/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Fast-forward Langevin thermostat, see M. Hijazi, D. M. Wilkins, M. Ceriotti, J. Chem. Phys. 148, 184109 (2018) ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Lionel Constantin (EPFL), David M. Wilkins (EPFL), Michele Ceriotti (EPFL) ------------------------------------------------------------------------- */ #include <mpi.h> #include <cmath> #include <cstring> #include <cstdlib> #include "fix_ffl.h" #include "math_extra.h" #include "atom.h" #include "atom_vec_ellipsoid.h" #include "force.h" #include "update.h" #include "modify.h" #include "compute.h" #include "domain.h" #include "region.h" #include "respa.h" #include "comm.h" #include "input.h" #include "variable.h" #include "random_mars.h" #include "memory.h" #include "error.h" #include "group.h" using namespace LAMMPS_NS; using namespace FixConst; enum {NOBIAS,BIAS}; enum {CONSTANT,EQUAL,ATOM}; enum {NO_FLIP, FLIP_RESCALE, FLIP_HARD, FLIP_SOFT}; //#define FFL_DEBUG 1 #define MAXLINE 1024 /* syntax for fix_ffl: * fix nfix id-group ffl tau Tstart Tstop seed [flip_type] * * */ /* ---------------------------------------------------------------------- */ FixFFL::FixFFL(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg) { if (narg < 7) error->all(FLERR,"Illegal fix ffl command. Expecting: fix <fix-ID>" " <group-ID> ffl <tau> <Tstart> <Tstop> <seed> "); restart_peratom = 1; time_integrate = 1; scalar_flag = 1; //gamma = 1/ time constant(tau) if (force->numeric(FLERR,arg[3]) <= 0) error->all(FLERR,"Illegal fix ffl tau value, should be greater than 0"); gamma = 1.0/force->numeric(FLERR,arg[3]); ffl_every=1; ffl_step=0; // start temperature (t ramp) t_start = force->numeric(FLERR,arg[4]); // final temperature (t ramp) t_stop = force->numeric(FLERR,arg[5]); // PRNG seed int seed = force->inumeric(FLERR,arg[6]); // Flip type used, uses rescale if no flip is given if (narg == 8) { if (strcmp(arg[7],"no_flip") == 0) { flip_int = NO_FLIP; } else if (strcmp(arg[7],"rescale") == 0) { flip_int = FLIP_RESCALE; } else if (strcmp(arg[7],"hard") == 0) { flip_int = FLIP_HARD; } else if (strcmp(arg[7],"soft") == 0) { flip_int = FLIP_SOFT; } else { error->all(FLERR,"Illegal fix ffl flip type, only accepts : rescale - hard - soft - no_flip"); } } else { flip_int = FLIP_RESCALE; } t_target=t_start; const double kT = t_target * force->boltz / force->mvv2e; // initialize Marsaglia RNG with processor-unique seed // NB: this means runs will not be the same with different numbers of processors if (seed <= 0) error->all(FLERR,"Illegal fix ffl command"); random = new RanMars(lmp,seed + comm->me); // allocate per-type arrays for mass-scaling sqrt_m=NULL; memory->grow(sqrt_m, atom->ntypes+1,"ffl:sqrt_m"); // allocates space for temporaries ffl_tmp1=ffl_tmp2=NULL; grow_arrays(atom->nmax); // add callbacks to enable restarts atom->add_callback(0); atom->add_callback(1); energy = 0.0; } /* --- Frees up memory used by temporaries and buffers ------------------ */ FixFFL::~FixFFL() { delete random; memory->destroy(sqrt_m); memory->destroy(ffl_tmp1); memory->destroy(ffl_tmp2); } /* ---------------------------------------------------------------------- */ int FixFFL::setmask() { int mask = 0; mask |= INITIAL_INTEGRATE; mask |= FINAL_INTEGRATE; mask |= INITIAL_INTEGRATE_RESPA; mask |= FINAL_INTEGRATE_RESPA; mask |= THERMO_ENERGY; return mask; } /* ------- Initializes one-time quantities for FFL ---------------------- */ void FixFFL::init() { doffl = 1; dtv = update->dt; dtf = 0.5 * update->dt * force->ftm2v; // set force prefactors if (!atom->rmass) { for (int i = 1; i <= atom->ntypes; i++) { sqrt_m[i] = sqrt(atom->mass[i]); } } if (strstr(update->integrate_style,"respa")) { nlevels_respa = ((Respa *) update->integrate)->nlevels; step_respa = ((Respa *) update->integrate)->step; } init_ffl(); } /* ------- Initializes constants for FFL (change with T and dt) ------- */ void FixFFL::init_ffl() { const double kT = t_target * force->boltz / force->mvv2e; // compute constants for FFL c1 = exp ( - gamma * 0.5 * dtv ); c2 = sqrt( (1.0 - c1*c1)* kT ); //without the mass term } /* ---------------------------------------------------------------------- */ void FixFFL::setup(int vflag) { if (strstr(update->integrate_style,"verlet")) post_force(vflag); else { ((Respa *) update->integrate)->copy_flevel_f(nlevels_respa-1); post_force_respa(vflag,nlevels_respa-1,0); ((Respa *) update->integrate)->copy_f_flevel(nlevels_respa-1); } } void FixFFL::ffl_integrate() { double **v = atom->v; double *rmass = atom->rmass, smi, ismi; double factor; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; // loads momentum data (mass-scaled) into the temporary vectors for the propagation int nk=0; double deltae=0.0; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { if (rmass) smi = sqrt(rmass[i]); else smi = sqrt_m[type[i]]; for (int k = 0; k<3; k++) { // first loads velocities and accumulates conserved quantity ffl_tmp2[nk] = v[i][k] * smi; deltae += ffl_tmp2[nk] * ffl_tmp2[nk]; nk++; } } } //fills up a vector of random numbers for (int i = 0; i < nk; i++) ffl_tmp1[i] = random->gaussian(); // unloads momentum data (mass-scaled) from the temporary vectors nk=0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { if (rmass) ismi = 1.0 / sqrt(rmass[i]); else ismi = 1.0/ sqrt_m[type[i]]; for (int k = 0; k<3; k++) { // fetches new velocities and completes computation of the conserved quantity change v[i][k]= c1*v[i][k] + c2*ffl_tmp1[nk]*ismi; deltae-= v[i][k]*v[i][k] /ismi /ismi; //flips the sign of the momentum (HARD FLIP) if ( flip_int == FLIP_HARD) { if (v[i][k]*ffl_tmp2[nk] < 0.0) v[i][k] = -v[i][k]; } nk++; } } //rescale operation (RESCALE FLIP) if (flip_int == FLIP_RESCALE) { nk=0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { factor = sqrt ((v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) / (ffl_tmp2[nk]*ffl_tmp2[nk] + ffl_tmp2[nk+1]*ffl_tmp2[nk+1] + ffl_tmp2[nk+2]*ffl_tmp2[nk+2])); for (int k = 0; k<3; k++) { v[i][k]= factor * ffl_tmp2[nk]; nk++; } } } //soft flip operation (SOFT FLIP) if (flip_int == FLIP_SOFT) { nk=0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { factor = v[i][0]*ffl_tmp2[nk] + v[i][1]*ffl_tmp2[nk+1] + v[i][2]*ffl_tmp2[nk+2]; if (factor < 0) { factor = factor / (ffl_tmp2[nk]*ffl_tmp2[nk] + ffl_tmp2[nk+1]*ffl_tmp2[nk+1] + ffl_tmp2[nk+2]*ffl_tmp2[nk+2]); for (int k = 0; k<3; k++) { v[i][k] -= 2.0 * factor * ffl_tmp2[nk]; nk++; } } else { nk += 3; } } } energy += deltae*0.5*force->mvv2e; } void FixFFL::initial_integrate(int vflag) { double dtfm; // update v and x of atoms in group double **x = atom->x; double **v = atom->v; double **f = atom->f; double *rmass = atom->rmass; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; ffl_step--; if (doffl && ffl_step<1) ffl_integrate(); if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { dtfm = dtf / rmass[i]; v[i][0] += dtfm * f[i][0]; v[i][1] += dtfm * f[i][1]; v[i][2] += dtfm * f[i][2]; x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] += dtfm * f[i][0]; v[i][1] += dtfm * f[i][1]; v[i][2] += dtfm * f[i][2]; x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } } void FixFFL::final_integrate() { double dtfm; // update v of atoms in group double **v = atom->v; double **f = atom->f; double *rmass = atom->rmass; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { dtfm = dtf / rmass[i]; v[i][0] += dtfm * f[i][0]; v[i][1] += dtfm * f[i][1]; v[i][2] += dtfm * f[i][2]; } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] += dtfm * f[i][0]; v[i][1] += dtfm * f[i][1]; v[i][2] += dtfm * f[i][2]; } } if (doffl && ffl_step<1) { ffl_integrate(); ffl_step = ffl_every; } // Change the temperature for the next step double delta = update->ntimestep - update->beginstep; delta /= update->endstep - update->beginstep; t_target = t_start + delta * (t_stop - t_start); if (t_stop != t_start) { // only updates if it is really necessary init_ffl(); } } /* ---------------------------------------------------------------------- */ void FixFFL::initial_integrate_respa(int vflag, int ilevel, int iloop) { dtv = step_respa[ilevel]; dtf = 0.5 * step_respa[ilevel] * force->ftm2v; // innermost level - NVE update of v and x // all other levels - NVE update of v if (ilevel==nlevels_respa-1) ffl_integrate(); doffl=0; if (ilevel == 0) initial_integrate(vflag); else { final_integrate(); } } void FixFFL::final_integrate_respa(int ilevel, int iloop) { dtv = step_respa[ilevel]; dtf = 0.5 * step_respa[ilevel] * force->ftm2v; doffl=0; final_integrate(); if (ilevel==nlevels_respa-1) ffl_integrate(); } double FixFFL::compute_scalar() { double energy_me = energy; double energy_all; MPI_Allreduce(&energy_me,&energy_all,1,MPI_DOUBLE,MPI_SUM,world); return energy_all; } /* ---------------------------------------------------------------------- extract thermostat properties ------------------------------------------------------------------------- */ void *FixFFL::extract(const char *str, int &dim) { dim = 0; if (strcmp(str,"t_target") == 0) { return &t_target; } return NULL; } /* ---------------------------------------------------------------------- Called when a change to the target temperature is requested mid-run ------------------------------------------------------------------------- */ void FixFFL::reset_target(double t_new) { t_target = t_start = t_stop = t_new; } /* ---------------------------------------------------------------------- Called when a change to the timestep is requested mid-run ------------------------------------------------------------------------- */ void FixFFL::reset_dt() { // set the time integration constants dtv = update->dt; dtf = 0.5 * update->dt * (force->ftm2v); init_ffl(); } /* ---------------------------------------------------------------------- memory usage of local atom-based arrays ------------------------------------------------------------------------- */ double FixFFL::memory_usage() { double bytes = atom->nmax*(3*2)*sizeof(double); return bytes; } /* ---------------------------------------------------------------------- allocate local atom-based arrays ------------------------------------------------------------------------- */ void FixFFL::grow_arrays(int nmax) { memory->grow(ffl_tmp1, nmax*3,"ffl:tmp1"); memory->grow(ffl_tmp2, nmax*3,"ffl:tmp2"); //zeroes out temporary buffers for (int i=0; i< nmax*3; ++i) ffl_tmp1[i] = 0.0; for (int i=0; i< nmax*3; ++i) ffl_tmp2[i] = 0.0; }