_im1 = tb->phifile[im1] - MY_2PI; } else phi_im1 = tb->phifile[im1]; int ip1 = i+1; if (ip1 >= tb->ninput) { ip1 -= tb->ninput; phi_ip1 = tb->phifile[ip1] + MY_2PI; } else phi_ip1 = tb->phifile[ip1]; // Now calculate the midpoints above and below phi_i = tb->phifile[i] double phi_lo= 0.5*(phi_im1 + phi_i); //midpoint between phi_im1 and phi_i double phi_hi= 0.5*(phi_i + phi_ip1); //midpoint between phi_i and phi_ip1 // Use a linear approximation to the derivative at these two midpoints double dU_dphi_lo = (tb->efile[i] - tb->efile[im1]) / (phi_i - phi_im1); double dU_dphi_hi = (tb->efile[ip1] - tb->efile[i]) / (phi_ip1 - phi_i); // Now calculate the derivative at position // phi_i (=tb->phifile[i]) using linear interpolation double a = (phi_i - phi_lo) / (phi_hi - phi_lo); double b = (phi_hi - phi_i) / (phi_hi - phi_lo); double dU_dphi = a*dU_dphi_lo + b*dU_dphi_hi; double f = -dU_dphi; // Alternately, we could use spline interpolation instead: // double f = - splintD(tb->phifile, tb->efile, tb->e2file, // tb->ninput, MY_2PI, tb->phifile[i]); // This is the way I originally did it, but I trust // the ugly simple linear way above better. // Recall this entire block of code doess not calculate // anything important. It does not have to be perfect. // We are only checking for stupid user errors here. if ((f != 0.0) && (tb->ffile[i] != 0.0) && ((f/tb->ffile[i] < 0.5) || (f/tb->ffile[i] > 2.0))) { num_disagreements++; } } // for (int i=0; i<tb->ninput; i++) if ((num_disagreements > tb->ninput/2) && (num_disagreements > 2)) { string msg("Dihedral table has inconsistent forces and energies. (Try \"NOF\".)\n"); error->all(FLERR,msg.c_str()); } } // check for consistency if (! tb->f_unspecified) } // DihedralTable::spline_table() /* ---------------------------------------------------------------------- compute a,e,f vectors from splined values ------------------------------------------------------------------------- */ void DihedralTableCut::compute_table(Table *tb) { //delta = table spacing in dihedral angle for tablength (cyclic) bins tb->delta = MY_2PI / tablength; tb->invdelta = 1.0/tb->delta; tb->deltasq6 = tb->delta*tb->delta / 6.0; // N evenly spaced bins in dihedral angle from 0 to 2*PI // phi,e,f = value at lower edge of bin // de,df values = delta values of e,f (cyclic, in this case) // phi,e,f,de,df are arrays containing "tablength" number of entries memory->create(tb->phi,tablength,"dihedral:phi"); memory->create(tb->e,tablength,"dihedral:e"); memory->create(tb->de,tablength,"dihedral:de"); memory->create(tb->f,tablength,"dihedral:f"); memory->create(tb->df,tablength,"dihedral:df"); memory->create(tb->e2,tablength,"dihedral:e2"); memory->create(tb->f2,tablength,"dihedral:f2"); if (tabstyle == SPLINE) { // Use cubic spline interpolation to calculate the entries in the // internal table. (This is true regardless...even if tabstyle!=SPLINE.) for (int i = 0; i < tablength; i++) { double phi = i*tb->delta; tb->phi[i] = phi; tb->e[i]= cyc_splint(tb->phifile,tb->efile,tb->e2file,tb->ninput,MY_2PI,phi); if (! tb->f_unspecified) tb->f[i] = cyc_splint(tb->phifile,tb->ffile,tb->f2file,tb->ninput,MY_2PI,phi); } } // if (tabstyle == SPLINE) else if (tabstyle == LINEAR) { if (! tb->f_unspecified) { for (int i = 0; i < tablength; i++) { double phi = i*tb->delta; tb->phi[i] = phi; tb->e[i]= cyc_lin(tb->phifile,tb->efile,tb->ninput,MY_2PI,phi); tb->f[i]= cyc_lin(tb->phifile,tb->ffile,tb->ninput,MY_2PI,phi); } } else { for (int i = 0; i < tablength; i++) { double phi = i*tb->delta; tb->phi[i] = phi; tb->e[i]= cyc_lin(tb->phifile,tb->efile,tb->ninput,MY_2PI,phi); } // In the linear case, if the user did not specify the forces, then we // must generate the "f" array. Do this using linear interpolation // of the e array (which itself was generated above) for (int i = 0; i < tablength; i++) { int im1 = i-1; if (im1 < 0) im1 += tablength; int ip1 = i+1; if (ip1 >= tablength) ip1 -= tablength; double dedx = (tb->e[ip1] - tb->e[im1]) / (2.0 * tb->delta); // (This is the average of the linear slopes on either side of the node. // Note that the nodes in the internal table are evenly spaced.) tb->f[i] = -dedx; } } // Fill the linear interpolation tables (de, df) for (int i = 0; i < tablength; i++) { int ip1 = i+1; if (ip1 >= tablength) ip1 -= tablength; tb->de[i] = tb->e[ip1] - tb->e[i]; tb->df[i] = tb->f[ip1] - tb->f[i]; } } // else if (tabstyle == LINEAR) cyc_spline(tb->phi, tb->e, tablength, MY_2PI, tb->e2, comm->me == 0); if (! tb->f_unspecified) cyc_spline(tb->phi, tb->f, tablength, MY_2PI, tb->f2, comm->me == 0); } /* ---------------------------------------------------------------------- extract attributes from parameter line in table section format of line: N value NOF DEGREES RADIANS N is required, other params are optional ------------------------------------------------------------------------- */ void DihedralTableCut::param_extract(Table *tb, char *line) { //tb->theta0 = 180.0; <- equilibrium angles not supported tb->ninput = 0; tb->f_unspecified = false; //default tb->use_degrees = true; //default char *word = strtok(line," \t\n\r\f"); while (word) { if (strcmp(word,"N") == 0) { word = strtok(NULL," \t\n\r\f"); tb->ninput = atoi(word); } else if (strcmp(word,"NOF") == 0) { tb->f_unspecified = true; } else if ((strcmp(word,"DEGREES") == 0) || (strcmp(word,"degrees") == 0)) { tb->use_degrees = true; } else if ((strcmp(word,"RADIANS") == 0) || (strcmp(word,"radians") == 0)) { tb->use_degrees = false; } else if (strcmp(word,"CHECKU") == 0) { word = strtok(NULL," \t\n\r\f"); memory->sfree(checkU_fname); memory->create(checkU_fname,strlen(word)+1,"dihedral_table:checkU"); strcpy(checkU_fname, word); } else if (strcmp(word,"CHECKF") == 0) { word = strtok(NULL," \t\n\r\f"); memory->sfree(checkF_fname); memory->create(checkF_fname,strlen(word)+1,"dihedral_table:checkF"); strcpy(checkF_fname, word); } // COMMENTING OUT: equilibrium angles are not supported //else if (strcmp(word,"EQ") == 0) { // word = strtok(NULL," \t\n\r\f"); // tb->theta0 = atof(word); //} else { string err_msg("Invalid keyword in dihedral angle table parameters"); err_msg += string(" (") + string(word) + string(")"); error->one(FLERR,err_msg.c_str()); } word = strtok(NULL," \t\n\r\f"); } if (tb->ninput == 0) error->one(FLERR,"Dihedral table parameters did not set N"); } // DihedralTable::param_extract() /* ---------------------------------------------------------------------- broadcast read-in table info from proc 0 to other procs this function communicates these values in Table: ninput,phifile,efile,ffile, f_unspecified,use_degrees ------------------------------------------------------------------------- */ void DihedralTableCut::bcast_table(Table *tb) { MPI_Bcast(&tb->ninput,1,MPI_INT,0,world); int me; MPI_Comm_rank(world,&me); if (me > 0) { memory->create(tb->phifile,tb->ninput,"dihedral:phifile"); memory->create(tb->efile,tb->ninput,"dihedral:efile"); memory->create(tb->ffile,tb->ninput,"dihedral:ffile"); } MPI_Bcast(tb->phifile,tb->ninput,MPI_DOUBLE,0,world); MPI_Bcast(tb->efile,tb->ninput,MPI_DOUBLE,0,world); MPI_Bcast(tb->ffile,tb->ninput,MPI_DOUBLE,0,world); MPI_Bcast(&tb->f_unspecified,1,MPI_INT,0,world); MPI_Bcast(&tb->use_degrees,1,MPI_INT,0,world); // COMMENTING OUT: equilibrium angles are not supported //MPI_Bcast(&tb->theta0,1,MPI_DOUBLE,0,world); } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void DihedralTableCut::write_data(FILE *fp) { for (int i = 1; i <= atom->ndihedraltypes; i++) fprintf(fp,"%d %g %g %g %g %g %g\n",i, k1[i],phi1[i]*180.0/MY_PI, k2[i],phi2[i]*180.0/MY_PI, k3[i],phi3[i]*180.0/MY_PI); fprintf(fp,"\nAngleAngleTorsion Coeffs\n\n"); for (int i = 1; i <= atom->ndihedraltypes; i++) fprintf(fp,"%d %g %g %g\n",i,aat_k[i], aat_theta0_1[i]*180.0/MY_PI,aat_theta0_2[i]*180.0/MY_PI); }