Natural Language Understanding, Generation,
and Machine Translation

Lecture 20: Neural Parsing

Shay Cohen
based on slides by Frank Keller

12 February 2024 (week 5)
School of Informatics

University of Edinburgh
scohen@inf.ed.ac.uk

scohen@inf.ed.ac.uk

The Story so Far
Neural Parsing
Potential Problems
Results

Parsing with Transformers

Reading: [Vinyals et al.2015]; optional: [Kitaev and Klein2018|

The Story so Far

Encoder-Decoder Architecture

e So far, we have used the encoder-decoder architecture for
machine translation and other tasks (T5).

e But it can be used for any task where both the input and
output are sequences of symbols.

e In this lecture, we will use it for syntactic parsing.

o We will see an LSTM-with-attention encoder-decoder, but

also discuss a transformer-based model.

e This approach can be used to generate any structured
representation that can be linearized (e.g., trees, graphs).

Reminder: Encoder-Deco Architecture

of . course john fun
Decoder RNN % %
S1 P > # Sa » S5
y A A A
—» » » h3 >
Encoder RNN
natiirlich hat john spaB3

Neural Parsing

Parsing is the task of turning a sequence of words:

(1) You saw a man with a telescope. into a syntax tree:

S
NP VP
‘ /\
Pro
Y NP
You |
saw
Det N PP

with a telescope

Linearizing the Input

But how can we use an encoder-decoder model for parsing? The
input is a sequence, but the output is not.

S
NP VP
‘ /\
Pro
| VvV NP
You |
saw
Det PP

P Det N
| | |

with a telescope

We can linearize the syntax tree:

(S (NP (Pro You)) (VP (V saw) (NP (Det a) (N man) (PP (P with) (Det
a) (N telescope))))) @

Linearizing the Input

Now we have a sequence that represents the syntax tree:

(S (NP (Pro You)) (VP (V saw) (NP (Det a) (N man) (PP (P
with) (Det a) (N telescope)))))

We can simplify it by stripping out the words:
(S(NP Pro) (VP V (NP Det N (PP P DetN))))

And we can make it easier to process by annotating also the

closing brackets:

(S (NP Pro)Np (VP \% (NP Det N (PP P Det N)pp)Np)Vp)5

An Encoder-Decoder for Parsing

(S.) (NP_F Pro . v NP) (VP

Decoder LSTM

S1 # 2 » 3 | R » S5
A A A A
’ hl > h2 P h3 P h4
Encoder LSTM
You saw a man

An Encoder-Decoder for Parsing

Essentially, that is our parsing model! But in order for this to work
properly, we also need to:

e Add an end-of-sequence symbol, as output sequences can vary
in length.

e Reverse the input string: results in small performance gain.

e Make the network deeper. [Vinyals et al.2015] use three
LSTM layers for both encoder and decoder.

e Add attention. This essentially works like the encoder-decoder
with attention we saw for MT (lecture 7).

e Use pre-trained word embeddings as input (here: word2vec).

e Get lots of training data. [Vinyals et al.2015] use an existing
parser (the Berkeley parser) to parse a large amount of text,
which they then use as training data.

An Encoder-Decoder for Parsing

This is how they draw their model architecture:

;(_ iVP - END
— &~ —————— B
T T T T T
LSTM2,
T T T T T
LSTML
1 T T 1 T
Go END (S)s

10

Potential Problems

Potential Problems

But wait! Can this really work? What about:

e How do we make sure that opening and closing brackets
match?
Else we won't have a well-formed tree!

e How do we associate the words in the input with the leaves of
the tree in the output?

e The output sequence can be longer than the input sequence,
isn't this a problem?

e How can | make sure that the model outputs the best overall

sequence, not just the best symbol at each time step?

11

Potential Problems

How to deal with these problems:

e This is really rare (0.8-1.5% of sentences). And if it occurs,
just fix the brackets in post-processing (add brackets to
beginning or end of the sequence).

e You could just associate each input word with a PoS in the
output, in sequence order. But in practice: only the tree is
evaluated. [Vinyals et al.2015] replace all PoS tags with XX.

e Not a problem, also happens in MT. And only the tree is
evaluated.

e Use beam search to generate the output (as in MT). However,
in practice, beam size has very little impact on performance.

12

Results

Training Corpora

Training corpora used:

e Wall Street Journal (WSJ): treebank with 40k manually
annotated sentences.

e BerkeleyParser corpus: 90k sentences from WSJ and several
other treebanks, and 11M sentences parsed with Berkeley
Parser.

e High-confidence corpus: 90k sentences from WSJ from several
treebanks, and 11M sentences for which two parsers produce
the same tree (length resampled).

13

Results reported by [Vinyals et al.2015]:

Parser Training Set WSJ22 | WSJ 23
baseline LSTM+D WSJ only <70 <70
LSTM+A+D WSIJ only 88.7 88.3
LSTM+A+D ensemble WSIJ only 90.7 90.5
baseline LSTM BerkeleyParser corpus 91.0 90.5
LSTM+A high-confidence corpus 92.8 92.1
Petrov et al. (2006) [12] WSJ only 91.1 90.4
Zhu et al. (2013) [13] WSIJ only N/A 90.4
Petrov et al. (2010) ensemble [14] WSJ only 92.5 91.8
Zhu et al. (2013) [13] semi-supervised N/A 91.3
Huang & Harper (2009) [15] semi-supervised N/A 91.3
McClosky et al. (2006) [16] semi-supervised 92.4 92.1

The second half of the table lists results for various versions of the

Berkeley parser.

Current state of the art: 95-96. 14

Results

9%

95

94 W BerkeleyParser
[5) M baseline LSTM
z 93 LSTM+A
Q
w1
)
[

91

9 10 20 30 50 60 70

40
Sentence length

ii5)

Summary of results:

e The encoder-decoder model only works if attention is used.
e Ensembling models helps. Which is almost always the case.

e If we have a lot of training data, we get a large boost. And
even the simple model without attention starts to work.

e A simple encoder-decoder model can match the performance
of the Berkeley parser (a probabilistic chart parser; O(n®)
complexity).

e Even though we use an LSTM, performance by sentence
length is same or better than the Berkeley parser.

16

Analyzing the Attention

e Attention matrix shows that the model focuses on one word
as it produces the parse tree.

e It moves through the input sequence monotonically (left to
right).
e Model learns stack-like behavior when producing the output.

e Note that if model focuses on position /, that state has
information for all words after i (input is reversed).

e In some cases, the model skips words.

17

Parsing with Transformers

Parsing with Transformers

Could we use transformers for parsing, wouldn't that work even
better? Yes! We will briefly look at [Kitaev and Klein2018]:

They use a transformer to encode the input.

This results in a “context aware summary vector”
(embedding) for each input word.

The embedding encodes word, PoS tag, and position
information.

The embedding layers are combined to obtain span scores.

The attention blocks and the attention heads are just like in
[Vaswani et al.2017].

But they also try factored attention heads, which separate
position and content information.

18

Parsing with Transformers

The decoder of [Kitaev and Klein2018] works as follows:

A real-valued score s(T) is assigned to a tree T:

s(TYy=">_ s(i,j,))
where s(i, j,) is a score for the constituent located between
position / and position j with label /.

At test time, we compute:

T = argmaxs(T)
T
This can be found efficiently using CYK (remember ANLP?). This

gives us the optimal output sequence, unlike beam search!
19

Overall Architecture

Output (VP (VBD fled) (NP (DT the) (NN market))..

Decoder

Encoder S S S

- A A A A A J

T T T T T

and fled the market in
Input CC VBD DT NN IN 20

Transformer Block

LayerNorm
i
Feed
Forward

NS
N\

Multi-Head
Attention

layers

(vora)) posiion) i

Single Attention Head

B B
t t t t t
ki Vi
I » ki Ve
query key value T
q: ke Ve
K '_/ J kT Vr

Xt

Here, P(i — j) is the probability that word i attends to word j.

22

Factored Attention Head

| |

vi©

vi©

vr©

vl P
?
I
|-> N]
I e T 1
ki(© k@ viP)
kf© . I 20)
— value key query query key value]
v©) k(o qf© qir kP VP

" \ _/ _/ / " o

Factored attention is a commonly used design patterns for
transformer models.

+

7
o) () (o)

23

The transformer encoder give us word-based vectors (summary
vectors yx). Now we turn these into span scores:

s(i,j,-) = Marelu(LayerNorm(Myv + ¢1)) +
where v = [)7) —Yii¥jt1 —I/,-H] and My, M, are parameter
matrices and c¢j, ¢ are constants.

Note that yj, the summary vector at position k, is split into two
halves yi and y,.

We then use the span scores to decode the output, i.e., to
compute the best tree.

24

Encoder Architecture F1 (dev) A

LSTM (Gaddy et al., 2018) 92.24 -0.43
Self-attentive (Section 2) 92.67 0.00

+ Factored (Section 3) 93.15 0.48
+ CharLSTM (Section 5.1) 93.61 0.94
+ ELMo (Section 5.2) 95.21 2.54

LR LP F1

Single model, WSJ only

Vinyals et al. (2015) - - 88.3
Cross and Huang (2016) 90.5 92.1 91.3
Gaddy et al. (2018) 91.76 92.41 92.08
Stern et al. (2017b) 92.57 92.56 92.56
Ours (CharLSTM) 93.20 93.90 93.55

ELMo is a pre-trained language model similar to BERT. 25

e We can use encoder-decoder architectures for parsing.
e For this, the output sequence has to be a linearized parse tree.

e Even a simple LSTM encoder-decoder works well, if given
enough training data.

e |t learns to generate well-formed trees (balanced brackets).

e We can improve this further by using a transformer-based
encoder instead of an LSTM.

e For the decoder, we can use CYK over span scores to
compute the optimal output sequence.

26

References

[4 Nikita Kitaev and Dan Klein.

2018.
Constituency parsing with a self-attentive encoder.

In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, pages 2676—2686, Melbourne.

[§] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, tukasz Kaiser, and lllia
Polosukhin.

2017.

Attention is all you need.

In 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 5998-6008, Red Hook,

NY. Curran Associates. ”7

R A\ mirmde Tavers Wi 1T iibmaces Wafeny Clav, Datoms Herm

	The Story so Far
	Neural Parsing
	Potential Problems
	Results
	Parsing with Transformers

