Natural Language Understanding, Generation,
and Machine Translation

Lecture 9: Pretrained Language Models

Shay Cohen
based on slides by Frank Keller

31 January 2025 (week 3)
School of Informatics

University of Edinburgh
scohen@inf.ed.ac.uk

scohen@inf.ed.ac.uk

The Story so Far

Bert Architecture

Masked Training

Pre-training and Finetuning Bert

Reading: Devlin et al. [2019].

The Story so Far

Self-attention

Self-attention is what we get when compute attention over the
input sequence. Let xy,...,x; be the input vectors and y;,...,y;
be the output vectors:

Yi = E WX
J

We now compute the attention weight as the dot-product of each
input token with every other token.

/I 9 o o
Wjj = X; * X;

w; = softmax(w?)

Note that the attention weight is now called w’ and the attention
distribution w (rather than a and «).

Self-attention
Yi Yo Ys Ya

W21 W24

X1 X4

Figure from Bloem [2019].

Multi-head Attention

Multi-head attention is able to jointly attend to different parts of

the input. If we just have a single head, have to average.

For example, one head could attend to the subject of a verb,
another one to its object. Or different heads could attend to
different referents of a pronoun.

© ©
2 ® 2
] u

T T m
@« = E e v 0]
£z ¢ s3@ 2z g2 392
= = z 2 = F @ T o £ v o z 2 =

@

= @
g:—-w] ®

@ o =] @

2 T g @ 2z oo 2 8 g 2
= = 8 = & © ¢ £ o = = 8 =

The Transformer

The multi-head self attention mechanism needs to be integrated
into a larger architecture to be useful:

input transformer block output

self
attention

=l

] L1

Figure from Bloem [2019].

Position Encodings

We choose a function f : N — R¥ that maps positions to real
valued vectors, and let the network learn how to interpret these.

The choice of encoding function is a hyperparameter. \Vaswani
et al. [2017] use:

PE(pos 2i) = sin(pos/10000%/%)
PE(pos2i+1) = cos(pos/10000%/ %)

where pos is the position and i is an index over dimensions.

The positions encoding is then added to the input embedding
(both are of dimensionality k).

Masking

We apply a mask to the matrix of dot products, before the softmax

is applied. This disables all elements above the diagonal:

Y Yz Y3 Yu Ys Yo

/

raw attention weights mask X1 X2 X3 X4 X5 Xg

0} Spuale

The model can no longer look forward and just copy the upcoming
input; it behaves like an RNN!

Figure from Bloem [2019].

From Transformers to Embeddings

e We saw how we can stack transformers and use them for
classification. We apply mean pooling to the output and map
it onto a class vector.

e We can also use transformers for sequence prediction. For this
we need to mask some of the input.

e Using transformers, we can build language models that
represent context very well: contextualized embeddings.

e These language models can be used for feature extraction, but
also in a pre-training/finetuning setup.

Reminder about Embeddings

e An embedding for a word (or a sub-word) is a mapping of it
to a vector

e In ANLP you studied about word2vec, which provides static
word embeddings

e Contextualized embeddings map words (or sub-words) to

vectors based on their context

10

Pre-training and Finetuning

Instead of just extracting embeddings, we can retrain the model for
a new task using new data:

e Pre-training: train a generic source model on a standard,
large dataset.

e Finetuning: then take the resulting model, keep its
parameters, and replace the output layer to suit the new task.
Now train this target model on the dataset for the new task.

Transfer learning by finetuning.

You can think of pre-training as a way of initializing the

parameters of your target model to good values.

11

Pre-training and Finetuning

Pre-train <

Source
model

Output layer

Random
initialization ~

t

Layer L - 1

R Copy....

t

..... Copy booco

Layer 1

R Copy PR

t

Source data

Target
model

Output layer

t

Layer L -1

t

Layer 1

t

Target data

Train from
scratch

> Fine-tune

12

Pre-training and Finetuning

Things to bear in mind when finetuning:

e Often, you truncate the last layer when you replace it (you

typically have fewer output classes).

e |t's often a good idea to use a smaller learning rate when
fine-tuning (you have already initialized to good values!).

e Typically, you only finetune a handful of final layers, you keep
the other ones fixed: weight freezing.

e Finetuning without weight freezing is normally too slow.

13

Bert Architecture

Bert Architecture

Bert (Bidirectional Encoder Representations from Transformers):

e designed for pre-training deep bidirectional representations
from unlabeled text;

e conditions on left and right context in all layers;

e pre-trained model can be finetuned with one additional output
layer for many tasks (e.g., NLI, QA, sentiment);

e for many tasks, no modifications to the Bert architecture are
required;

e Devlin et al. [2019] report SotA results on 11 tasks using
pre-training/finetuning approach.

14

Bert Architecture

Bert uses bidirectional transformer representations. This is shown

to be superior to competing architectures:

e GPT [Radford et al., 2018] also uses transformers, but is only
trained left-to-right;

e Elmo [Peters et al., 2018] uses shallow concatenation of
independently trained left-to-right and right-to-left LSTMs.

Main attraction of Bert: pre-training/finetuning approach (though
this is also present in GPT).

ii5)

Bert Architecture

BERT (Ours) OpenAl GPT

16

o
b
=
e
0
o)
52
i=
O
S
<
L
S
0
a4}

ELMo

Figure from

17

Bert Architecture

Basic Bert architecture:

e multi-layer bidirectional transformer [Vaswani et al., 2017];

o L: layers (transformer blocks); H: dimensionality of hidden
layer, A: number of self-attention heads;

e Bert Base: L =12, H=768, A= 12, 110M parameters;
e Bert Large: L =24, H=1024, A =16, 340M parameters.

18

Input/Output Representation

e Input sequence: can be (Question, Answer) pair, single

sentence, or any other string of tokens;

e 30,000 token vocabulary, represented as WordPiece
embeddings (handles OOV words);

o first token is always [CLS]: aggregate sentence representation
for classification tasks;

e sentence pairs separated by [SEP] token; and by segment
embeddings;

e token position represented by position embeddings.

19

Bert Architecture

o () () () () ())))) () ()

Token

Embeddings ’ EchSI Emv Edog Ei H Eeute ‘ E[SEP] Ere Elies Ep\ay Emng E[sep]
+ + + + + + + + + +

emposangs | Ea || B][B[B][B][B][B | B L& B | [&
+ -+ + + + + + + + + +

croecanes | Eo || B2 || B || &][B J[B | J[6 |[0 [B [By

E: input embedding, C: final hidden vector of [CLS]; T;: final
hidden vector for the i-th input token.

Note: C and T; used in subsequent slides.

Figure from].

20

Masked Training

Masked Language Model

Important departure from previous embedding models (including
GPT and Elmo):

Don't train the model to predict the next word, but train it to

predict the whole context.

21

Masked Language Model

Important departure from previous embedding models (including
GPT and Elmo):

Don't train the model to predict the next word, but train it to

predict the whole context.

e Problem: how can we prevent trivial copying via the
self-attention mechanism?

e Solution: mask 15% of the tokens in the input sequence; train
the model to predict these.

21

Masked Language Model

Problem: masking creates mismatch between pre-training and
finetuning: [MASK] token is not seen during fine-tuning. Solution:

22

Masked Language Model

Problem: masking creates mismatch between pre-training and
finetuning: [MASK] token is not seen during fine-tuning. Solution:

e do not always replace masked words with [MASK], instead
choose 15% of token positions at random for prediction;
e if /-th token is chosen, we replace the i-th token with:

1. the [MASK] token 80% of the time;
2. a random token 10% of the time;
3. the unchanged i-th token 10% of the time.

e Now use T; to predict original token with cross entropy loss.

22

Masked Language Model

Why this masking scheme?

e if we always use [MASK] token, the model would not have to
learn good representation for other words;

e if we only use [MASK] token or random word, model would
learn that observed word is never correct;

e if we only use [MASK] token or observed word, model would
just learn to trivially copy.

23

Secondary Task: Next Sentence Prediction

e Bert is designed to be used for tasks such a question
answering (QA) and natural language inference (NLI) that
require sentence pairs;

e Bert uses a special mechanism to capture this: pre-training on
next sentence prediction task;

e generate training data: choose two sentences A and B, such
that 50% of the time B is the actual next sentence of A, and
50% of the time a randomly selected sentence.

24

Pre-training and Finetuning Bert

Pre-training and Finetuning Bert

Masked Sentence A Masked Sentence B

@«
Unlabeled Sentence A and B Pair

Pre-training

Figure from].

NLI/M\D

Start/End Span\

N

Question P Paragraph
Question Answer Pair /

Fine-Tuning

25

Pre-training and Finetuning Bert

e Pre-training on BooksCorpus (800M words) and English
Wikipedia (2,500M words);
e to finetune for a new task, we plug task-specific inputs and
outputs into Bert and re-train its parameters;
e input: designed to be two sentences:
1. sentence pairs in paraphrasing;
2. hypothesis-premise pairs in entailment;
3. question-passage pairs in question answering;
4. text-() pair in text classification or sequence tagging;
e output:
1. sequence of tokens in tasks such as QA (mark answer span);
2. sequence of labels in tagging tasks such as NER;
3. [CLS] representation is fed into an output layer for
classification, such as entailment or sentiment.

e appendix of Devlin et al. [2019] gives examples.
26

Bert Results: Glue Benchmark

System MNLI-(m/mm) QQP QNLI SST2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 35k 2.5k -
Pre-OpenAl SOTA 30.6/30.1 66.1 823 932 35.0 81.0 860 617 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 79.8 90.4 36.0 733 849 568 71.0
OpenAI GPT 82.1/81.4 703 874 913 454 80.0 823 560 75.1
BERTgase 84.6/83.4 712 905 935 52.1 85.8 889 664 79.6
BERT| arGE 86.7/85.9 721 927 94.9 60.5 86.5 893 70.1 82.1

Glue is a mixture of various natural language understanding tasks: MNLI,
QNLI, WNLI: natural language inference; QQP: question equivalence;
SST-2: sentiment; CoLA: linguistic acceptability; STS-B: semantic
similarity; MRPC: paraphrasing; RTE: entailment.

27

Feature Extraction vs. Finetuning: Named Entity Recognition

System Dev F1 Test F1
ELMo (Peters et al., 2018a) 95.7 92.2
CVT (Clark et al., 2018) - 92.6
CSE (Akbik et al., 2018) - 93.1
Fine-tuning approach
BERTArGE 96.6 92.8
BERTgAsE 96.4 92.4
Feature-based approach (BERTgasE)
Embeddings 91.0 -
Second-to-Last Hidden 95.6 -
Last Hidden 94.9 -
Weighted Sum Last Four Hidden 95.9 -
Concat Last Four Hidden 96.1 -

Weighted Sum All 12 Layers 95.5 -

28

Bert and the State of the Art

The current state of the art in NLP owes a lot to Bert (and many

subsequent large language models):

e pre-training a large language model and then fine-tuning or
prompting is state of the art for many NLP tasks

e pre-training requires lots of resources! Estimate for Bert (Tim
Dettmers): 4 GPUs (RTX 2080Ti) for 100 days

e fine-tuning existing model is relatively quick, but fitting model
in GPU memory can be a challenge

e getting new state of the art results with ever-larger models
and data is a game that will continue, but only few can play

e positive (for everybody else): we also need smart ideas for
architectures, objective functions, evaluation, etc.

29

e Bert is a contextualized language model that uses a deep,
bidirectional transformer architecture;

e it is pre-trained on unlabeled text using masking and next

sentence prediction;

e it is designed for finetuning with minimal architectural

modifications;

e the input uses sentence pairs; the output can be sentences,
labels, classification decisions, depending on task;

e Bert-based models are state of the art on many NLP tasks.

e There are many variants of Bert . ..

30

. SWAG,IMDB, Twitter
Youtube videos BooksCorpus Knowledge Monolingual Corpora

Graph (104 languages)
Biomedical corpus Corpora/Data

Clinical notes/EHR Hierarchical diagnostic

Scientific publications Codcs
English Wikipedia
SCIBERT ERNIE(1) M-BERT
Pre-trained models ClinicalBERT ERNIE(2) G-BERT
BioBERT
VideoBERT EERI TransBERT
Generic & Domain specific NLP Relation classification
tasks (e.g. NER) DocBERT
PatentBERT Code Switching

nglish/Hindi mix

es)

Prediction tasks

_ (e.g. Hospital readmission)
Video captioning

(classification) Classification tasks
(e.g. medication

mmendation)

31

References

Peter Bloem. Transformers from scratch. Blog, http: //www.peterbloem.nl/blog/transtormers, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional for language ing. In ings of
the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, pages 4171-4186, Minneapolis, MN, 2019.

Matthew E. Peters, Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Deep i word i In
Proceedings of the Human Language Technology Conference of the North American Chapter of the for C Linguistics, pages 2227-2237, New

Orleans, LA, 2018
Alec Radford, Karthik Narasimhan, Tim Salimans, and llya Sutskever. Improving language understanding with unsupervised learning. Technical report, OpenAl, 2018

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, tukasz Kaiser, and lllia Polosukhin. Attention is all you need. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 5998-6008, Red
Hook, N, 2017. Curran Associates.

32

http://www.peterbloem.nl/blog/transformers

	The Story so Far
	Bert Architecture
	Masked Training
	Pre-training and Finetuning Bert

