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The Story so Far



Neural Parsing

e We have seen how encoder-decoder models can be used for
syntactic parsing: the input is a sequence of words, the output
is a sequence of labeled brackets.

e This approach can use LSTMs or transformers, decoding can
use beam search or CYK.

e An alternative is to model parser transitions, i.e., the actions
that are required to build a syntax tree [Kim et al., 2019]. Not

discussed in this course.



Neural Parsing

e We have seen how encoder-decoder models can be used for
syntactic parsing: the input is a sequence of words, the output
is a sequence of labeled brackets.

e This approach can use LSTMs or transformers, decoding can

use beam search or CYK.

e An alternative is to model parser transitions, i.e., the actions
that are required to build a syntax tree [Kim et al., 2019]. Not
discussed in this course.

But what if we don't have syntactically labeled training data?
Can we still infer syntactic structure if we have lots of text?



Neural Encoder-Decoder Parsing
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Unsupervised Parsing



Unsupervised Parsing

Goal of unsupervised parsing: induce syntactic structure from

unlabeled text:

e this is an old problem in the literature on formal grammars
(Gold's theorem);

e human children learn the syntax of their native language with
little supervision;

e we have treebanks for a few dozen languages (out of the
world’s around 6,000);

e unsupervised parsing can be used as the first stage in
constructing larger treebanks.

But: Unsupervised parsing is hard! SotA F-score is around 60,
compared to >95 for supervised parsing.



Unsupervised Parsing

Key insights for grammar induction:

e exploit the idea behind linguistic constituency tests;

e a sequence of words is a constituent if it appears in the
context specific for this constituent;

e long constituents often have short equivalents (pro-forms),
e.g., a noun phrase can be replaced by a pronoun;

e the constituency of pro-forms is easy to discover, they are

often single words;

e we will use constituency test to discover which spans
(sequences of words) should be phrases.



Unsupervised Parsing

The insights on the previous page were first used for unsupervised
parsing by Klein and Manning [2002].

Their Constituent Context Model (CCM) was the first
unsupervised parsing model that beat the righ-branching baseline
for English.

Today, we will look at a neural incarnation of this idea. Cao et al.
[2020] model combines constituency tests with pre-trained
language models such as BERT.



Unsupervised Parsing via
Constituency Tests



Constituency Tests

Example: by midday , | the london market | was in full retreat

A: by midday ,
B: the london market
C: was in full retreat

where B is the span of words being tested for constituency.

Cao et al. [2020] use the following constituency tests:

Name Applied to “A[B ] C” Example

Clefting it {is, was} B that A C it {is, was} the london market that by midday , was in full retreat
Coordination ABandBC by midday , the london market and the london market was in full retreat
Substitution A {it, ones, did so} C by midday , {it, ones, did so} was in full retreat

Front Movement B ,AC the london market , by midday , was in full retreat

End Movement A CB by midday , was in full retreat the london market

Now try this with a non-constitutent (e.g., market was)! You will

get ungrammatical strings.



Unsupervised Parsing via Constituency Tests

General approach proposed by Cao et al. [2020]:

constituency test: take a sentence, modify it via a
transformation (e.g., replace a span with a pronoun);

check if the result is grammatical using a neural
grammaticality model;

produce a tree for the sentence by aggregating the results of
constituency tests over spans;

select the tree with the highest score;

add to this refinement: alternate between improving the tree
and improving the grammaticality model.



Constituency Tests

Transformation function: c : (sent, /,j) — sent’
takes the span i to j of a sentence and outputs a new sentence.

Judgment function: g : sent — {0,1}
judges whether the resulting sentence is grammatical or not.

e Assumption: the span is a constituent if the transformed

sentence is grammatical.

e We need a set of transformations (manually specified) and a

grammaticality model (learned).
e Constituency tests provide the model with an inductive bias.

e Note that not all constituency tests that linguists use are
based on transformations (e.g., semantic preservation).
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Parsing Algorithm

Key idea: score each span in the sentence and then choose the

tree with the best total score.

Let gy : sent — [0, 1] be the grammaticality model with

parameters 6.

We score each span by averaging the grammaticality judgments
over the constituency tests C'

LS glc(sent, )

ceC

Then, we score each tree by summing the scores of its spans and

sp(sent, i, j) \C]

choose the highest scoring binary tree via CYK:

t*(sent) =  argmax Z sp(sent, i, )
te T (len(sent)) (e

T(len(sent)) is the set of binary trees with len(sent) leaves. 1



Grammaticality Model



Initializing the Grammaticality Model

e To train the grammaticality model, we need a corpus of
grammatical and ungrammatical sentences as training data.

e However, this would constitute a form of supervision.

e So instead we train the grammaticality model using a
real/fake task.

e Given an unlabeled corpus of sentences and a set of
corruptions, the task is to predict whether a sentence is real
or corrupted.

e The grammaticality model is not trained from scratch, but by
fine-tuning RoBERTa, a variant of BERT.

e 5 million sentences from English Gigaword serve as a the
unlabeled training corpus.
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Initializing the Grammaticality Mo

Cao et al. use the following set of corruptions:

Name Description

Shuffle Choose a random subset of words in the sentence and randomly permute them.
Swap Choose two words and swap them.

Drop Choose a random subset of words in the sentence and drop them.

Span Drop Choose a random contiguous span of words and drop it.

Span Movement Choose a random contiguous span of words and move it to the front or back.
Bigram Generate a sentence of the same length using a bigram language model trained

The grammaticality model must determine whether a given
sentence is real or corrupted.
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Refining the Grammaticality Model

Refinement procedure:

1. Using the span-based algorithm, parse a batch B of sentences.
2. Use these trees as pseudo-gold labels to update the span
judgments.

3. Repeat for the next batch of sentences.

14



Refining the Grammaticality Model

Refinement procedure:

1. Using the span-based algorithm, parse a batch B of sentences.

2. Use these trees as pseudo-gold labels to update the span
judgments.

3. Repeat for the next batch of sentences.

Updating span judgments: For each sentence, minimize binary
cross-entropy (included in predicted tree or not):

> log(sy(sent,i,j))+ > log(l— sy(sent,i,}))
(ij)€t*(sent) (ij)¢t* (sent)
sp(sent, i, /) only depends on the grammaticality model, so we are

optimizing its parameters: increase the grammaticality judgments
of constituent, decrease the judgments of non-constituents.
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Results



Comparison with other Unsupervised Parsers

PTB F1
Model Mean Max
PRPN' (Shen et al., 2018) 37.4 38.1
URNNG (Kim et al., 2019b) - 454
ONT (Shen et al., 2019) 477 494
Neural PCFG' (Kim et al., 2019a) 50.8  52.6
DIORA (Drozdov et al., 2019) 58.9

Compound PCFG' (Kim et al., 20192) 552  60.1

Left Branching 8.7
Balanced 18.5
Right Branching 39.5
Ours (before refinement) 48.2
Ours (after refinement) 62.8 65.9

Oracle Binary Trees 84.3

ii5)



Combination with Unsupervised RNNG

Unsupervised RNNG is a variant of Recurrent Neural Network
Grammar proposed by Kim et al. [2019].

URNNG can be trained using the induced trees of another
unsupervised parser, followed by fine tuning with an LM objective.

PTB F1
Model Initial (Max) +URNNG
PRPN 47.9 51.6
ON 50.0 55.1
Neural PCFG 52.6 58.7
Compound PCFG 60.1 66.9
Ours (after refinement) 65.9 71.3
Supervised Binary RNNG 71.9 72.8
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Analysis of the Output: Before and After Refinement
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Analysis of the Output: After Refinement+URNNG and Gold
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Analysis of Model Behavior

Cao et al. provide a detailed analysis of the behavior of their model:

e recall by constituency label
e analysis by constituency test
e common mistakes

e example trees

This is something to emulate!
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Co-training for Unsupervised Parsing



PCFGs, the Supervised Case

Outside tree o = s
S S
NP VP

/\ D/\N

NP VP |

. he do,

At node VP: o~ o~ the dog

D N V P

| | | | Inside tree t = VP
P
the dog saw him v P

Conditionally independent given the label and the connecting
nonterminal

p(o, tIVP) = p(o|VP) x p(t|VP)

20



Inside Outside Strings

e The yield of the
orange part is ‘“in-
side string”

e The yield of the
blue part is “outside
string”

e We will bootstrap
a classifier to pre-

dict if a node dom-
n

inates a pair of (in-
side,outside) strings
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Co-training (Yarowsky, 1995; Blum and Mitchell, 1998)

Roughly! Repeats the following steps (given unlabeled data U and
labeled data L):

e Train a classifier with one “view" on L
e Train a classifier with another “view" on L

e Take some (confident) predictions on U from both classifiers
and add to L

Co-training works best when the two views are conditionally
independent given the label
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And In Qur Case...

This leads to:

Take all sentences, and break them all possible ways into
inside/outside strings

Get neural representations for each pair (i, 0) as two “views"

Take a subset of these L, and label them with some heuristics
- the label is whether (i, 0) has a node that connects them

Do co-training
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Weak Supervision

What would be the seed dataset to start the co-training
process?

e All (start, end) spans for a given sentence have label 1 (are
constituents)

o All (start,end — i) for i = 1,2, ...,6 have label 0

e Another simple heuristic that relies on casing
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How Do We Use These Labels?

Let

e pi(e) be the confidence of the classifier for an inside of span e
e po(e) be the confidence of the classifier for an outside of span
e

Then, for three different types of scores:

e score(e) = pi(e)
e score(e) = po(e)
e score(e) = pi(e) - po(e)

find the tree t* = argmax; ) ., score(e)

Also referred to as span decoding o5



Results

WSJ-Full WSJ-10

Model Mean Max Mean Max

Trivial Baselines:

Left Branching (LB) 8.7 17.4
Balanced 18.5

Right Branching (RB) 39.5 585
Unsupervised Parsing approaches:

PRPNT (Shen et al., 2018) 374 381 584 -
URNNG* (Kim et al., 2019b) - 454 - -
ONT (Shen et al., 2019) 47.7 494 639 -
Tree Transformer™ (Wang et al., 2019) 50.5 52.0 66.2 -
Neural PCEG' (Kim et al.. 2019a) 50.8 52,6 64.6 -
DIORA™ (Drozdov et al., 2019 - 58.9 605 -
Compound PCEG' (Kim et al., 2019a 552 60.1 705 -
S-DIORA™ (Drozdov et al., 2020 576 640 718 -
Constituency Test* (Cao et al., 2020) 628 659 681 -
Qurs* (using inside) 559 572 662 -
Ours* (using inside w/ self-training) 614 642 717 -

Ours™ (using inside and outside w/ co-training) 63.1 66.8 74.2 -

Oracle Binary Trees 843 82.1 2




e We don't have treebanks for most of the world’s language, so
we can't train supervised parsers.

e Instead, use unsupervised parsing models, which learn syntax
trees from unlabeled text.

e Use constituency tests from linguistic theory: transformation
applied to a sentence span that preserves grammaticality.

e Requires a model to judge grammaticality. Obtained by
fine-tuning RoBERTa.

e Select the parse tree that maximizes the grammaticality scores
of its spans.

e Performs well, but requires with refinement (self-training); can
be combined with Unsupervised RNNG.
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