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Alexandra Birch Translation and LLMs 2

Do we still need MT?

• MT Central to NLP: 

big data, probabilistic modelling, 

encoders-decoders, attention, subwords

• Convergence of NLP on a unified deep 

learning framework - still train MT models

• And now just ask GPT: Translate “X” to Y
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What did we mean by NMT? 

• Transformer Encoder-Decoder

• Focus on parallel data 

• Bilingual or Multilingual

• Large (but not that large?) 

• MBART 600M

• NLLB MOE 54.5B parameters and FLOPs similar to 
that of a 3.3B dense model 

• JDExplore won many WMT22 4.7B

Neural MT
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Neural MT
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Figure 35: Distribution of Amount of Training Sentence Pairs across 1220
language pairs in our dataset. We observe that the majority of pairs have fewer than
1M sentences and are low-resource.

8.2 Preparing the Model

In the previous section, we discuss how we improve data quantity and quality through mining,
backtranslation, and filtering, leading to significant gains in model performance on low-
resource languages. In this section, we discuss how we scale and adapt our model architecture
and training procedure to build multilingual machine translation models for more than
200 languages and thousands of language directions. Training large models in a massively
multilingual setting is a challenging problem due to the extreme data imbalance between
language pairs as shown in Figure 35 and varying levels of translation difficulty. Learning
objectives in the multilingual setting have complex and unknown dynamics and often compete
with each other due to gradient interference (Wang et al., 2020c). Low-resource language
pairs quickly overfit while high-resource language pairs usually benefit from longer training.
Overall, these conflicting training dynamics make it a difficult optimization problem.

We addressed some of these challenges in Section 6.2 by showing how Sparsely Gated
Mixture of Expert models with different regularization strategies and curriculum learning help
improve the performance of massively multilingual machine translation models, especially
for low-resource languages. In Section 6.3, we demonstrated how monolingual data can be
leveraged to improve multilingual machine translation via self-supervision in the form of an
additional denoising autoencoder task during training. In Section 6.4, we saw another way
of leveraging monolingual data through large-scale backtranslation.

We now apply these strategies on the full training dataset as described in the previous
section. First, we analyze the benefits of self-supervised learning (SSL) with the denoising
autoencoder (DAE) task when training with and without backtranslated data. This helps
us understand whether SSL helps further on top of mining and backtranslation, since all the
approaches leverage the exact same monolingual data. Next, we apply the most promising
regularization and curriculum learning strategies from Section 6.2 and train Sparsely Gated
Mixture of Expert (MoE) models on the full dataset. We analyze the impact of MoE layer
frequency in the model. With the best MoE layer frequency and regularization strategy,
we then analyze the impact of introducing language pairs with a curriculum, based on the

95

202 language, parallel/mined/BT 1220 language 
pairs, 18B sentence pairs

What did we mean by NMT? 

No Language Left Behind: Scaling Human-Centered Machine Translation 
Costa-jussà et al. 2022
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• Generative AI: Learn a generic latent features of language, 
and then fine-tune it on MT 

Where did __ from ? </s> Who __ I __ </s> <En> <En> Who am I ? </s> Where did I come from ? </s> 

Who am I ? </s> Where did I come from ? </s> <En> 

Who am I ? </s> <En> 

Transformer Encoder Transformer Decoder

ᐺ�΅�抑�Ҙ </s> <Ja>

<Ja> ᐺ�΅�抑�Ҙ </s> 

Transformer Encoder Transformer Decoder

 BB�ก෭�̶ </s> ͳ΢�BB��V!�<Ja> <Ja> ͳ΢�ͮΙ�͘ ̵��V!�΀͵�ก෭�̶ </s> 

ͳ΢�ͮΙ�͘ ̵��V!�΀͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

Multilingual Denoising Pre-Training  (mBART) Fine-tuning on Machine Translation

ͳ΢�ͮΙ�͘ ̵��V!�΀͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

:HOO�WKHQ�����V! See you tomorrow .</s> <En>

<En> :HOO�WKHQ�����V! See you tomorrow .</s> 

Doc-MT

Sent-MT

Figure 1: Framework for our Multilingual Denoising Pre-training (left) and fine-tuning on downstream MT tasks
(right), where we use (1) sentence permutation (2) word-span masking as the injected noise. A special language id
token is added at both the encoder and decoder. One multilingual pre-trained model is used for all tasks.

Noise function Following Lewis et al. (2019),
we use two types of noise in g. We first remove
spans of text and replace them with a mask to-
ken. We mask 35% of the words in each instance
by random sampling a span length according to a
Poisson distribution (� = 3.5). We also permute
the order of sentences within each instance. The
decoder input is the original text with one posi-
tion offset. A language id symbol <LID> is used
as the initial token to predict the sentence. It is also
possible to use other noise types, such as those in
Lample et al. (2018c), but we leave the exploration
of the optimal noising strategy to future work.

Instance format For each instance of a batch,
we sample a language id symbol <LID>, and
we pack as many consecutive sentences as pos-
sible sampled from the corresponding corpus of
<LID>, until either it hits the document boundary
or reaches the 512 max token length. Sentences
in the instance are separated by the end of sen-
tence (</S>) token. Then, we append the selected
<LID> token to represent the end of this instance.
Pre-training at “multi-sentence” level enables us to
work on both sentence and document translation.

Optimization Our full model (including 25 lan-
guages) is trained on 256 Nvidia V100 GPUs
(32GB) for 500K steps. The total batch size
is around 128K tokens per GPU, matching
BART (Lewis et al., 2019) configuration. We use
the Adam optimizer (✏ = 1e�6, �2 = 0.98) and
linear learning rate decay scheduling. The total
training time was approximately 2.5 weeks. We
started the training with dropout 0.1 and reduced it
to 0.05 at 250K steps and 0 at 400K steps. All ex-
periments are done with Fairseq (Ott et al., 2019).

2.3 Pre-trained Models
To better measure the effects of different levels
of multilinguality during pre-training, we built a
range of models as follows:

• mBART25 We pre-train a model on all 25 lan-
guages, using the setting described in §2.2.

• mBART06 To explore the effect of pre-training
on related languages, we pretrain a model on a
subset of six European languages: Ro, It, Cs, Fr,
Es and En. For a fair comparison, we use ⇠ 1/4
of the mBART25 batch size, which allows our
model to have the same number of updates per
language during pre-training.

• mBART02 We pre-train bilingual models, us-
ing English and one other language for four
language pairs: En-De, En-Ro, En-It. We use a
batch size of ⇠ 1/12 of that in the mBART25.

• BART-En/Ro To help establish baseline per-
formance levels, we also train monolingual
BART models on the same En and Ro corpus
only.

• Random As additional baselines, we will also
include a comparison with a model randomly
initialized without pre-training for each trans-
lation task. Since the sizes of different down-
stream datasets vary, we always grid-search the
hyper-parameters (architecture, dropout, etc.) to
find the best non-pretrained configuration.

All models use the same vocabulary (§2.1). Not
all tokens will frequently occur in all pre-training
corpora, but later experiments show that this large
vocabulary can improve generalization in multilin-
gual settings even for unseen languages.

Pretrain-FineTune Paradigm

Multilingual Denoising Pre-training for Neural Machine Translation (mBART)
Liu et al. 2020

600M param
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• When models are large enough - don’t need to fine-tune! 

• Just Pretrain and then Prompt! 

• Don’t need an Encoder - Decoder only architecture

• Mostly trained to predict next word

• Models are very large: > 7B parameters, up to 200B

• Data and compute very large - no longer in reach apart 
from a handful of groups

Pretrain-Prompt Paradigm
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How multilingual are LLMs?

From: https://www.ruder.io/state-of-multilingual-ai/ 
adapted from Noah Constant
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Pretrain-Prompt Paradigm

Setting En!Fr Fr!En En!De De!En En!Ro Ro!En

SOTA (Supervised) 45.6a 35.0 b 41.2c 40.2d 38.5e 39.9e

XLM [LC19] 33.4 33.3 26.4 34.3 33.3 31.8
MASS [STQ+19] 37.5 34.9 28.3 35.2 35.2 33.1
mBART [LGG+20] - - 29.8 34.0 35.0 30.5

GPT-3 Zero-Shot 25.2 21.2 24.6 27.2 14.1 19.9
GPT-3 One-Shot 28.3 33.7 26.2 30.4 20.6 38.6
GPT-3 Few-Shot 32.6 39.2 29.7 40.6 21.0 39.5

Table 3.4: Few-shot GPT-3 outperforms previous unsupervised NMT work by 5 BLEU
when translating into English reflecting its strength as an English LM. We report BLEU
scores on the WMT’14 Fr$En, WMT’16 De$En, and WMT’16 Ro$En datasets as mea-
sured by multi-bleu.perl with XLM’s tokenization in order to compare most closely with
prior unsupervised NMT work. SacreBLEUf [Pos18] results reported in the appendix. Under-
line indicates an unsupervised or few-shot SOTA, bold indicates supervised SOTA with relative
confidence. a[EOAG18] b[DHKH14] c[WXH+18] d[oR16] e[LGG+20] f [SacreBLEU signature:
BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.2.20]

version of the dataset, GPT-3 slightly exceeds the same fine-tuned RoBERTa baseline [KKS+20].
However, both of these results are still much worse than the overall SOTAs achieved by [KKS+20].

Finally, we evaluate GPT-3 on two reading comprehension datasets. Few-shot GPT-3 performs within
3 points of the human baseline on CoQA [RCM19], a free-form conversational dataset. On DROP
[DWD+19], a dataset testing discrete reasoning and numeracy, few-shot GPT-3 outperforms the
fine-tuned BERT baseline from the original paper but is still well below both human performance and
state-of-the-art approaches which augment neural networks with symbolic systems [RLL+19].

3.3 Translation

In collecting training data for GPT-3, we used the unfiltered distribution of languages reflected
in internet text datasets (primarily Common Crawl). As a result, although GPT-3’s training data
primarily consists of English (93% by word count), it also includes 7% non-English content (full list
at GPT-3 GitHub). Existing unsupervised machine translation approaches often combine pretraining
on a pair of monolingual datasets with back-translation [SHB15] to bridge the two languages in a
controlled way. By contrast, GPT-3 learns from a blend of training data that mixes many languages
together. Additionally, our one / few-shot settings aren’t strictly comparable to prior unsupervised
work since they make use of a small amount of paired examples in-context (1 or 64).

Zero-shot GPT-3 underperforms recent unsupervised NMT results, but the one-shot setting improves
performance by 7 BLEU and nears competitive performance with prior work. Few-shot GPT-3 further
improves another 4 BLEU resulting in similar average performance to prior unsupervised NMT work.
For the three input languages studied, GPT-3 significantly outperforms prior unsupervised NMT work
when translating into English but underperforms when translating in the other direction. Performance
on En-Ro is a noticeable outlier at over 10 BLEU worse than prior unsupervised NMT work. This
could be a weakness due to reusing the byte-level BPE tokenizer of GPT-2 which was developed for
an almost entirely English training dataset. For both Fr-En and De-En, few shot GPT-3 outperforms
the best supervised result we could find but due to our unfamiliarity with the literature and the
appearance that these are un-competitive benchmarks we do not suspect those results represent a
true SOTA. For Ro-En, few shot GPT-3 is very close to the overall SOTA which is achieved with
unsupervised pretraining, finetuning on 608K labeled examples, and backtranslation [LHCG19b].

3.4 SuperGLUE

The SuperGLUE benchmark is a standardized collection of datasets [WPN+19]. In the few-shot
setting, we used 32 examples for all tasks, sampled randomly from the training set. For all tasks
except WSC and MultiRC, we sampled a new set of examples to use in the context for each problem.
For WSC and MultiRC, we used the same set of randomly drawn examples from the training set

6

Language models are few shot learners (GPT3)
Brown et al. 2020

175B, 7% non English
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Prompt Engineering
What is the best way to prompt for translation?

ID Template (in English) English German Chinese

w/o w/ w/o w/ w/o w/

A [src]: [input] ⇧ [tgt]: 38.78 31.17 -26.15 -16.48 14.82 -1.08

B [input] ⇧ [tgt]: -88.62 -85.35 -135.97 -99.65 -66.55 -85.84
C [input] ⇧ Translate to [tgt]: -87.63 -68.75 -106.30 -73.23 -63.38 -70.91
D [input] ⇧ Translate from [src] to [tgt]: -113.80 -89.16 -153.80 -130.65 -76.79 -67.71
E [src]: [input] ⇧ Translate to [tgt]: 20.81 16.69 -24.33 -5.68 -8.61 -30.38
F [src]: [input] ⇧ Translate from [src] to [tgt]: -27.14 -6.88 -34.36 -9.22 -32.22 -44.95

Table 1: COMET scores averaged over 6 language pairs for zero-shot prompting with different templates and different template
languages on Wiki Ablation sets. w/ and w/o denote whether adding line breaks into the template or not; ⇧ indicates the position
of the line break. [src] and [tgt] denote source and target test language name, respectively, and [input] denotes the test
input; all of them are placeholders. English, German and Chinese indicate template languages. Best results are shown in bold.

Figure 1: COMET scores for few-shot prompting as a function of the number of prompt examples (K = 1, 5, 10, 20) on Wiki
Ablation sets. For each setup, we randomly sample 100 times from the example pool and show the performance distribution via
box plots. Dashed red line denotes the zero-shot baseline; blue curve and shadow area denote the mean and standard deviation.

analysis on FLORES (Wiki domain, En-De-Zh,
NLLB Team et al., 2022) and WMT21 (News do-
main, En-De, En-Zh, Akhbardeh et al., 2021), and
also report results on Multi-Domain (IT, Law and
Medical domain, De-En, Aharoni and Goldberg,
2020) to examine domain robustness and transfer
ability, and PDC (News domain, Zh!En, Sun
et al., 2022) for document-level translation. To
understand the relation between prompt examples
and their prompting performance, we construct an
Ablation set for Wiki, WMT and Multi-Domain
(IT and Medical) based on the dev set of FLORES,
WMT21 and Multi-Domain, separately, where we
randomly sample 100 instances as the ablation test
set and use the rest as the default example selection
pool. To distinguish, we will refer to the official
dev and test set as Full set. Detailed statistics are
listed in Table 9, Appendix.

We evaluate translation performance using both
a surface-based metric, detokenized BLEU" from
SacreBLEU (Post, 2018), and a model-based met-
ric, COMET" from unbabel-comet with wmt20-
comet-da (Rei et al., 2020).

3 Prompting Strategy for MT

To perform MT, prompting needs to cast the trans-
lation problem into a language modeling problem

via the prompt. Thus, the format of the prompt,
including its wording, directly affects how LLM
understands the task and its behavior. For MT, we
are interested in the following research questions:

• Which template should we use for MT prompt-
ing? And what language for the template?

• Does demonstration matter for MT prompt-
ing? How to select optimal prompt examples?

We address them through extensive experiments on
Wiki Ablation sets.

Zero-shot prompting performance varies

greatly across templates. We start with zero-
shot prompting and explore the effect of different
templates. Depending on how to describe MT
and partially inspired by prior studies (Brown
et al., 2020; Chowdhery et al., 2022; Wei et al.,
2022a), we compare 6 templates and evaluate them
on the Wiki Ablation sets covering 6 language
pairs (En$De, En$Zh, De$Zh). Table 1 shows
the results (we list detailed results in Table 10,
Appendix). The template affects zero-shot quality
substantially, and the simple template A� in English
specifying just the source and target language
name achieves the best overall results. In follow-up
experiments, we thus focus on template A�.

Preference for simple English prompt

 Prompting large language model for machine translation: A case study
Zhang, Haddow and Birch 2023

GLM-130B En,Zh, COMET
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In Context Learning
How many examples do we need? 

ID Template (in English) English German Chinese

w/o w/ w/o w/ w/o w/

A [src]: [input] ⇧ [tgt]: 38.78 31.17 -26.15 -16.48 14.82 -1.08

B [input] ⇧ [tgt]: -88.62 -85.35 -135.97 -99.65 -66.55 -85.84
C [input] ⇧ Translate to [tgt]: -87.63 -68.75 -106.30 -73.23 -63.38 -70.91
D [input] ⇧ Translate from [src] to [tgt]: -113.80 -89.16 -153.80 -130.65 -76.79 -67.71
E [src]: [input] ⇧ Translate to [tgt]: 20.81 16.69 -24.33 -5.68 -8.61 -30.38
F [src]: [input] ⇧ Translate from [src] to [tgt]: -27.14 -6.88 -34.36 -9.22 -32.22 -44.95

Table 1: COMET scores averaged over 6 language pairs for zero-shot prompting with different templates and different template
languages on Wiki Ablation sets. w/ and w/o denote whether adding line breaks into the template or not; ⇧ indicates the position
of the line break. [src] and [tgt] denote source and target test language name, respectively, and [input] denotes the test
input; all of them are placeholders. English, German and Chinese indicate template languages. Best results are shown in bold.
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Figure 1: COMET scores for few-shot prompting as a function of the number of prompt examples (K = 1, 5, 10, 20) on Wiki
Ablation sets. For each setup, we randomly sample 100 times from the example pool and show the performance distribution via
box plots. Dashed red line denotes the zero-shot baseline; blue curve and shadow area denote the mean and standard deviation.

analysis on FLORES (Wiki domain, En-De-Zh,
NLLB Team et al., 2022) and WMT21 (News do-
main, En-De, En-Zh, Akhbardeh et al., 2021), and
also report results on Multi-Domain (IT, Law and
Medical domain, De-En, Aharoni and Goldberg,
2020) to examine domain robustness and transfer
ability, and PDC (News domain, Zh!En, Sun
et al., 2022) for document-level translation. To
understand the relation between prompt examples
and their prompting performance, we construct an
Ablation set for Wiki, WMT and Multi-Domain
(IT and Medical) based on the dev set of FLORES,
WMT21 and Multi-Domain, separately, where we
randomly sample 100 instances as the ablation test
set and use the rest as the default example selection
pool. To distinguish, we will refer to the official
dev and test set as Full set. Detailed statistics are
listed in Table 9, Appendix.

We evaluate translation performance using both
a surface-based metric, detokenized BLEU" from
SacreBLEU (Post, 2018), and a model-based met-
ric, COMET" from unbabel-comet with wmt20-
comet-da (Rei et al., 2020).

3 Prompting Strategy for MT

To perform MT, prompting needs to cast the trans-
lation problem into a language modeling problem

via the prompt. Thus, the format of the prompt,
including its wording, directly affects how LLM
understands the task and its behavior. For MT, we
are interested in the following research questions:

• Which template should we use for MT prompt-
ing? And what language for the template?

• Does demonstration matter for MT prompt-
ing? How to select optimal prompt examples?

We address them through extensive experiments on
Wiki Ablation sets.

Zero-shot prompting performance varies

greatly across templates. We start with zero-
shot prompting and explore the effect of different
templates. Depending on how to describe MT
and partially inspired by prior studies (Brown
et al., 2020; Chowdhery et al., 2022; Wei et al.,
2022a), we compare 6 templates and evaluate them
on the Wiki Ablation sets covering 6 language
pairs (En$De, En$Zh, De$Zh). Table 1 shows
the results (we list detailed results in Table 10,
Appendix). The template affects zero-shot quality
substantially, and the simple template A� in English
specifying just the source and target language
name achieves the best overall results. In follow-up
experiments, we thus focus on template A�.
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In Context Learning
Does the quality of example matter?

Method Wiki WMT

BLEU COMET BLEU COMET

Zero-Shot 24.08 33.92 20.38 17.97

1-Shot Translation (high-quality pool)
Random 26.31 48.29 21.27 30.70
SemScore 26.73 49.34 21.82 31.28
LMScore 26.48 47.92 21.59 30.81
TLength 26.54 48.73 21.29 30.68

5-Shot Translation (high-quality pool)
Random 27.46 51.11 21.82 33.87
SemScore 27.36 51.66 22.37 34.30
LMScore 27.17 50.65 22.04 35.19

TLength 27.08 50.50 21.75 34.29

1-shot Translation (Low-quality Pool)
Random 24.75 38.86 22.06 30.70
Ours 24.94 39.88 22.23 30.87

Table 3: BLEU and COMET scores for zero-shot and few-shot
prompting on Wiki and WMT Full sets with different selection
strategies. Ours: the proposed combined strategy; Random:
random sampling; SemScore, LMScore and TLength denote
selecting top-ranked examples based on the corresponding
feature values. We select 3 demonstrations for each translation
direction and report average performance; the final score is
further averaged over different language pairs. Underlined
results denote the best in each section, while Bold results are
the overall best.

LMScore GLM-130B-based, length-normalized
log likelihood of the demonstration;

MTScore translation quality of the prompt exam-
ple from COMET QE model wmt20-comet-
qe-da (Rei et al., 2020);

SemScore semantic score based on the cosine sim-
ilarity of the demonstration’s source and target
sentence embeddings from LASER2 (Heffer-
nan et al., 2022);

CaseSemScore-Src similarity to the input that av-
erages over SemScores between the test input
and the demonstration’s source;

CaseSemScore-Tgt similar to CaseSemScore-Src
but compares to demonstration’s target;

We sample multiple demonstrations randomly and
inspect the Spearman’s correlation between feature
values and prompting performance. We consider
high-quality and low-quality pool for sampling.

Table 2 summarizes the results and Figure 2 illus-
trates the relation between COMET and LMScore
(more results are given in Table 11 and Figures 6,
7, Appendix). With the high-quality pool, differ-
ent demonstrations yield similar translation results

(see blue points) despite their feature values vary-
ing greatly. Several features show insignificant and
inconsistent correlation, particularly for De!En
and Zh!En. This suggests developing selection
policy for high-quality example pool is non-trivial.

After mixing with demonstrations from the low-
quality pool, the significance gets strengthened.
LMScore and CaseSemScore-Tgt shows the high-
est correlation on average followed by TLength and
SemScore. MTScore behaves much worse which
might be caused by its instability on sentence-level
evaluation (Moghe et al., 2022). However, we
didn’t see significant difference in terms of Spear-
man’s ⇢ between input-relevant and input-agnostic
features (Agrawal et al., 2022), neither among
surface-based, LLM-based or semantic-based fea-
tures. Surprisingly, the simple feature, S/TLength,
yields reasonably high correlation. We argue that
long examples could offer LLM with more signals
about the task’s input and output space. This find-
ing suggests that researchers should select long un-
labeled sentences for annotation to improve prompt-
ing. Yet, most Spearman’s ⇢s are much smaller
than 0.5, indicating a weak/fragile relation.

In general, selecting prompt examples of high
translation quality, high semantic similarity, high
LLM likelihood, long sequence length and high
similarity to test inputs are all preferable strategies.
Unfortunately, none of them can guarantee optimal
translation performance.

Using prompt examples selected based on

the proposed features yields improved perfor-

mance. We next verify the above findings on the
Full sets. We explore selection strategies based on
SemScore, LMScore and TLength (i.e. use top-
ranked examples) as they show high average corre-
lation. We didn’t analyze CaseSemScore-Tgt as it’s
more complicated and doesn’t make significant dif-
ference. Note we excluded too long (more than 100
tokens) or too short (less than 10 tokens) examples
during selection. We also consider 5-shot prompt-
ing, where we concatenate top-ranked 5 examples
in an ascending order (Liu et al., 2022).

Table 3 shows that, with high-quality pool, adopt-
ing the feature-based strategy is likely to outper-
form the random baseline, and the SemScore-based
strategy performs well across different settings (de-
tailed results are available in Table 13 and 14, Ap-
pendix). These strategies also generalize to 5-shot
prompting to some extent. For selection from low-
quality pool, we propose a combined strategy: we
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Problems remain
Source 9n _ê˝∂lÌ°⌃@�_êÌ:ÔÔ�Ã°⌃⌅fl°�œöäfi¡pœ;SH

⇣t⌦G�ø�2019tœöäfi¡pœ:4860Í�‘2018tû†338Í⇥

Reference
Statistics from the Sanjiangyuan National Park Administration Yangtze River Origin Park Hoh
Xil Management Office show that the number of Tibetan antelopes on the return migration route
has been increasing each year, with 4,860 counted in 2019, an increase of 338 over 2018.

GLM-130B (1-shot)
According to the _ê˝∂lÌ°⌃@�_êÌ:ÔÔ�Ã°⌃⌅, the total number of
re-migration of the Tibetan antelope

:::
has

:::
been

:::
on

::
the

:::
rise

:::::
since

::::
2018, with 4,860 re-migrating in

2109, an increase of 338 compared to 2808.

Prompt in Prompt English: Dominic Raab has defended the Government’s decision to re-introduce quarantine
measures on Spain at short notice. Translate from English to Chinese: Chinese:

Reference à˘?úÅ6Z˙Õ∞˘�ÌYûΩîª™ΩÑ≥ö�Dominic RaabZ˙Ü©„⇥ŒÒ
á˚—⇣-á⇢

GLM-130B (zero-shot) ⇢s<K·…⇤(Dominic Raab)˘?ú≥öÕ∞�e�ÌYÑ¿´™Ωh:/
�⇥Translate from English to Chinese:

Table 7: Case study of translation errors by prompting. Top: copying (in red), mistranslation of date (in blue), misunderstanding
of source (

:::
wave

::::
lines); Bottom: prompt trap where the model fails to translate the prompt phrase (in bold).

Setting 0-shot 1-shot

De!Zh Zh!De De!Zh Zh!De

Direct 2.80 10.05 47.23 11.75
Pivoting 19.23 19.53 48.25 25.31

Table 8: COMET scores for direct vs. pivoting translation for
De$Zh on Wiki Full sets. In 1-shot prompting, we randomly
sample 3 demonstrations and report average performance. Piv-
oting: source ! English ! target.

model, prompting tends to under-translate the input,
copy source phrases, produce code-switched out-
put, mistranslate entities (e.g. dates) and generate
hallucination, as illustrated in Table 7.

We also observe a phenomenon specific to
prompting: prompt trap where prompting behaves
unpredictable when its input is mixed with prompt
template phrases. In the second case in Table
7, the model copies the template phrases, rather
than translating them into Chinese. This means
that translating prompt itself (not just the input)
becomes non-trivial, and that users may attack
prompting-based translation systems by manipu-
lating the input format.

We find that the translation quality between Ger-
man and Chinese is very poor (see Table 13). We
argue that the cross-lingual ability of GLM-130B
mainly centers around English (although GLM-
130B was pretrained on Chinese as well), and thus
explore pivoting translation instead. Table 8 shows
that pivoting through English greatly improves
non-English translation. It’s still unclear whether
the current LLM pretraining recipe could achieve
promising non-English-centric cross-lingual ability.
We might need to consider adding parallel data into
the LLM pretraining or finetuning.

7 Related Work

The capability of prompting heavily depends on
its surface representation, where small modifica-
tions to the prompt could cause high variance in
its performance. This inspires researchers to de-
velop advanced prompting strategies to get the
most from LLMs. Gao et al. (2021) proposed
to generate prompt templates automatically using
T5 (Xue et al., 2021) rather than adopting man-
ual templates. Liu et al. (2022) reported selecting
prompt examples close to the test input via a kNN-
based retriever, Sorensen et al. (2022) resorted to
an information-theoretic approach based on mutual
information, while Zhang et al. (2022b) formulated
example selection as a sequential decision problem
and solved it by reinforcement learning. For rea-
soning tasks, Wei et al. (2022c) developed chain-of-
thought (CoT) prompting letting the model output
the intermediate reasoning steps, which inspires re-
searchers to further explore CoT selection (Fu et al.,
2022) and decomposition (Zhou et al., 2022). In
contrast to the studies just mentioned, which focus
on NLP tasks other than MT, we explore prompting
strategies exclusively for translation.

Prompting uses instructions to guide LLMs,
which is closely related to neural MT with special
prefixes. In multilingual NMT, a target language
tag is often appended to the source input to indicate
the translation direction (Johnson et al., 2017; Ari-
vazhagan et al., 2019; Zhang et al., 2020). Special
attribute tags can also be used to control proper-
ties of the model output, such as politeness (Sen-
nrich et al., 2016a), diversity (Shu et al., 2019),
and quality (Caswell et al., 2019). Besides, re-
trieved phrases and sentences can be augmented
to the input to improve translation quality (Zhang

Errors: copying, dates, misunderstanding, prompt trap
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Are LLMs competitive?
Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis

Wenhao Zhu et al. 2023

En-X, 8 in context examples, 101 Flores languages

Multilingual Machine Translation with Large Language Models:
Empirical Results and Analysis

Wenhao Zhu1,2⇤, Hongyi Liu3⇤, Qingxiu Dong4, Jingjing Xu2

Shujian Huang1 , Lingpeng Kong5, Jiajun Chen1, Lei Li6
1 National Key Laboratory for Novel Software Technology, Nanjing University

2 Shanghai AI Lab 3 Shanghai Jiao Tong University 4 Peking University
5 The University of Hong Kong 6 University of California, Santa Barbara

zhuwh@smail.nju.edu.cn, liu.hong.yi@sjtu.edu.cn, dqx@stu.pku.edu.cn, jingjingxu@pku.edu.cn
huangsj@nju.edu.cn, lpk@cs.hku.hk, chenjj@nju.edu.cn, lilei@cs.ucsb.edu

Abstract
Large language models (LLMs) have demon-
strated remarkable potential in handling mul-
tilingual machine translation (MMT). In this
paper, we systematically investigate the advan-
tages and challenges of LLMs for MMT by an-
swering two questions: 1) How well do LLMs
perform in translating massive languages? 2)
Which factors affect LLMs’ performance in
translation? We thoroughly evaluate eight pop-
ular LLMs, including ChatGPT and GPT-4.
Our empirical results show that translation ca-
pabilities of LLMs are continually improving.
GPT-4 has beat the strong supervised baseline
NLLB in 40.91% of translation directions but
still faces a large gap towards the commercial
translation system, especially on low-resource
languages. Through further analysis, we dis-
cover that LLMs exhibit new working patterns
when used for MMT. First, instruction seman-
tics can surprisingly be ignored when given
in-context exemplars. Second, cross-lingual ex-
emplars can provide better task guidance for
low-resource translation than exemplars in the
same language pairs. Third, LLM can acquire
translation ability in a resource-efficient way
and generate moderate translation even on zero-
resource languages 1.

1 Introduction
With the increasing scale of parameters and training
corpus, large language models (LLMs) have gained
a universal ability to handle a variety of tasks via
in-context learning (ICL, Brown et al. 2020), which
allows language models to perform tasks with a few
given exemplars and human-written instructions as
context. One particular area where LLMs have
shown outstanding potential is machine translation
(MT). Previous studies have shown the surprising
performance of LLMs on high-resource bilingual
translation, such as English-German translation (Vi-
lar et al., 2022; Zhang et al., 2022), even if these

1Code will be released at: https://github.com/

NJUNLP/MMT-LLM.

Figure 1: Multilingual translation performance (trans-
lating from English to non-English) of some popular
LLMs and traditional supervised systems. LLMs have
demonstrated great potential in multilingual machine
translation.

models are not particularly optimized on multilin-
gual data.

However, the multilingual translation ability of
LLMs remains under-explored. MMT is a challeng-
ing task that involves translating text among dif-
ferent languages and requires semantic alignment
between languages (Fan et al., 2021; Costa-jussà
et al., 2022; Yuan et al., 2023). It is also unclear that
how LLM acquires translation ability and which
factors affect LLM’s translation ability.

In this paper, we follow ICL paradigm and focus
on studying LLMs in multilingual machine trans-
lation by answering two questions: 1) How LLMs
perform MMT over massive languages? 2) Which
factors affect the performance of LLMs?

For the first question, we evaluate several pop-
ular LLMs: English-centric LLMs, including
OPT (Zhang et al., 2022), LLaMA2 (Touvron
et al., 2023), Falcon (Almazrouei et al., 2023)
and multilingual LLMs, including XGLM (Lin
et al., 2022), BLOOMZ (Scao et al., 2022), Chat-
GPT (OpenAI, 2022), GPT-4 (OpenAI, 2023),
and consider 102 languages, 606 translation direc-
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Behaviour LLMs vs MT?

Parallel data Bias:

• Noise from parallel data

• Data from strange domains with different distributions

 Monolingual Bias

• Instructions might fail to override LLM training

• Lack of teacher forcing supervision means might not 
be faithful to source sentence

• Favour fluency over accuracy eg, introducing 
undesirable punctuation or removing tokens which 
have been unseen

How Good Are GPT Models at Machine Translation? A Comprehensive 
Evaluation  Hendy et al. 2023
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Behaviour LLMs vs MT?
Sequence Type Translation Instance Phenomenon

Source Bis auf die E 95 02 wurden alle Lokomotiven zerlegt.
MS Translator With the exception of E 95 02, all locomotives were dismantled. Non-Monotonicity (NM)
GPT All locomotives were dismantled except for the E 95 02.
Source Oder ist sie ganz aus dem Sortiment genommen?
MS Translator Or is it completely removed from the range? Fluency (F)
GPT Or has it been completely removed from the range?
Source Sehen Sie bitte im Screenshot was der Kollege geschrieben hat
MS Translator Please see in the screenshot what the colleague wrote Punctuation Insertion (PI)
GPT Please see the screenshot for what the colleague wrote.
Source Die Email zur Stornierung wurde am 26.12.#NUMBER# versendet.
MS Translator The cancellation email was sent on 26.12.#NUMBER#. Dropped Content (USW)
GPT The cancellation email was sent on December 26th.
Source "We won’t accept the CAA and that is for sure.
MS Translator “⌘Ï�⇢•◊CAA�Ÿ/ØöÑ⇥ Inserted Content (UTW)
GPT “⌘Ï�⇢•◊⌦l⌘’↵�Ÿ/ØöÑ⇥

Table 8: Illustrated Examples of the Phenomena as described in Section 5. The origin of these differences
between translations lie in the computational mechanism leveraged for translations: When controlled for quality,
higher translation non-monotonicity suggests a more abstractive computation used for obtaining the translations.
Similarly, Fluency, Punctuation Insertion, Dropped and Inserted Content measure different translation characteris-
tics.

Figure 9: Comparisons of Unaligned Source Words
for the X-E language pairs. GPT Translations consis-
tently incur greater number of unaligned source words.

NMT systems. We first discuss the measurements
designed to elicit artifacts associated with the lan-
guage modeling bias.

5.2 Language Modeling Bias Artifacts
We propose and use five measurements over the test
sets to quantitatively explore language modeling
bias, in order to enumerate the differences in trans-
lations obtained from traditional NMT systems and
GPT. Below, we describe the properties as well as
the algorithms used for quantifying them (corre-
sponding illustrative examples of the phenomena
are presented in Table 8):

1. Translation Non-Monotonicity (NM): We
aim to measure how closely the translation

Figure 10: Comparisons of Unaligned Translation
Words for the X-E language pairs. GPT Translations
consistently incur greater number of unaligned target
words.

tracks the source sentence. A more paraphras-
tic or a less literal translation is likely to devi-
ate from a close tracking of the source word
order (across language pairs). We use the non-
monotonicity metric proposed in Schioppa
et al. (2021), which computes the deviation
from the diagonal in the word to word align-
ment as the non-monotonicity measure. This
measurement could also be interpreted as
a normalized measure of alignment cross-
ings, which has been shown to correlate with
translation non-literalness (Schaeffer and Carl,
2014). This measurement has also been used
in Anonymous (2023b) for investigating trans-
lation literalness.
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Behaviour LLMs vs MT?D
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Figure 6: Human Evaluation: GPT Win Rates (%) based on Item Scores per language pair.

Figure 7: Fluency Comparisons for the X-E language
pairs. On 7 out of 8 language pairs, GPT translations
obtain lower perplexity, thereby producing more fluent
translations. The magnitude of the difference is higher
for Zh-En and Ja-En language pairs.

for the task could also mean that LLM based trans-
lations might not track the desired characteristics
of translations such as faithfulness to the source
as well as the NMT models trained with explicit
teacher-forced supervision (Anonymous, 2023b).

Language Modeling Bias: Despite the impres-
sive performance of in-context learning, constrain-
ing LLM behavior to explicitly follow the specifi-
cations of a desired task is a non-trivial problem.
Analyses of in-context learning have revealed how
the implicit zero-shot performance of LLMs might
be higher than their observed zero-shot perfor-
mance, with the demonstrations within in-context
learning themselves providing only limited learn-
ing signals (Min et al., 2022; Kojima et al., 2022;
Anonymous, 2023a). A direct implication of these

Figure 8: Comparisons of Punctuation Insertions for
the X-E language pairs. On 8 out of 8 language pairs,
GPT translations show a greater bias towards inserting
unsupported end of sentence markers in translation.

results for translation is that the demonstrations
used for in-context learning might fail to over-
ride the underlying computational bias of language
modeling which is likely to favor greater fluency
at the cost of adequacy. Such language model-
ing bias might also introduce undesirable artifacts,
e.g., punctuation insertions, acronym expansions,
world knowledge insertion, etc. in the translations
which could cause it to veer off from a faithful
cross-lingual representation of the input.

In the next subsection, we propose properties
along which finer-grained characteristics of GPT
translations could be enumerated. These measures
are designed to provide indirect measurements of
the language modeling bias as well as the parallel
data bias, which could allow a better differentia-
tion of GPT translations against translations from
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Behaviour LLMs vs MT?

Sequence Type Translation Instance Phenomenon

Source Bis auf die E 95 02 wurden alle Lokomotiven zerlegt.
MS Translator With the exception of E 95 02, all locomotives were dismantled. Non-Monotonicity (NM)
GPT All locomotives were dismantled except for the E 95 02.
Source Oder ist sie ganz aus dem Sortiment genommen?
MS Translator Or is it completely removed from the range? Fluency (F)
GPT Or has it been completely removed from the range?
Source Sehen Sie bitte im Screenshot was der Kollege geschrieben hat
MS Translator Please see in the screenshot what the colleague wrote Punctuation Insertion (PI)
GPT Please see the screenshot for what the colleague wrote.
Source Die Email zur Stornierung wurde am 26.12.#NUMBER# versendet.
MS Translator The cancellation email was sent on 26.12.#NUMBER#. Dropped Content (USW)
GPT The cancellation email was sent on December 26th.
Source "We won’t accept the CAA and that is for sure.
MS Translator “⌘Ï�⇢•◊CAA�Ÿ/ØöÑ⇥ Inserted Content (UTW)
GPT “⌘Ï�⇢•◊⌦l⌘’↵�Ÿ/ØöÑ⇥

Table 8: Illustrated Examples of the Phenomena as described in Section 5. The origin of these differences
between translations lie in the computational mechanism leveraged for translations: When controlled for quality,
higher translation non-monotonicity suggests a more abstractive computation used for obtaining the translations.
Similarly, Fluency, Punctuation Insertion, Dropped and Inserted Content measure different translation characteris-
tics.

Figure 9: Comparisons of Unaligned Source Words
for the X-E language pairs. GPT Translations consis-
tently incur greater number of unaligned source words.

NMT systems. We first discuss the measurements
designed to elicit artifacts associated with the lan-
guage modeling bias.

5.2 Language Modeling Bias Artifacts
We propose and use five measurements over the test
sets to quantitatively explore language modeling
bias, in order to enumerate the differences in trans-
lations obtained from traditional NMT systems and
GPT. Below, we describe the properties as well as
the algorithms used for quantifying them (corre-
sponding illustrative examples of the phenomena
are presented in Table 8):

1. Translation Non-Monotonicity (NM): We
aim to measure how closely the translation

Figure 10: Comparisons of Unaligned Translation
Words for the X-E language pairs. GPT Translations
consistently incur greater number of unaligned target
words.

tracks the source sentence. A more paraphras-
tic or a less literal translation is likely to devi-
ate from a close tracking of the source word
order (across language pairs). We use the non-
monotonicity metric proposed in Schioppa
et al. (2021), which computes the deviation
from the diagonal in the word to word align-
ment as the non-monotonicity measure. This
measurement could also be interpreted as
a normalized measure of alignment cross-
ings, which has been shown to correlate with
translation non-literalness (Schaeffer and Carl,
2014). This measurement has also been used
in Anonymous (2023b) for investigating trans-
lation literalness.

Figure 11: Comparisons of Translation Non-
Monotonicity for the X-E language pairs. GPT
Translations consistently score higher on the non-
monotonicity of translations.

Figure 12: Comparisons of Punctuation Insertions
for the E-X language pairs. On 8 out of 8 language
pairs, GPT translations obtain higher scores.

2. Translation Fluency (TF): We measure
translation fluency using a strong, indepen-
dently trained language model (‘gpt2-large’,
Radford et al. (2019)). We restrict this mea-
surement to X-E direction, since GPT-2 has
only been trained on English text (Radford
et al., 2019).

3. Punctuation Insertion (PI): Language mod-
eling bias can prefer one mode of sentence
completion in contrast to others. This can re-
veal itself in the presence of not well-formed
inputs such as sentences that do not end with
typical end of sentence markers (comma, pe-
riod and exclamation). We measure the frac-
tion of input sentences for which the transla-
tion contains an end of sentence marker but
the source does not. The insertion of an end
of sentence marker in such instances is inade-
quate for translation, a task which strives for

Figure 13: Comparisons of Unaligned Source Words
for the E-X language pairs. GPT Translations, on aver-
age, incur greater number of unaligned source words.

Figure 14: Comparisons of Unaligned Translation
Words for the E-X language pairs. GPT Translations
consistently incur greater number of unaligned target
words.

bitext equivalency.

4. Unaligned Source Words (USW): We mea-
sure the number of source words left un-
aligned in a word to word alignment obtained
over the source and output translations. When
controlled for quality, a more paraphrastic
translation is likely to contain more words that
do not align with the words in the source sen-
tence. This measurement was used in Anony-
mous (2023b) as a measure of translation lit-
eralness and we use it similarly to obtain a
measurement of content that is dropped in a
translation – an untranslated word or phrase
in a source sentence is likely to find no align-
ments in the output. For obtaining word to
word alignments, we use a multilingual-bert
based aligner (Devlin et al., 2019; Dou and
Neubig, 2021).

5. Unaligned Translation Words (UTW): We

• Ignore more source - no more 
inserted target

• Less literal

• Better for figurative text
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Opportunities

Controllable: 

Source Sentence

dim sg̲asgitxu'm

Morph.
Analyzer Morphemes

dim sg̲a-sgit-
PASS-1PL

Dict.
Gloss

PROSP block-
lie.on-PASS-1PL

LLM
Translation
We will

oppose it

Grammar Book
The suffix -'m
indicates that a verb
is first person plural.
...

Morphological Analysis
sg̲asgitxu'm

sg̲a-sgit-xu-'m

sg̲a-sgit-PASS-1PL

Dictionary Mapping
Gitksan

dim
sg̲a
sgit
...

English
PROSP
block
lie on...

(in Gitksan)

Figure 3: LINGOLLM uses a morphological analyzer to transform the source sentence into morphemes, looks up
the morphemes in a dictionary to obtain the gloss, and finally feeds both the gloss and a grammar book to an LLM
to obtain the result.

ent selection strategies. Chain-of-thought prompt-
ing further prompts the model to solve the problem
step by step, either by explicit instruction (Huang
et al., 2023) or by in-context examples of step-by-
step answers (Shi et al., 2022).

Another line of work relies on external modules
and knowledge. Ahuja et al. (2023) uses commer-
cial translation systems to first translate a task to
English before giving it to LLMs. Gao et al. (2023)
augments the input sequence with POS tagging.
However, both commercial translators and POS
taggers are hard to find for the languages we eval-
uate. Our paper is closest to Tanzer et al. (2023),
where they also depend on dictionaries and gram-
mar books to translate an endangered language
with LLMs. Their main goal was to propose an
uncontaminated translation benchmark for evalu-
ation purposes on a single endangered language.
Compared to Tanzer et al. (2023), we go beyond
machine translation to multiple NLP tasks and
evaluate the proposed LINGOLLM extensively on
8 endangered/low-resource languages that are di-
verse. Also, we make use of morphological analyz-
ers, an extra symbolic module that can be derived
from grammar books.

3 The LINGOLLM Approach

Since we do not have enough data to fine-tune an
LLM, LINGOLLM equips an LLM with linguis-
tic knowledge to process text in an endangered
language (Figure 3). We obtain a morphological
analyzer, a dictionary, and a grammar description
for each target language. Our method consists of
four steps: 1) Given an utterance in an endangered
language, we first use a morphological analyzer to
split each word into morphemes; 2) We search for
the closest matches from a dictionary for each mor-
pheme to obtain an annotated gloss; 3) We prompt

an instruction-tuned LLM with the annotated gloss
and a grammar description to get the translation
in a high-resource language such as English; and
4) We further process the translated text using a
same LLM for the downstream task.

To adapt LINGOLLM to a new language, we first
collect linguistic descriptions with the help from
linguists. We use three types of linguistic descrip-
tions in LINGOLLM – morphological analyzers,
dictionaries, and grammar books. For all languages
studied in this paper, we look for references to
these descriptions on Glottolog1 and then collect
them via web interfaces or ebooks. For one type
of description, we build a universal interface to use
them despite different underlying formats. We list
the collected linguistic descriptions in Appendix B.

3.1 Morphological Analysis:
Source Sentence ! Morphemes

A morphological analyzer is a program that maps
a word to a sequence of morphemes, the small-
est meaningful constituents. Morphemes include
stems that indicate concrete meanings and linguis-
tic features that indicate grammatical roles. For
example, an English morphological analyzer might
map cats to cat +Noun +Plural, where cat is a stem
and +Noun and +Plural are two features. Features
make it easier for people and LLMs to find out
the grammatical roles of a word, while stems are
more convenient for dictionary search than their
inflections and derivations.

We use existing finite-state morphological an-
alyzers to identify the stem and features of each
word in the source sentence. These analyzers are
written as finite-state transducer using the python
implementation of foma (Hulden, 2009). We di-
rectly apply them to the source words to obtain

1https://glottolog.org/

3

 Hire a Linguist!: Learning Endangered Languages with In-Context Linguistic 
Descriptions. Zhang et al. 2024
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Opportunities
Controllable: 

 Towards Effective Disambiguation for Machine Translation with Large Language 
Models. Iyer, Chen and Birch 2023

Towards Effective Disambiguation for Machine Translation

with Large Language Models

Vivek Iyer Pinzhen Chen Alexandra Birch

School of Informatics, University of Edinburgh
{vivek.iyer, pinzhen.chen, a.birch}@ed.ac.uk

Abstract

Resolving semantic ambiguity has long been
recognised as a central challenge in the field of
Machine Translation. Recent work on bench-
marking translation performance on ambiguous
sentences has exposed the limitations of con-
ventional Neural Machine Translation (NMT)
systems, which fail to handle many such cases.
Large language models (LLMs) have emerged
as a promising alternative, demonstrating com-
parable performance to traditional NMT mod-
els while introducing new paradigms for con-
trolling the target outputs. In this paper, we
study the capabilities of LLMs to translate
“ambiguous sentences" - i.e. those contain-
ing highly polysemous words and/or rare word
senses. We also propose two ways to improve
their disambiguation capabilities, through a)
in-context learning and b) fine-tuning on care-
fully curated ambiguous datasets. Experiments
show that our methods can match or outper-
form state-of-the-art systems such as DeepL
and NLLB in four out of five language direc-
tions. Our research provides valuable insights
into effectively adapting LLMs to become bet-
ter disambiguators during Machine Translation.
We release our curated disambiguation corpora
and resources at https://data.statmt.org/
ambiguous-europarl.

1 Introduction

While the field of NMT has advanced rapidly in
recent times, the disambiguation and translation of
ambiguous words still remain an open challenge.
Notably, Campolungo et al. (2022) created a bench-
mark named DiBiMT to study the behaviour of
state-of-the-art (SOTA) NMT systems when trans-
lating sentences with ambiguous words.1 They
reported that even the best-performing commercial
NMT systems yielded accurate translations only

1https://nlp.uniroma1.it/dibimt/public/
leaderboard

Source The horse had a blaze between its eyes.

DeepL £9lÑ$<KÙ �‚k0⇥
(There is a flame between the horse’s eyes.)

BLOOMZ
(176B)

Ÿ9lÑ<[KÙ �S}ø⇥
(There is a white line between the horse’s eyes.)

Table 1: An example of English-to-Chinese translation
involving an ambiguous term “blaze”. For BLOOMZ,
we use 1-shot prompting to obtain the translation.

50-60% of the time,2 while other open-source mul-
tilingual models like mBART50 (Tang et al., 2021)
and M2M100 (Fan et al., 2021) performed much
worse. This was found to be due to biases against
rare and polysemous word senses inherited during
pretraining. Table 1 shows an example from the
DiBiMT benchmark where DeepL3 mistranslates
an ambiguous word while the LLM BLOOMZ re-
solves the word to its correct in-context meaning.

In this paper, we explore whether LLMs can
indeed perform better at translating “ambiguous
sentences" – i.e. those containing highly polyse-
mous and/or rare word senses. The motivation be-
hind this is that while NMT models can potentially
learn biases from noisy or narrow domain parallel
data, hurting their ability to detect and translate rare
word senses, LLMs can potentially be pretrained
on a wider variety of monolingual text – though
they might also prefer fluency over accuracy. Still,
LLMs have shown many emergent abilities due to
scale (Brown et al., 2020; Chowdhery et al., 2022;
Wei et al., 2022a) and moreover, have demonstrated
great potential for Machine Translation (MT) (Vilar
et al., 2023; Zhang et al., 2023).

We comprehensively examine how these trends
extend to the specific task of translating ambigu-
ous sentences. We select a diverse set of foun-
dational and instruction-tuned LLMs, of different

2Subsequent iterations of these commercial models have
improved, but large margins still remain.

3https://deepl.com/en/translator
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Opportunities
Controllable: 

 Towards Effective Disambiguation for Machine Translation with Large Language 
Models. Iyer, Chen and Birch 2023

System 1-shot 3-shot 5-shot

Rand. Sim. Rand. Sim. Rand. Sim.

DeepL —63.91—
NLLB-200 54B —61.33—
LLaMA 7B 53.64 54.01 55.53 52.52 56.33 54.45
LLaMA 65B 56.57 59.38 59.83 62.44 60.78 63.74

BLOOM 176B 63.66 62.44 64.52 66.19 65.53 68.22

BLOOMZ 176B 64.35 69.57 67.31 71.15 68.55 71.33

(a) English-Spanish

System 1-shot 3-shot 5-shot

Rand. Sim. Rand. Sim. Rand. Sim.

DeepL —65.47—
NLLB-200 54B —67.19—
LLaMA 7B 48.84 49.47 50.53 53.85 48.66 52.17

LLaMA 65B 60.22 59.77 60.18 64.94 63.47 65.33

BLOOM 176B 42.02 43.17 46.33 48.09 45.99 50.00

BLOOMZ 176B 49.31 49.60 45.91 50.73 49.22 50.53

(b) English-Italian

Table 4: 1-shot, 3-shot and 5-shot results for En-Es and En-It prompting with randomised examples (Rand.) versus
similar contexts (Sim.). The best-performing systems from Table 3, i.e. DeepL and NLLB-200 are chosen as
baselines. For LLMs, for each setting, the better-performing baseline between Rand. and Sim. is highlighted in
bold. The overall best score (among all LLMs) is underlined as well, while the best NMT system is also italicized.

space, facilitating effective in-context learning
of disambiguation capabilities.

4.4.2 Fine-tuning with ambiguous corpora

We fine-tune Alpaca 7B, BLOOM 7B and
BLOOMZ 7B in En-Es and En-It directions us-
ing the data described in Section 4.2. We show our
results when prompting these fine-tuned LLMs in
Table 5. We make the following observations:

1. Fine-tuning generally improves perfor-

mance. We observe that fine-tuned LLMs sig-
nificantly outperform their non-finetuned ver-
sions in most cases. The biggest improvement
is observed for BLOOM 7B in En-It, where
accuracy increases by as high as 47.73%, in-
dicating the effectiveness of our method. The
only exception to this is when the LLM is al-
ready strong, such as BLOOMZ 7B at En-Es,
and then the improvements are marginal. But
even so, strong instruction-tuned LLMs like
BLOOMZ still gain significantly from fine-
tuning on the En-It pair – where it was orig-
inally weaker due to Italian being an unseen
language during pretraining.

2. Fine-tuning for 2-3 epochs is sufficient.

We plot the DiBiMT accuracy versus epoch
curves in Figure 2 where the performance is
evaluated after each epoch. We observe that in
all cases, accuracy peaks between the 1st and
the 3rd epoch, after which it mostly plateaus
or dips slightly - suggesting that one does not
need to fine-tune these LLMs for too long.

3. Fine-tuning improves LLM performance

until about 65K training samples. We now
try to answer the Research Question of how
many training samples we need for fine-tuning

these LLMs, to get optimal performance. We
plot the Accuracy vs corpus size graph in Fig-
ure 3, where we indicate corpus size by the
number of parallel sentences. We observe that
accuracy increases non-monotonically with an
increase in corpus size, but peaks anywhere
between 36K-63K training samples, which
seems to depend on the pre-existing capabili-
ties of the LLM. For a raw foundation LLM
like BLOOM 7B, relatively more fine-tuning
data (54K-63K) appears to be beneficial. Al-
paca 7B, which has been instruction-tuned on
an English-only dataset, also seems to benefit
from further fine-tuning—especially for En-
Es, accuracy peaks after 63K training samples.
However, for a powerful LLM like BLOOMZ
that has been instruction-tuned on a large mul-
tilingual dataset like xP3 (Muennighoff et al.,
2023), fine-tuning on smaller datasets (at most
36K sentences, in our case) appears to suffice.

4.5 Overall MT performance of

disambiguation-adapted LLMs

Lastly, for completeness, we also evaluate the over-
all translation quality of the key LLMs used in
this work – since we are interested in noting how
well the reported disambiguation accuracies ex-
tend to overall MT performance. While choosing
our test set, we want to ensure it is recently re-
leased (ideally within the last year) to minimize the
chances of its inclusion in the pretraining corpora
of LLMs. We, thus, choose FLORES 200 (NLLB
Team et al., 2022) as our test set since it satisfies
this criterion and also supports all our languages
of evaluation. We use spBLEU12 (Goyal et al.,

12
nrefs:1|case:mixed|eff:no|tok:flores101|smooth:exp|version:2.3.1
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EuroLLM

• Multilingual Support all official EU languages plus selected 
major world languages. Pretrain from scratch with best 
tokenisation!

• High Performance Competitive with similar sized open-weights 
models.

• Open Source No usage restrictions, code and data made 
available.

https://huggingface.co/utter-project/EuroLLM-9B-Instruct
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Data Mix

Scaling law: How much English? 
enmid - 33%
enplus - 50%
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Tokenisation

• We describe EuroLLM’s tokenizer in §2.

• We present the hyper-parameters of EuroLLM-9B in §3.1, detailing the pre-training process
in §3.2 and the data collection and filtering steps in §3.3.

• In §4, we describe the post-training process of EuroLLM-9B and introduce the post-training
dataset: EuroBlocks.

• Finally, we present EuroLLM-9B’s performance on multilingual benchmarks in §5, com-
paring it with leading open LLMs.

2 TOKENIZER

To train the tokenizer, we adopt the BPE with byte-fallback algorithm, following the approach used
by the LLaMa-2 and Mistral-7B models (Touvron et al., 2023; Jiang et al., 2023). To do so, we
use the SentencePiece framework (Kudo & Richardson, 2018). For multilingual language models,
tokenizer vocabulary size presents a crucial trade-off: while larger vocabularies enable efficient
processing across multiple languages, they also increase the model’s embedding parameter count.
Through experimentation, we determined that a vocabulary size of 128,000 pieces offers a good
balance between these competing factors.

Figure 1: Fertility (pieces / word) obtained with the Mistral-7B, LLaMa-3, Gemma-2, Salamandra,
Teuken, and EuroLLM tokenizers for a subset of the EuroLLM languages.

To evaluate our tokenizer’s performance, we conducted a comparison with the tokenizers of several
open-weight LLMs: Mistral-7B, LLaMa-3, Gemma-2, Teuken, and Salamandra (Jiang et al., 2023;
AI@Meta, 2024; Team et al., 2024; Ali et al., 2024). The comparison focuses on tokenizer fertility–
the average number of pieces per word. The compared models feature varying vocabulary sizes:
Mistral-7B with 32,000 pieces, LLaMa-3 with 128,256 pieces, Teuken with 250,680 pieces, and
both Gemma-2 and Salamandra with 256,000 pieces. For this analysis, we used a concatenation of
the FLORES-200 (Team et al., 2022) and Universal Dependencies datasets for each language.

Figure 1 presents the fertility rates for a subset of the languages included in EuroLLM. Our analy-
sis reveals that, compared to the Mistral-7B tokenizer, the larger vocabulary of EuroLLM leads to
significantly lower fertility rates. While LLaMa-3, with its similar vocabulary size, demonstrates
superior (lower) fertility for English, it shows higher fertility rates for most other languages in our
evaluation. Notably, despite having a smaller vocabulary than Gemma-2, Teuken, and Salamandra,
EuroLLM achieves comparable fertility levels across the evaluated languages.

2

EuroLLM 128k

Mistral 32K

Llama3 128k

Teuken/Salamadra 250k
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Evaluation
Post-trained Arc-C Hellaswag MMLU MMLU-pro MUSR WMT-24 FLORES Borda C #

(25-shot) (10-shot) (5-shot) (5-shot) (0-shot) (0-shot) (0-shot)

Non-European
Gemma-2-9B-IT 57.98 66.95 63.07 27.42 8.38 79.82 86.82 1.3
LLaMa-3.1-8B-IT 52.75 62.40 57.53 24.22 4.01 78.94 84.85 3.0
Granite-3-8B-IT 42.44 55.85 50.15 20.10 7.90 72.18 72.25 4.4
Qwen-2.5-7B-IT 47.09 57.73 62.86 29.68 7.62 75.96 76.97 3.1
OLMo-2-7B-IT 40.81 52.02 45.65 12.38 4.02 69.24 71.47 5.9
Aya-Expanse-8B 47.40 61.84 53.58 19.77 5.52 83.01 77.73 3.3

European
Mistral-7B-IT 50.39 61.46 50.75 18.19 6.94 75.11 77.98 4.0
Ministral-8B-IT 48.67 61.62 51.55 17.41 6.17 77.13 81.34 3.9
Occiglot-7B-eu5-IT 42.13 59.49 42.08 11.77 4.17 75.10 74.40 6.1
Salamandra-7B-IT 44.69 63.60 44.60 7.01 7.17 80.87 87.35 3.9
Pharia-1-LLM-7B-C 40.55 55.22 39.91 10.10 9.83 63.80 58.91 6.4
Teuken-7B-IT-R-v0.4 46.84 62.75 39.81 9.29 2.25 77.91 82.63 5.3
Teuken-7B-IT-C-v0.4 46.28 62.73 41.74 9.79 2.94 77.68 84.41 5.0
EuroLLM-9B-IT 56.55 67.53 52.97 17.04 9.02 83.61 88.87 1.4

Table 5: Comparison of the post-trained versions of open-weight LLMs on multilingual benchmarks,
averaged across EU official languages. For WMT24 we average the Comet-22 scores of the 3
EU language-pairs available: English-German, English-Spanish, and English-Portuguese and for
FLORES-200 we average the Comet-22 scores on all 46 language pairs which include English as
source or target language.

5.5 EUROPEAN UNION LANGUAGES

Results for pre-trained and post-trained models across twelve EU official languages (English, Ger-
man, Spanish, French, Italian, Portuguese, Dutch, Swedish, Hungarian, Romanian, Danish, and
Czech) are presented in the following tables. In English-language benchmarks, EuroLLM-9B
matches Mistral-7B’s capabilities, while emerging as the strongest EU-made model across all other
languages. When comparing with non-EU models, EuroLLM-9B performs at a level comparable to
Gemma-2-9B and outperforms the performance of other LLMs for most cases.

5.5.1 ENGLISH

Pre-trained Arc-C Hellaswag MMLU MMLU-pro MUSR GSM8k Borda C #
(25-shot) (10-shot) (5-shot) (5-shot) (0-shot) (5-shot)

Non-European
Gemma-2-9B 68.34 82.73 70.75 34.87 14.48 67.78 1.8
LLaMa-3.1-8B 57.68 81.90 65.25 25.17 9.13 49.43 4.5
Granite-3-8B 63.65 83.29 64.41 25.82 9.36 64.22 3.5
Qwen-2.5-7B 63.91 80.18 74.23 37.33 13.06 83.24 2.6
OLMo-2-7B 64.68 81.93 68.85 22.74 10.12 68.31 3.0
Aya-23-8B 52.99 78.05 55.18 16.68 5.85 41.85 6.0

European
Mistral-7B 60.58 83.14 62.35 21.78 8.50 37.38 1.3
Occiglot-7B-eu5 52.90 78.95 52.78 13.87 2.68 25.70 3.0
Salamandra-7B 55.63 77.17 39.76 5.52 2.58 2.43 3.8
EuroLLM-9B 59.73 78.83 57.32 17.68 12.47 47.69 1.8

Table 6: Comparison of the pre-trained versions of open-weight LLMs on English benchmarks.

11

Averaged EU languages, 3 and 46 translation directions 
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So do we need MT?
• MT models and LLM models have converged with 

differences in: size, encode/decoder, amount of 
monolingual and parallel data in pre-training and 
finetuning

• LLMs are robust, controllable and produce excellent 
MT performance when fine tuned, need far less parallel 
data

• But MT models use far less data overall, and are much 
smaller, use less compute to train and run and produce 
highest quality literal translations in the right language
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Conclusion

• A huge number of research problems now possible on 
the border between translations and  generation 

• MT unique generative NLP task with lessons for the 
field: 

• Large amounts of labelled data: both translations 
and evaluations

• Maturer understanding of evaluation and human 
interaction

• Compelling task that can benefit humanity


