/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include <cstring> #include <cmath> #include "compute_aggregate_atom.h" #include "atom.h" #include "atom_vec.h" #include "update.h" #include "modify.h" #include "neighbor.h" #include "neigh_list.h" #include "neigh_request.h" #include "pair.h" #include "force.h" #include "comm.h" #include "memory.h" #include "error.h" #include "group.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeAggregateAtom::ComputeAggregateAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), aggregateID(NULL) { if (narg != 4) error->all(FLERR,"Illegal compute aggregate/atom command"); double cutoff = force->numeric(FLERR,arg[3]); cutsq = cutoff*cutoff; if (atom->avec->bonds_allow == 0) error->all(FLERR,"Compute aggregate/atom used when bonds are not allowed"); peratom_flag = 1; size_peratom_cols = 0; comm_forward = 1; comm_reverse = 1; nmax = 0; } /* ---------------------------------------------------------------------- */ ComputeAggregateAtom::~ComputeAggregateAtom() { memory->destroy(aggregateID); } /* ---------------------------------------------------------------------- */ void ComputeAggregateAtom::init() { if (atom->tag_enable == 0) error->all(FLERR,"Cannot use compute aggregate/atom unless atoms have IDs"); if (force->bond == NULL) error->all(FLERR,"Compute aggregate/atom requires a bond style to be defined"); if (force->pair == NULL) error->all(FLERR,"Compute cluster/atom requires a pair style to be defined"); if (sqrt(cutsq) > force->pair->cutforce) error->all(FLERR, "Compute cluster/atom cutoff is longer than pairwise cutoff"); // need an occasional full neighbor list // full required so that pair of atoms on 2 procs both set their clusterID int irequest = neighbor->request(this,instance_me); neighbor->requests[irequest]->pair = 0; neighbor->requests[irequest]->compute = 1; neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; neighbor->requests[irequest]->occasional = 1; int count = 0; for (int i = 0; i < modify->ncompute; i++) if (strcmp(modify->compute[i]->style,"aggregate/atom") == 0) count++; if (count > 1 && comm->me == 0) error->warning(FLERR,"More than one compute aggregate/atom"); } /* ---------------------------------------------------------------------- */ void ComputeAggregateAtom::init_list(int id, NeighList *ptr) { list = ptr; } /* ---------------------------------------------------------------------- */ void ComputeAggregateAtom::compute_peratom() { int i,j,k; invoked_peratom = update->ntimestep; // grow aggregateID array if necessary if (atom->nmax > nmax) { memory->destroy(aggregateID); nmax = atom->nmax; memory->create(aggregateID,nmax,"aggregate/atom:aggregateID"); vector_atom = aggregateID; } // invoke full neighbor list (will copy or build if necessary) // on the first step of a run, set preflag to one in neighbor->build_one(...) if (update->firststep == update->ntimestep) neighbor->build_one(list,1); else neighbor->build_one(list); // if group is dynamic, insure ghost atom masks are current if (group->dynamic[igroup]) { commflag = 0; comm->forward_comm_compute(this); } // each atom starts in its own aggregate, int nlocal = atom->nlocal; int inum = list->inum; tagint *tag = atom->tag; int *mask = atom->mask; int *num_bond = atom->num_bond; int **bond_type = atom->bond_type; tagint **bond_atom = atom->bond_atom; int *ilist = list->ilist; int *numneigh = list->numneigh; int **firstneigh = list->firstneigh; double **x = atom->x; for (i = 0; i < nlocal + atom->nghost; i++) if (mask[i] & groupbit) aggregateID[i] = tag[i]; else aggregateID[i] = 0; // loop until no more changes on any proc: // acquire aggregateIDs of ghost atoms // loop over my atoms, and check atoms bound to it // if both atoms are in aggregate, assign lowest aggregateID to both // then loop over my atoms, checking distance to neighbors // if both atoms are in cluster, assign lowest clusterID to both // iterate until no changes in my atoms // then check if any proc made changes commflag = 1; int change,done,anychange; while (1) { comm->forward_comm_compute(this); // reverse communication when bonds are not stored on every processor if (force->newton_bond) comm->reverse_comm_compute(this); change = 0; while (1) { done = 1; for (i = 0; i < nlocal; i++) { if (!(mask[i] & groupbit)) continue; for (j = 0; j < num_bond[i]; j++) { if (bond_type[i][j] == 0) continue; k = atom->map(bond_atom[i][j]); if (k < 0) continue; if (!(mask[k] & groupbit)) continue; if (aggregateID[i] == aggregateID[k]) continue; aggregateID[i] = aggregateID[k] = MIN(aggregateID[i],aggregateID[k]); done = 0; } } for (int ii = 0; ii < inum; ii++) { i = ilist[ii]; if (!(mask[i] & groupbit)) continue; const double xtmp = x[i][0]; const double ytmp = x[i][1]; const double ztmp = x[i][2]; int *jlist = firstneigh[i]; const int jnum = numneigh[i]; for (int jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; if (!(mask[j] & groupbit)) continue; if (aggregateID[i] == aggregateID[j]) continue; const double delx = xtmp - x[j][0]; const double dely = ytmp - x[j][1]; const double delz = ztmp - x[j][2]; const double rsq = delx*delx + dely*dely + delz*delz; if (rsq < cutsq) { aggregateID[i] = aggregateID[j] = MIN(aggregateID[i],aggregateID[j]); done = 0; } } } if (!done) change = 1; if (done) break; } // stop if all procs are done MPI_Allreduce(&change,&anychange,1,MPI_INT,MPI_MAX,world); if (!anychange) break; } } /* ---------------------------------------------------------------------- */ int ComputeAggregateAtom::pack_forward_comm(int n, int *list, double *buf, int pbc_flag, int *pbc) { int i,j,m; m = 0; if (commflag) { for (i = 0; i < n; i++) { j = list[i]; buf[m++] = aggregateID[j]; } } else { int *mask = atom->mask; for (i = 0; i < n; i++) { j = list[i]; buf[m++] = ubuf(mask[j]).d; } } return m; } /* ---------------------------------------------------------------------- */ void ComputeAggregateAtom::unpack_forward_comm(int n, int first, double *buf) { int i,m,last; m = 0; last = first + n; if (commflag) for (i = first; i < last; i++) { double x = buf[m++]; // only overwrite ghost IDs with values lower than current ones aggregateID[i] = MIN(x,aggregateID[i]); } else { int *mask = atom->mask; for (i = first; i < last; i++) mask[i] = (int) ubuf(buf[m++]).i; } } /* ---------------------------------------------------------------------- */ int ComputeAggregateAtom::pack_reverse_comm(int n, int first, double *buf) { int i,m,last; m = 0; last = first + n; for (i = first; i < last; i++) { buf[m++] = aggregateID[i]; } return m; } /* ---------------------------------------------------------------------- */ void ComputeAggregateAtom::unpack_reverse_comm(int n, int *list, double *buf) { int i,j,m; m = 0; for (i = 0; i < n; i++) { j = list[i]; double x = buf[m++]; // only overwrite local IDs with values lower than current ones aggregateID[j] = MIN(x,aggregateID[j]); } } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ double ComputeAggregateAtom::memory_usage() { double bytes = nmax * sizeof(double); return bytes; }