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Agenda for Today

Last week: We saw that we could model a probability distribution
over a strings, like w = wy ... w),:

1. Use the chain rule, P(w) = Hl":'/'lﬂ P(w; | wa,...,w;_1), and
2. Use wuniversal function approximators in the form of neural
networks to model the conditional distributions

P(W,' ‘ Wi,..., W,',l)

The second idea brings many benefits over classic n-gram models.
It gives us parameter sharing and representation learning, and it
frees us from zero probabilities and independence assumptions.

Today: We will see how to model conditional probability
distributions like P(y | x), where x and y are both sequences of
discrete symbols, aka strings.



Encoding and decoding sequences



How would you model translation with n-grams?

Input: S3 varfér minskar inte vi vara utslapp?

Output: So why are we not reducing our emissions?
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How would you model translation with n-grams?

Input: S3 varfér minskar inte vi vara utslapp?

Output: So why are we not reducing our emissions?
Let x be the source (Swedish) sentence, y be the target (English)
sentence.
X = X1...X|X‘
Y =YYy
How can we define P(y | x)?

Expand using the chain rule:
ly[+1
y‘X H Py,|y1,...,y,',1,X1,...X|X|)



Idea: use RNN language models for translation
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Idea: use RNN language models for translation
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Idea: use RNN language models for translation
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Syntax is very different across languages
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Syntax is very different across languages
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Idea: model translation as string completion
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Idea: model translation as string completion

liebe . dich | <translate> love | </s>
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Does this design make sense? Why or why not?
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Translation and Language Modeling are different
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Translation and Language Modeling are different

Language model:

Translation model:
n

P(}/|X)=HP()//\)/1 ----- )//fl,Xl,---,X\xD
i=1

We could treat sentence pair as one long sequence, but:
e This is really a model of P(x,y) = P(x)P(y | x).
e But we do not care about P(x)!

e The source and target language may have very different

vocabulary and morphosyntactic structure.

Insight. We need two RNNs, one for source and one for target.
11



Use one RNN to encode source, another to decode target
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Use one RNN to encode source, another to decode target
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Use one RNN to encode source, another to decode target

of . course john - has . fun
Decoder RNN
S1 » >  S3 # Sa » S5
y A A A
g hl P h2 > h3 > h4
Encoder RNN
natiirlich hat john spaB3
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Formalizing the Encoder-Decoder approach

An RNN is a function of a hidden state and new input vector,

returning a hidden state (so any RNN variant can be used).

Encoder:
h; = RNNenc(Xh I"i—l)

Decoder:
si = RNNgec(y;_1,8i-1)
P(yi | y1,. -, ¥i-1,X1,--.,Xx|) = softmax(W concat(s;, hjy) + b)

Final encoder hidden state h),| is context for decoder softmax.
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Interpreting the Encoder-Decoder approach

e Given a conditional probability P(y | x), we can design two
neural architectures: one to encode x into a hidden
representation, and one to decode y from that representation.

e In machine translation, RNNs are a reasonable choice for both
encoder and decoder.

e The hidden representation from the encoder is supplied as
input to the decoder at every time step.

e But the idea is general. Encoder and decoder can be designed
to suit the task.

e The encoder RNN does not need to compute P(x). It only
needs to compute a representation.

14



Q: Does this architecture make sense for translation?
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Q: Does this architecture make sense for translation?
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Encoder-decoder models must consider structure of input

e Hidden representation is a bottleneck: it must be able to

represent a sentence of any length, but its size is fixed.
e RNNSs and their variants suffer from vanishing gradients.

e So, representation from the encoder also has a recency bias: it
mostly represents final words of the input sentence.

e Target words whose corresponding source words are at the
beginning of the sentence therefore depend on information
that originates further away in the computation graph.

16



Encoder-decoder models must consider structure of input

e Empirically, this means the model forgets first words of input!
e Reversing input order makes model forget final words of input.
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Encoder-decoder models must consider structure of input

e Empirically, this means the model forgets first words of input!

e Reversing input order makes model forget final words of input.
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Source: https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Q. What can we do?
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Attention



Decoder attends to relevant input at each step

Decoder RNN
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Decoder attends to relevant input at each step
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Decoder attends to relevant input at each step
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Attention computes a distribution over source words

In decoder softmax, the context is now a weighted average of
source hidden state vectors:

P(yi | y1;---sYi-1,X1,- -, Xx|) = softmax(W concat(s;, c;) + b)

x|

C, = E Oé,"jhj
j=1
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Attention computes a distribution over source words

In decoder softmax, the context is now a weighted average of

source hidden state vectors:

P(yi | y1;---sYi-1,X1,- -, Xx|) = softmax(W concat(s;, c;) + b)

x|

Ci = E Oé,'th
j=t

Notice that «; is a distribution over elements of x. But the length

of x can vary! So how can we compute it? A simple solution:

a;J:s;-hj

a; = softmax(a;)

19



Interpreting attention

aij =si-h;

a; = softmax(a;)

e Attention solves a problem: we have a variable length input,
and we want to summarize it into a fixed vector, focusing only
on the relevant parts of the input.

e But relevance depends on current prediction task! So we
compute a function of the output hidden state (the query)
and each of the available input vectors (the keys).
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Interpreting attention

aij =si-h;

a; = softmax(a;)

e Attention solves a problem: we have a variable length input,
and we want to summarize it into a fixed vector, focusing only
on the relevant parts of the input.

e But relevance depends on current prediction task! So we
compute a function of the output hidden state (the query)
and each of the available input vectors (the keys).

e This computation can take many alternative forms:

ajj = s;Vh; (bilinear model)

ajj = FFN(s;, hj) (feedforward neural network)

20



Aside: RNN hidden states encode words in context

e Attention treats each hidden state of an RNN as a
representation of the corresponding source word.
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Aside: RNN hidden states encode words in context

e Attention treats each hidden state of an RNN as a
representation of the corresponding source word.

e Last week, we introduced RNNs as a way of summarizing the
complete history of a sequence. So h; represents xj ... x;.

e Truth is in between: recency bias means that h; mostly
represents x;, but in the context of x1 ...x;_1.
e This makes sense to disambiguate different meanings of x;,

but what about context xjy1 .. .X|X‘?

Idea. Use two encoder RNNs: one left-to-right, one right-to-left.
Concatenate their states at position /. This is a bidirectional RNN.

Widely used for encoding input strings.

Q. Can decoders be bidirectional? A. No! Right context missing.

21



Attention is not alignment (but alignment inspired attention)

e We are directly modeling P(y | x).
e We modeled alignment as a latent variable to work around

Markov assumptions: P(y,z | x)

22
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Attention is not alignment (but alignment inspired attention)

e We are directly modeling P(y | x).

e We modeled alignment as a latent variable to work around
Markov assumptions: P(y,z | x)

e Our neural model has no Markov assumptions. Attention is
deterministic, not stochastic. It does not represent a
probabilistic choice and we do not marginalize it out.
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Attention is not alignment (but alignment inspired attention)

We are directly modeling P(y | x).

We modeled alignment as a latent variable to work around
Markov assumptions: P(y,z | x)

Our neural model has no Markov assumptions. Attention is
deterministic, not stochastic. It does not represent a
probabilistic choice and we do not marginalize it out.

Practically: attention looks somewhat like alignment, but
since information can flow along recurrent connections, it is
more difficult to interpret.

Economic growth has slowed down in recent vyears
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Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .

Economic growth has slowed down in recent years .
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umbrella. hillside.

\ i |
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broccoli. field. cabinets.
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Encoder-decoder with attention is a common design pattern

We surveyed many applications in the first lecture.

Task Input type Output type
Question answering string string
Sentiment analysis string label

Syntactic parsing string tree
Semantic parsing string graph (logical form)
Generation table string
Image captioning image string
Machine translation string string

24



Encoder-decoder with attention is a common design pattern

We surveyed many applications in the first lecture.

Task Input type Output type
Question answering string string
Sentiment analysis string label

Syntactic parsing string tree
Semantic parsing string graph (logical form)
Generation table string
Image captioning image string
Machine translation string string

Q. How might you use encoder-decoder with attention to model
text classification?

24



e To model a conditional probability distribution P(y | x), use a
neural architecture to encode x, and another to decode y.

e A bidirectional encoder uses both left and right context.

e A decoder can choose to attend to different elements of the
encoded input. This shortcut avoids long distances between
encoded and decoded elements.

e Attention uses a query vector to compute a distribution over
a key vectors, using the softmax function.

e Encoding, decoding, and attention are general ideas. Choose
architectures that are appropriate to input and output types.
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e To model a conditional probability distribution P(y | x), use a
neural architecture to encode x, and another to decode y.

e A bidirectional encoder uses both left and right context.

e A decoder can choose to attend to different elements of the
encoded input. This shortcut avoids long distances between
encoded and decoded elements.

e Attention uses a query vector to compute a distribution over
a key vectors, using the softmax function.

e Encoding, decoding, and attention are general ideas. Choose

architectures that are appropriate to input and output types.

Next lecture. Transformers. Then we'll have covered most of the
key modeling ideas in the course!
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