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Introduction: When the model is a ”black box”



What is Spoken Language Translation?

Spoken Language/Speech Translation (SLT/ST) is cross-lingual and (most likely)
cross-modal.
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How is speech different from text? (I)

Major differences are:

Speech signal is sparse, i.e., low information content per unit time
(An audio file of 2.2 seconds in 16kHz has about 35K time steps ).

Figure: Speech-to-text alignment [Barrault et al. 2023]

The file format matters (sampling rate, bit depth and bit rate).

Background noises may appear in the speech.
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How is speech different from text? (II)

Paralinguistic signals, such as prosody and accents, matter

Figure: Prosody could be crucial in the translation of Korean speech [Zhou et al. 2024]
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How is speech different from text? (III)

Speech is often disfluent, esp. in spontaneous speech:

Figure: Types and examples of disfluency [Salesky et al. 2018]

Should we keep the disfluencies in the translation?
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How is ST different from text translation?

Compared to text translation, ST is low-resource even in high-resource
language pairs.

Data X-Y #utterances #words (src+tgt)

MuST-C1 En-Fr 280K 10.6M
” En-De 234K 8.3M

CoVoST-22 Fr-En 207K 4M
” De-En 127K 2M

(MT) Wiki-Matrix3 De-En 6.2M 196M

Table: Training data statistics of two common S2TT data and a MT data

1Di Gangi et al. 2019
2Wang et al. 2020
3Schwenk et al. 2019
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Inference: audio segmentation (I)

Can we translate the entire recorded lecture in one forward-pass?

1 It is an audio sequence of 50 minutes

2 In training, the sequence length rarely exceed 301 seconds.

3 We need to segment the audio sequence into smaller chunks!

1It is about 3K time steps if spectrogram is used
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Inference: audio segmentation (II)

Some common segmentation methods are:

Length-based, e.g., for every 3s.

Content-based, e.g, pause that is detected by voice activity detection.

Hybrid approach that is based on both length-based and
content-based.

Neural-network-based: Supervised Hybrid Audio Segmentation
(SHAS) [Tsiamas et al. 2022]
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Evaluation: (automatic) metrics

In S2T translation, the automatic metrics are the same as MT:

n-gram matching: BLEU and chrF

neural metrics: COMET1 (may require back-translation to get the
transcripts)

In S2S translation,

transcribe and MT-evaluate: ASR-BLEU and ASR-chrF

neural metrics: BLASER2

1Rei et al. 2020
2Chen et al. 2022
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Modeling: Unfolding the ”black box”



Feeding audio input into Transformer

Recap: Speech signal is very sparse (very long).

Figure: An illustration of sequence-length reduction of the speech signal.
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Cascaded model (I)

Recap: ST is a (most likely) cross-model and cross-lingual problem.

Can we decompose ST into simpler related sub-tasks?

Cascaded ST: It converts ST into a task of running ASR and MT tasks
sequentially (Text-To-Speech is required in S2S).

Figure: An illustration of the cascaded ST model.
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Cascaded model (II)

Advantage:

The training is easier since the cross-lingual and -modal parts are
learnt independently.

▶ There are more training data for the sub-tasks.

Output correction is simpler by inspecting the intermediate
transcripts(/translations).

It can leverage foundation models easily.
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Cascaded model (III)

Disadvantage:

The inference pipeline is lengthy. This might cause
▶ higher inference cost
▶ error propagation from the ASR(/MT) model(s).
▶ loss of speech information, e.g., prosody in the ASR step.

Cascaded model is not very parameter efficient.
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Direct end-to-end model (I)

Figure: An illustration of the direct end-to-end ST model.
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Direct end-to-end model (II)

Advantage:

The inference is simply one forward-pass. This helps to
▶ give lower latency in inference, e.g., (very important) in real-time

speech translation.
▶ avoid error propagation.
▶ preserve speech information for translation.

End-to-end ST is more parameter efficient.
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Direct end-to-end model (III)

Disadvantage:

The amount of paired ST data is limited. (Recap: ST is
low-resource)

End-to-end ST model is harder to optimise.

Regardless, end-to-end model is the main research direction now!
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Improving end-to-end ST: data augmentation

We can generate more data via related task’s model(s) and paired data:

Figure: Pseudo ST data generation [Pino et al. 2019]
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Improving end-to-end ST: multi-task learning

Training ST with other sub-tasks in parallel instead of using them
sequentially, e.g., in [Gaido et al. 2020]

Figure: ST training with CTC3 on ASR task

3Connectionist Temporal Classification [Graves et al. 2006]
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Improving end-to-end ST: using pre-trained models

We can use pre-trained models to initialise the ST model, e.g.,

wav2vec 2.04 for initialising the acoustic encoder

mBART for initialising the translation decoder

Figure: ST model initialisation via pre-trained SSL models [Li et al. 2020]

4Baevski et al. 2020
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Improving end-to-end ST: bridging the modality gap (I)

Bi-encoder architecture:
1 for speech input
2 for text input

Mixed-modality training:

Figure: Mixed modality: a
sequence of alternating speech and
text embeddings.

Figure: STEMM [Fang et al. 2022]
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Improving end-to-end ST: bridging the modality gap (II)

Speech quantisation: to transform speech signal into a sequence of
tokens [Lakhotia et al. 2021]

Figure: An illustration of speech quantisation using K-Means clustering.
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Improving end-to-end ST: speech quantisation

Advantages

Data storage and transmission becomes easier

Speech generation becomes more feasible
▶ e.g., speech-to-unit, unit-based LM and a unit-based vocoder1)
▶ Textless NLP (Link)

1Lee et al. 2021
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Improving end-to-end ST: speech quantisation

Disadvantages

The inference pipeline gets lengthy (quantisation and clustering)

There are more hyper-parameters to tune, e.g.,
1 The hyper-parameters in the K-Means model:

⋆ Its training data size
⋆ Its clustering size

2 The representation layer of the SSL model to be used for quantisation
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Improving end-to-end ST: putting all together

Figure: Seamless-M4T v2 model [Barrault et al. 2023]
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Improving end-to-end ST with LLM: AudioPaLM

Figure: Illustration of the AudioPaLM model [Rubenstein et al. 2023]
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Improving end-to-end ST with LLM (II)

Apart from discrete speech units, we can also work on dense feature
integration:

Figure: Dense feature integration into LLaMA-2 [Wu et al. 2023]
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Improving end-to-end ST with LLM (III)

Including speech into LLM is now a hot topic, but most works lack
comparability [Gaido et al. 2024], e.g.,

The speech foundation model (SFM) and the LLM, e.g.,
▶ AudioPaLM used USM1 as its SFM, but USM is not openly accessible.

▶ the speech quantisation (if available) hyper-parameters are different.

The training and evaluation data, e.g.,
▶ the amount, the language directions and the number of tasks.

▶ the instruction data used in training and inference.

1[Zhang et al. 2023]
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Which one is better? (I)

In the recent IWSLT2 (Offline track) for S2T translation,

Figure: Winning architectures in the last 4 years in IWSLT (Offline track)

We need more diverse test sets, not only limited to TED talks.

2The International Conference on Spoken Language Translation
Tsz Kin Lam (UEDIN) Spoken Language Translation NLU+ Lecture 28 30 / 37



Which one is better? (II)

Figure: Comparison between SEAMLESS-M4T, cascaded system and AudioPaLM (8B)
[Barrault et al. 2023].
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Summary

There are extra complexities in spoken language, e.g., its sparsity and
acoustic variations.

Two common approaches for ST are 1) cascaded modeling and 2)
end-to-end modeling.

There are more interesting things going on in end-to-end model, e.g.,
integrating speech into LLM.

Cascaded model, however, still remains very competitive.
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