Natural Language Understanding, Generation,
and Machine Translation

Lecture 5: Recurrent Neural Networks

Alexandra Birch
22 January 2025 (week 2)
School of Informatics

University of Edinburgh
a.birchged.ac.uk

a.birch@ed.ac.uk

Overview

Recurrent networks for language modeling
From Feedforward to Recurrent Networks
Recurrent Networks as Recursive Functions
Backpropagation through Time

Vanishing Gradients

Long Short-term Memory
Architecture

Training

Reading: Section 6 of Neubig (2017), Guo (2013).

Agenda for Today

Wi 35| C

g

|

\v)

Q
00O0[000[000

Last time we saw that vector-to-vector functions, aka neural
networks, can be used to learn n-gram probabilities, with some
nice side benefits: parameter sharing, word representations,
and no zero probabilities in the learned model.

This time we'll see how neural networks can also relieve us
from having to deal with a major difficulty in the design of
classical probabilistic models: making independence
assumptions.

Recipe for Deep Learning in NLP

1. Design a model that matches the input/output of your
training examples.

2. Decide an objective function. For probabilistic models:
cross-entropy loss.

3. Choose a learning algorithm: some variant of stochastic
gradient descent.

4. Compute gradients of loss w.rt. model parameters.

Item 2 and 3 are automated for you in modern libraries, so you
can focus on 1. This is a design problem! You need to think
carefully about input and output, and most importantly about
your data.

Most models in NLP are probabilistic models

E.g. language model decomposed with chain rule of probability.
If w=w...wy € Vx then:

[w|+1
P(Wr ... W) = H P(w; | Wi, ..., Wi_q)

Modeling decision: Markov assumption

'D(Wf ‘ Wr, . "7WI'7'|) ~ P(WI ’ WI‘7H+'|7" '7WI-7'|)

Most models in NLP are probabilistic models

E.g. language model decomposed with chain rule of probability.
If w=w...wy € Vx then:

[w|+1
P(Wr ... W) = H P(w; | Wi, ..., Wi_q)

Modeling decision: Markov assumption
P(Wi ‘ Wi,.. 0, W/‘71) ~ P(WI ’ Wl'fﬂJr'Iﬂ LIRS W/','|)

Goal for today: remove this assumption!

Most models in NLP are probabilistic models

E.g. language model decomposed with chain rule of probability.
If w=w...wy € Vx then:

[w|+1
P(Wr ... W) = H P(w; | Wi, ..., Wi_q)

Modeling decision: Markov assumption
P(Wi ‘ Wi,.. 0, WI‘71) ~ P(WI ’ Wl'fﬂJr'Iﬂ LIRS W/','|)
Goal for today: remove this assumption!

Must still observe rules of probability:
Probabilities are non-negative P:V—Ry

..and sum to one > P w, ... W) =1

Markov assumptions are wrong for language

The roses are red.

Markov assumptions are wrong for language

The roses are red.

The roses in the vase are red.

Markov assumptions are wrong for language

The roses are red.
The roses in the vase are red.

The roses in the vase by the door are red.

Markov assumptions are wrong for language

The roses are red.
The roses in the vase are red.
The roses in the vase by the door are red.

The roses in the vase by the door to the kitchen are red.

Markov assumptions are wrong for language

The roses are red.

The roses in the vase are red.

The roses in the vase by the door are red.

The roses in the vase by the door to the kitchen are red.

Captain Ahab nursed his grudge for many years before seeking
the White

Markov assumptions are wrong for language

The roses are red.

The roses in the vase are red.

The roses in the vase by the door are red.

The roses in the vase by the door to the kitchen are red.
Captain Ahab nursed his grudge for many years before seeking
the White

Donald Trump nursed his grudge for many years before
seeking the White _

Recurrent networks for language
modeling

We need to model arbitrary context. How?

Context is important in language modeling:

- But n-gram language models use a fixed context window.
- Feedforward networks also use a fixed context window...

- but linguistic dependencies can be arbitrarily long!

This is where recurrent neural networks come in!

- X;: the input word transformed into one hot encoding
- y;: the output probability distribution
- U: the weight matrix of the recurrent layer

- V: the weight matrix between the input layer and the
hidden layer

- W: is the weight matrix between the hidden layer and the
output layer

- o: the sigmoid activation function
- h: the hidden layer

From feedforward to recurrent neural networks

Vi

X1 X2 coo Xj—1

From feedforward to recurrent neural networks

Vi

W
. U
Some function —»
}V
Xl

From feedforward to recurrent neural networks

c T \

-
KX

X1 X2 coo Xj—1

From feedforward to recurrent neural networks

V5 2 Vi

W W
° U 0 N U

Vv [V Vv
X1 X2 coo Xj—1

View this complete structure as a

Recurrent neural networks are simply recursive functions

P(Xi+1 ’ Xy 7Xi) =Y,
y; = softmax(Wh; + b;)
h,‘ = O‘(VX,‘ + Uh,‘_1 + b1)

Xj = onehot(x;)
Now P is a function of x;, and, recursively through h;, all of

X1, ..., Xj_1. SO it computes P(Xjy | X1,...,Xj_1) with no Markov
assumption!

10

Recurrent neural networks are simply recursive functions

P(Xi+1 ’ Xy 7Xi) =Y,
y; = softmax(Wh; + b;)
h,‘ = O‘(VX,‘ + Uh,‘_1 + b1)

Xj = onehot(x;)

Now P is a function of x;, and, recursively through h;, all of
X1, ..., Xj_1. SO it computes P(Xjy | X1,...,Xj_1) with no Markov
assumption!

For simplicity, your coursework leaves out by and b, .

10

Use stochastic gradient descent, with cross-entropy.

n

Use stochastic gradient descent, with cross-entropy.

Unlike in a feedforward network, the structure of the
computation is dynamic:y; is computed via more nodes than

Vi1

n

Use stochastic gradient descent, with cross-entropy.

Unlike in a feedforward network, the structure of the
computation is dynamic:y; is computed via more nodes than
Vi

Computing gradients by hand is tedious and error-prone. Most
toolkits do this for you via automatic differentiation, which
computes the gradient in two steps: by computing the current
output from the inputs in a forward pass on the computation
graph, and then computing gradients via backpropagation
from the error (at the output) back to the inputs.

n

Use stochastic gradient descent, with cross-entropy.

Unlike in a feedforward network, the structure of the
computation is dynamic:y; is computed via more nodes than
Vi

Computing gradients by hand is tedious and error-prone. Most
toolkits do this for you via automatic differentiation, which
computes the gradient in two steps: by computing the current
output from the inputs in a forward pass on the computation
graph, and then computing gradients via backpropagation
from the error (at the output) back to the inputs.

Backpropagation uses the chain rule of derivatives, applied via
dynamic programming on the computation graph.

n

Forward Propagation computes the output

The input at time t is x(t), output is y(t), and hidden layer s(t).

Note change of notation reflects BPTT reading Guo (2013)
Hidden layer is now s(t) (for state), showing weight
multiplication separately to activation, removing bias
Input layer x to hidden layer:

h = tanh(Vx + b4)

si(t) = flnetj(t))

[

netj(t) = Z X,‘(t)Vj,‘

i

12

Forward Propagation computes the output

The input at time t is x(t), output is y(t), and hidden layer s(t).
Input layer x to hidden layer s:

sit) = flnet(t) (1)
netj(t) = i:x,(t)vj, (2)
Hidden layer s to output 311:
yr(t) = g(nety(t)) (3)
netp(t) = zm:sj(t)vv,?j (4)
j

where f(z) = 0(2), and g(z) = softmax(2).

13

Forward Propagation computes the output

The input at time t is x(t), output is y(t), and hidden layer s(t).
Input layer x to hidden layer s:

si(t) = flnetj(t)) (M)
netj(t) = zlzx,»(t)vj,'+is;,(tﬁ)uj/, (2)
Hidden layer s to output y h
ye(t) = g(nety(t)) (3)
net,(t) = zm:sj(t)vv,?j (4)

j
where f(z) = 0(2), and g(z) = softmax(2).
So far this was a standard feedforward network.

Now we add the recurrence.
13

Backpropagation computes the gradient

For output units, we update the weights W using:
n
Awyg =17) 0prSpj dpk = (dpk — Ypr)g' (netpr)
p

where dpy, is the desired output of unit k for training pattern p.

For hidden units, we update the weights V using:
n [0}
AV}',' = nz 5ijpi 6pj = Z 6Df€WI?jf(netpj)
p k

So far, this is just standard backpropagation!

14

Backpropagation computes the gradient

At the current time step, we accumulate an update to the
recurrent weights U using the standard delta rule:

n 0]
Auji =1 6p(t)spn(t —1) 5pi(t) = > Sprwiif (nety;)
p K

We backpropagate error through time, applying the delta rule
to the previous time step as well:

Spj(t—1) = Spn(t)upf (nety(t — 1))
h

where h is the index for the hidden unit at time step t, and j for
the hidden unit at time step t — 1.

Note: Guo (2013) incorrectly writes f/(gp;(t — 1)) instead of f'(nety(t — 1)).

15

Backpropagation computes “back through time”

We can do this for an arbitrary number of time steps 7, adding
up the resulting deltas to compute Au;.

The RNN effectively becomes a deep network of depth 7. In
theory, 7 can (and should) be arbitrarily large.

In practice, it can be set to a small value. This is properly called
truncated backpropagation through time—what you will
implement in the coursework!

As we backpropagate through time, gradients tend toward 0

We adjust U using backprop through time. For timestep t:

n 0
Auji =1 65()spn(t=1) y(t) = > Sprewif (netyy)
p R

For timestep t — 1:

Spi(t = 1) = pn(t)upf (nety(t — 1))
h

For time step t — 2

opi(t—2) = Z(Sph Nupf (nety(t — 2))

- ZZ(SPW uhw}f/(net (t*”)uh}f,(ﬂet (t,z))

hs

As we backpropagate through time, gradients tend toward 0

At every time step, we multiply the weights with another
gradient. The gradients are < 1 so the deltas become smaller
and smaller.

Some Common Activation Functions Activation Function Derivatives

: _gylinear(z)
_g’log\slic(z)

T g‘tamh(z)

- g\ogisnc(z)

[Source: https://theclevermachine.wordpress.com/]

https://theclevermachine.wordpress.com/

As we backpropagate through time, gradients tend toward 0

So in fact, the RNN is not able to learn long-range
dependencies well, as the gradient vanishes: it rapidly “forgets”
previous inputs:

Outputs

Hidden
Layer

Inputs

Time 1 2 3 4 5 6 7
19

[Source: Graves (2012).]

- Simple recurrent networks have one hidden layer, which is
copied at each time step;

- can be trained with standard backprop;

- good performance in language modeling: provides an
arbitrarily long context;

- we can unfold an RNN over time and train it with
backpropagation through time;

- effectively turns the RNN into a deep network;

- but: vanishing gradients as we propagate through time.

20

Long Short-term Memory

Long Short-term Memory

Solution: network can sometimes pass on information from
previous time steps unchanged, so that it can learn from
distant inputs:

Outputs
— — — ®) — e} -
Hidden
oo @@ @--@-@- O
O - - - - - O
Inputs

Time 1 2 3 4 5 6 7

[Source:)]

21

Long Short-term Memory

Solution: network can sometimes pass on information from
previous time steps unchanged, so that it can learn from
distant inputs:

Outputs
- - - O - @) -
Hidden
2 Q- @@ @@ @O
O = = = = = ¢
A
O: open gate
--: closed gate
Inputs black: high activation
white: low activation

Time 1 2 3 4 5 6 7

[Source:)]

21

RNN Unit compared to LSTM Memory Block

output

recurrent

)

input recurrent

[Source:

output
v recurrent

block output Y%7 recurrent
output gate ii' P4

LSTM block y

peepholes

input
PHETTS
- ~

recurrent .

forget gate

input

input

recurrent

Legend
unweighted connection

weighted connection

- connection with time-lag

branching point
mutliplication

sum over all inputs

gate activation function
(always sigmoid)

input activation function

(usually tanh)

output activation function
(usually tanh)

22

The Gates and the Memory Cell

- Gates are regular hidden units: they sum their input and
pass it through a sigmoid activation function;

- all four inputs to the block are the same: the input layer
and the recurrent layer (hidden layer at previous time
step);

- all gates have multiplicative connections: if the activation
is close to zero, then the gate doesn’t let anything through;

- the memory cell itself is linear: it has no activation
function;

- but the block as a whole has input and output activation
functions (can be tanh or sigmoid);

- all connections within the block are unweighted: they just
pass on information (i.e., copy the incoming vector);

- the only output that the rest of the network sees is what

the output gate lets through. >

Vanishing Gradients Again

Why does this solve the vanishing gradient problem?

- Additive connections between memory cells, so its
gradient doesn’t vanish;

- an LSTM block can retain information indefinitely: if the
forget gate is open (close to 1) and the input gate is closed
(close to 0), then the cell just passes on the activation
from the previous time step

- In addition, the block can decide when to output
information by opening the output gate;

- the block can therefore retain information over an
arbitrary number of time steps before it outputs it;

- the block learns when to accept input, produce output,
and forget information: the gates have trainable weights.

- Empirically, research has found that trained LSTMs can be ,
sensitive to hundreds of nrevious words

- The original LSTM (Hochreiter and Schmidhuber, 1997) was
trained with backprop through time;

- but BPTT was truncated after one step, assuming that
long-range dependencies are dealt with by LSTM blocks;

- recall that the activation of the memory cell doesn’t vanish
(unlike the activation of standard recurrent connections);

- recent work has used untruncated BPTT, resulting in more
accurate gradients.

We follow Graves's notation, which extends the RNN notation
introduced in the last lecture.

25

The Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is similar to the LSTM unit. In
most cases it performs comparably, but it has fewer
parameters and is quicker to train.

<<
-

V4

>0oUuT

Source: Cho et al. (2014).

We will use the GRU in Coursework 1. -

Applications

Language modeling: use the LSTM just like a standard RNN:

Method Perplexity
LSTM (512 units) 68.8
IRNN (4 layers, 512 units) 69.4
IRNN (1 layer, 1024 units + linear projection) 70.2
RNN (4 layers, 512 tanh units) 71.8

RNN (1 layer, 1024 tanh units + linear projection) 72.5

[Source: Le et al. (2015).]

IRNN: network of ReLUs (rectified linear units) initialized with
identify matrix. The ReLU activation function is f(z) = max(z, 0).

27

- Backprop through time with RNNs has the problem that
gradients vanish with increasing timesteps;

- the LSTM is a way of addressing this problem;

- it replaces additive hidden units with complex memory
blocks;

- a linear memory cell is the core of the each block;

- input gate controls whether cell receives input; output
gate controls whether the cell state is passed on; forget
gate determines whether recurrent input is passed on;

- the LSTM can be trained with standard backprop or BPTT,;

- applications include sequence labeling and
sequence-to-sequence mapping tasks.

28

References

Cho, K, van Merriénboer, B, Bahdanau, D., and Bengio, Y. (2014). On
the properties of neural machine translation: Encoder-decoder
approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, pages 103-111.

Graves, A. (2012). Supervised sequence labelling with recurrent
neural networks. pages 37-45. Springer.

Greff, K, Srivastava, R. K, Koutnik, J., Steunebrink, B. R, and
Schmidhuber, J. (2016). Lstm: A search space odyssey. [EEE
transactions on neural networks and learning systems,
28(10):2222-2232.

Guo, J. (2013). Backpropagation through time unpublished material.
In Harbin Institute of Technology.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.
Neural computation, 9(8):1735-1780.

Le, Q. V, Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize
recurrent networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

29

	Recurrent networks for language modeling
	From Feedforward to Recurrent Networks
	Recurrent Networks as Recursive Functions
	Backpropagation through Time
	Vanishing Gradients

	Long Short-term Memory
	Architecture
	Training

