/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "mpi.h" #include "stdlib.h" #include "string.h" #include "compute_temp_ramp.h" #include "atom.h" #include "update.h" #include "force.h" #include "group.h" #include "modify.h" #include "fix.h" #include "domain.h" #include "lattice.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeTempRamp::ComputeTempRamp(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg) { if (narg < 9) error->all(FLERR,"Illegal compute temp command"); scalar_flag = vector_flag = 1; size_vector = 6; extscalar = 0; extvector = 1; tempflag = 1; tempbias = 1; // parse optional args scaleflag = 1; int iarg = 9; while (iarg < narg) { if (strcmp(arg[iarg],"units") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute temp/ramp command"); if (strcmp(arg[iarg+1],"box") == 0) scaleflag = 0; else if (strcmp(arg[iarg+1],"lattice") == 0) scaleflag = 1; else error->all(FLERR,"Illegal compute temp/ramp command"); iarg += 2; } else error->all(FLERR,"Illegal compute temp/ramp command"); } // setup scaling if (scaleflag && domain->lattice == NULL) error->all(FLERR,"Use of compute temp/ramp with undefined lattice"); if (scaleflag) { xscale = domain->lattice->xlattice; yscale = domain->lattice->ylattice; zscale = domain->lattice->zlattice; } else xscale = yscale = zscale = 1.0; // read standard args and apply scaling if (strcmp(arg[3],"vx") == 0) v_dim = 0; else if (strcmp(arg[3],"vy") == 0) v_dim = 1; else if (strcmp(arg[3],"vz") == 0) v_dim = 2; else error->all(FLERR,"Illegal compute temp/ramp command"); if (v_dim == 0) { v_lo = xscale*atof(arg[4]); v_hi = xscale*atof(arg[5]); } else if (v_dim == 1) { v_lo = yscale*atof(arg[4]); v_hi = yscale*atof(arg[5]); } else if (v_dim == 2) { v_lo = zscale*atof(arg[4]); v_hi = zscale*atof(arg[5]); } if (strcmp(arg[6],"x") == 0) coord_dim = 0; else if (strcmp(arg[6],"y") == 0) coord_dim = 1; else if (strcmp(arg[6],"z") == 0) coord_dim = 2; else error->all(FLERR,"Illegal compute temp/ramp command"); if (coord_dim == 0) { coord_lo = xscale*atof(arg[7]); coord_hi = xscale*atof(arg[8]); } else if (coord_dim == 1) { coord_lo = yscale*atof(arg[7]); coord_hi = yscale*atof(arg[8]); } else if (coord_dim == 2) { coord_lo = zscale*atof(arg[7]); coord_hi = zscale*atof(arg[8]); } maxbias = 0; vbiasall = NULL; vector = new double[6]; } /* ---------------------------------------------------------------------- */ ComputeTempRamp::~ComputeTempRamp() { memory->destroy(vbiasall); delete [] vector; } /* ---------------------------------------------------------------------- */ void ComputeTempRamp::setup() { fix_dof = 0; for (int i = 0; i < modify->nfix; i++) fix_dof += modify->fix[i]->dof(igroup); dof_compute(); } /* ---------------------------------------------------------------------- */ void ComputeTempRamp::dof_compute() { double natoms = group->count(igroup); int nper = domain->dimension; dof = nper * natoms; dof -= extra_dof + fix_dof; if (dof > 0) tfactor = force->mvv2e / (dof * force->boltz); else tfactor = 0.0; } /* ---------------------------------------------------------------------- */ double ComputeTempRamp::compute_scalar() { double fraction,vramp,vthermal[3]; invoked_scalar = update->ntimestep; double **x = atom->x; double **v = atom->v; double *mass = atom->mass; double *rmass = atom->rmass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; double t = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { fraction = (x[i][coord_dim] - coord_lo) / (coord_hi - coord_lo); fraction = MAX(fraction,0.0); fraction = MIN(fraction,1.0); vramp = v_lo + fraction*(v_hi - v_lo); vthermal[0] = v[i][0]; vthermal[1] = v[i][1]; vthermal[2] = v[i][2]; vthermal[v_dim] -= vramp; if (rmass) t += (vthermal[0]*vthermal[0] + vthermal[1]*vthermal[1] + vthermal[2]*vthermal[2]) * rmass[i]; else t += (vthermal[0]*vthermal[0] + vthermal[1]*vthermal[1] + vthermal[2]*vthermal[2]) * mass[type[i]]; } MPI_Allreduce(&t,&scalar,1,MPI_DOUBLE,MPI_SUM,world); if (dynamic) dof_compute(); scalar *= tfactor; return scalar; } /* ---------------------------------------------------------------------- */ void ComputeTempRamp::compute_vector() { int i; double fraction,vramp,vthermal[3]; invoked_vector = update->ntimestep; double **x = atom->x; double **v = atom->v; double *mass = atom->mass; double *rmass = atom->rmass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; double massone,t[6]; for (i = 0; i < 6; i++) t[i] = 0.0; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { fraction = (x[i][coord_dim] - coord_lo) / (coord_hi - coord_lo); fraction = MAX(fraction,0.0); fraction = MIN(fraction,1.0); vramp = v_lo + fraction*(v_hi - v_lo); vthermal[0] = v[i][0]; vthermal[1] = v[i][1]; vthermal[2] = v[i][2]; vthermal[v_dim] -= vramp; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; t[0] += massone * vthermal[0]*vthermal[0]; t[1] += massone * vthermal[1]*vthermal[1]; t[2] += massone * vthermal[2]*vthermal[2]; t[3] += massone * vthermal[0]*vthermal[1]; t[4] += massone * vthermal[0]*vthermal[2]; t[5] += massone * vthermal[1]*vthermal[2]; } MPI_Allreduce(t,vector,6,MPI_DOUBLE,MPI_SUM,world); for (i = 0; i < 6; i++) vector[i] *= force->mvv2e; } /* ---------------------------------------------------------------------- remove velocity bias from atom I to leave thermal velocity ------------------------------------------------------------------------- */ void ComputeTempRamp::remove_bias(int i, double *v) { double fraction = (atom->x[i][coord_dim] - coord_lo) / (coord_hi - coord_lo); fraction = MAX(fraction,0.0); fraction = MIN(fraction,1.0); vbias[v_dim] = v_lo + fraction*(v_hi - v_lo); v[v_dim] -= vbias[v_dim]; } /* ---------------------------------------------------------------------- remove velocity bias from all atoms to leave thermal velocity ------------------------------------------------------------------------- */ void ComputeTempRamp::remove_bias_all() { double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; if (nlocal > maxbias) { memory->destroy(vbiasall); maxbias = atom->nmax; memory->create(vbiasall,maxbias,3,"temp/ramp:vbiasall"); } double fraction; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { fraction = (atom->x[i][coord_dim] - coord_lo) / (coord_hi - coord_lo); fraction = MAX(fraction,0.0); fraction = MIN(fraction,1.0); vbiasall[i][v_dim] = v_lo + fraction*(v_hi - v_lo); v[i][v_dim] -= vbiasall[i][v_dim]; } } /* ---------------------------------------------------------------------- add back in velocity bias to atom I removed by remove_bias() assume remove_bias() was previously called ------------------------------------------------------------------------- */ void ComputeTempRamp::restore_bias(int i, double *v) { v[v_dim] += vbias[v_dim]; } /* ---------------------------------------------------------------------- add back in velocity bias to all atoms removed by remove_bias_all() assume remove_bias_all() was previously called ------------------------------------------------------------------------- */ void ComputeTempRamp::restore_bias_all() { double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) v[i][v_dim] += vbiasall[i][v_dim]; } /* ---------------------------------------------------------------------- */ double ComputeTempRamp::memory_usage() { double bytes = 3*maxbias * sizeof(double); return bytes; }