
Natural Language Understanding, Generation,

and Machine Translation

Lecture 11: Neural Parsing

Shay Cohen

based on slides by Frank Keller

5 February 2025 (week 4)

School of Informatics

University of Edinburgh

scohen@inf.ed.ac.uk

1

scohen@inf.ed.ac.uk


The Story so Far

Neural Parsing

Potential Problems

Results

Parsing with Transformers

Reading: Vinyals et al. [2015]; optional: Kitaev and Klein [2018]

2



The Story so Far



Encoder-Decoder Architecture

• So far, we have used the encoder-decoder architecture for

machine translation and other tasks.

• But it can be used for any task where both the input and

output are sequences of symbols.

• In this lecture, we will use it for syntactic parsing.

• We will see an LSTM-with-attention encoder-decoder, but

also discuss a transformer-based model.

• This approach can be used to generate any structured

representation that can be linearized (e.g., trees, graphs).

3



Reminder: Encoder-Decoder Architecture

s1

h1 h2 h3 h4

y1

of

s2

y2

course

s3

y3

john

s4

y4

has

s5

y5

fun

x1 x2 x3 x4

natürlich hat john spaß

Decoder RNN

Encoder RNN

4



Neural Parsing



Parsing

Parsing is the task of turning a sequence of words:

(1) You saw a man with a telescope. into a syntax tree:

S

NP

Pro

You

VP

V

saw

NP

Det

a

N

man

PP

P

with

Det

a

N

telescope

5



Linearizing the Input

But how can we use an encoder-decoder model for parsing? The

input is a sequence, but the output is not.

S

NP

Pro

You

VP

V

saw

NP

Det

a

N

man

PP

P

with

Det

a

N

telescope

We can linearize the syntax tree:

(S (NP (Pro You ) ) (VP (V saw ) (NP (Det a ) (N man ) (PP (P with ) (Det

a ) (N telescope ) ) ) ) )

6



Linearizing the Input

But how can we use an encoder-decoder model for parsing? The

input is a sequence, but the output is not.

S

NP

Pro

You

VP

V

saw

NP

Det

a

N

man

PP

P

with

Det

a

N

telescope

We can linearize the syntax tree:

(S (NP (Pro You ) ) (VP (V saw ) (NP (Det a ) (N man ) (PP (P with ) (Det

a ) (N telescope ) ) ) ) ) 6



Linearizing the Input

Now we have a sequence that represents the syntax tree:

(S (NP (Pro You ) ) (VP (V saw ) (NP (Det a ) (N man ) (PP (P

with ) (Det a ) (N telescope ) ) ) ) )

We can simplify it by stripping out the words:

(S (NP Pro ) (VP V (NP Det N (PP P Det N ) ) ) )

And we can make it easier to process by annotating also the

closing brackets:

(S (NP Pro )NP (VP V (NP Det N (PP P Det N )PP )NP )VP )S

7



Linearizing the Input

Now we have a sequence that represents the syntax tree:

(S (NP (Pro You ) ) (VP (V saw ) (NP (Det a ) (N man ) (PP (P

with ) (Det a ) (N telescope ) ) ) ) )

We can simplify it by stripping out the words:

(S (NP Pro ) (VP V (NP Det N (PP P Det N ) ) ) )

And we can make it easier to process by annotating also the

closing brackets:

(S (NP Pro )NP (VP V (NP Det N (PP P Det N )PP )NP )VP )S

7



Linearizing the Input

Now we have a sequence that represents the syntax tree:

(S (NP (Pro You ) ) (VP (V saw ) (NP (Det a ) (N man ) (PP (P

with ) (Det a ) (N telescope ) ) ) ) )

We can simplify it by stripping out the words:

(S (NP Pro ) (VP V (NP Det N (PP P Det N ) ) ) )

And we can make it easier to process by annotating also the

closing brackets:

(S (NP Pro )NP (VP V (NP Det N (PP P Det N )PP )NP )VP )S

7



An Encoder-Decoder for Parsing

s1

h1 h2 h3 h4

y1

(S

s2

y2

(NP

s3

y3

Pro

s4

y4

)NP

s5

y5

(VP

x1 x2 x3 x4

You saw a man

Decoder LSTM

Encoder LSTM

8



An Encoder-Decoder for Parsing

Essentially, that is our parsing model! But in order for this to work

properly, we also need to:

• Add an end-of-sequence symbol, as output sequences can vary

in length.

• Reverse the input string: results in small performance gain.

• Make the network deeper. Vinyals et al. [2015] use three

LSTM layers for both encoder and decoder.

• Add attention. This essentially works like the encoder-decoder

with attention we saw for MT (lecture 7).

• Use pre-trained word embeddings as input (here: word2vec).

• Get lots of training data. Vinyals et al. [2015] use an existing

parser (the Berkeley parser) to parse a large amount of text,

which they then use as training data.

9



An Encoder-Decoder for Parsing

This is how they draw their model architecture:

. Go

LSTM1
in

LSTM2
in

LSTM3
in

END (S (VP XX )VP
. )S

LSTM1
out

LSTM2
out

LSTM3
out

(S (VP XX )VP
. )S END

10



Potential Problems



Potential Problems

But wait! Can this really work? What about:

• How do we make sure that opening and closing brackets

match?

Else we won’t have a well-formed tree!

• How do we associate the words in the input with the leaves of

the tree in the output?

• The output sequence can be longer than the input sequence,

isn’t this a problem?

• How can I make sure that the model outputs the best overall

sequence, not just the best symbol at each time step?

11



Potential Problems

But wait! Can this really work? What about:

• How do we make sure that opening and closing brackets

match?

Else we won’t have a well-formed tree!

• How do we associate the words in the input with the leaves of

the tree in the output?

• The output sequence can be longer than the input sequence,

isn’t this a problem?

• How can I make sure that the model outputs the best overall

sequence, not just the best symbol at each time step?

11



Potential Problems

But wait! Can this really work? What about:

• How do we make sure that opening and closing brackets

match?

Else we won’t have a well-formed tree!

• How do we associate the words in the input with the leaves of

the tree in the output?

• The output sequence can be longer than the input sequence,

isn’t this a problem?

• How can I make sure that the model outputs the best overall

sequence, not just the best symbol at each time step?

11



Potential Problems

But wait! Can this really work? What about:

• How do we make sure that opening and closing brackets

match?

Else we won’t have a well-formed tree!

• How do we associate the words in the input with the leaves of

the tree in the output?

• The output sequence can be longer than the input sequence,

isn’t this a problem?

• How can I make sure that the model outputs the best overall

sequence, not just the best symbol at each time step?

11



Potential Problems

But wait! Can this really work? What about:

• How do we make sure that opening and closing brackets

match?

Else we won’t have a well-formed tree!

• How do we associate the words in the input with the leaves of

the tree in the output?

• The output sequence can be longer than the input sequence,

isn’t this a problem?

• How can I make sure that the model outputs the best overall

sequence, not just the best symbol at each time step?

11



Potential Problems

How to deal with these problems:

• This is really rare (0.8–1.5% of sentences). And if it occurs,

just fix the brackets in post-processing (add brackets to

beginning or end of the sequence).

• You could just associate each input word with a PoS in the

output, in sequence order. But in practice: only the tree is

evaluated. Vinyals et al. [2015] replace all PoS tags with XX.

• Not a problem, also happens in MT. And only the tree is

evaluated.

• Use beam search to generate the output (as in MT). However,

in practice, beam size has very little impact on performance.

12



Potential Problems

How to deal with these problems:

• This is really rare (0.8–1.5% of sentences). And if it occurs,

just fix the brackets in post-processing (add brackets to

beginning or end of the sequence).

• You could just associate each input word with a PoS in the

output, in sequence order. But in practice: only the tree is

evaluated. Vinyals et al. [2015] replace all PoS tags with XX.

• Not a problem, also happens in MT. And only the tree is

evaluated.

• Use beam search to generate the output (as in MT). However,

in practice, beam size has very little impact on performance.

12



Potential Problems

How to deal with these problems:

• This is really rare (0.8–1.5% of sentences). And if it occurs,

just fix the brackets in post-processing (add brackets to

beginning or end of the sequence).

• You could just associate each input word with a PoS in the

output, in sequence order. But in practice: only the tree is

evaluated. Vinyals et al. [2015] replace all PoS tags with XX.

• Not a problem, also happens in MT. And only the tree is

evaluated.

• Use beam search to generate the output (as in MT). However,

in practice, beam size has very little impact on performance.

12



Potential Problems

How to deal with these problems:

• This is really rare (0.8–1.5% of sentences). And if it occurs,

just fix the brackets in post-processing (add brackets to

beginning or end of the sequence).

• You could just associate each input word with a PoS in the

output, in sequence order. But in practice: only the tree is

evaluated. Vinyals et al. [2015] replace all PoS tags with XX.

• Not a problem, also happens in MT. And only the tree is

evaluated.

• Use beam search to generate the output (as in MT). However,

in practice, beam size has very little impact on performance.

12



Results



Training Corpora

Training corpora used:

• Wall Street Journal (WSJ): treebank with 40k manually

annotated sentences.

• BerkeleyParser corpus: 90k sentences from WSJ and several

other treebanks, and 11M sentences parsed with Berkeley

Parser.

• High-confidence corpus: 90k sentences from WSJ from several

treebanks, and 11M sentences for which two parsers produce

the same tree (length resampled).

13



Results

Results reported by Vinyals et al. [2015]:

Parser Training Set WSJ 22 WSJ 23

baseline LSTM+D WSJ only < 70 < 70
LSTM+A+D WSJ only 88.7 88.3

LSTM+A+D ensemble WSJ only 90.7 90.5

baseline LSTM BerkeleyParser corpus 91.0 90.5
LSTM+A high-confidence corpus 92.8 92.1

Petrov et al. (2006) [12] WSJ only 91.1 90.4
Zhu et al. (2013) [13] WSJ only N/A 90.4

Petrov et al. (2010) ensemble [14] WSJ only 92.5 91.8

Zhu et al. (2013) [13] semi-supervised N/A 91.3
Huang & Harper (2009) [15] semi-supervised N/A 91.3
McClosky et al. (2006) [16] semi-supervised 92.4 92.1

The second half of the table lists results for various versions of the

Berkeley parser.

Current state of the art: 95–96. 14



Results

10 20 30 40 50 60 70
90

91

92

93

94

95

96

Sentence length

F
1

sc
o

re

BerkeleyParser

baseline LSTM

LSTM+A

15



Results

Summary of results:

• The encoder-decoder model only works if attention is used.

• Ensembling models helps. Which is almost always the case.

• If we have a lot of training data, we get a large boost. And

even the simple model without attention starts to work.

• A simple encoder-decoder model can match the performance

of the Berkeley parser (a probabilistic chart parser; O(n3)

complexity).

• Even though we use an LSTM, performance by sentence

length is same or better than the Berkeley parser.

16



Analyzing the Attention

• Attention matrix shows that the model focuses on one word

as it produces the parse tree.

• It moves through the input sequence monotonically (left to

right).

• Model learns stack-like behavior when producing the output.

• Note that if model focuses on position i , that state has

information for all words after i (input is reversed).

• In some cases, the model skips words.

17



Parsing with Transformers



Parsing with Transformers

Could we use transformers for parsing, wouldn’t that work even

better? Yes! We will briefly look at Kitaev and Klein [2018]:

• They use a transformer to encode the input.

• This results in a “context aware summary vector”

(embedding) for each input word.

• The embedding encodes word, PoS tag, and position

information.

• The embedding layers are combined to obtain span scores.

• The attention blocks and the attention heads are just like in

Vaswani et al. [2017].

• But they also try factored attention heads, which separate

position and content information.

18



Parsing with Transformers

The decoder of Kitaev and Klein [2018] works as follows:

A real-valued score s(T ) is assigned to a tree T :

s(T ) =
∑

(i ,j ,l)∈T

s(i , j , l)

where s(i , j , l) is a score for the constituent located between

position i and position j with label l .

At test time, we compute:

T̂ = argmax
T

s(T )

This can be found efficiently using CYK (remember ANLP?). This

gives us the optimal output sequence, unlike beam search!
19



Overall Architecture

Output

Input

Encoder

Decoder

market

NN

in

IN

the

DT

fled

VBD

and

CC

…(VP(VBD fled)(NP(DT the)(NN market))…

20



Transformer Block

Multi-Head

Attention

Feed

Forward

LayerNormLayerNormLayerNorm

LayerNormLayerNormLayerNorm

tag positionword

8

layers

21



Single Attention Head

k1

kt

kT

v1

vt

vT

kt vtqt

vt
_

p(t→1)

query            key            value

p(t→T)

xt

Here, P(i → j) is the probability that word i attends to word j .

22



Factored Attention Head

k1(p)

kt(p)

kT(p)

v1(p)

vt(p)

vT(p)

qt(p) kt(p) vt(p)
query            key            value

k1(c)

kt(c)

kT(c)

v1(c)

vt(c)

vT(c)

vt(c) kt(c) qt(c)
value            key            query

vt(p)
_

vt(c)
_

positionword tag

Factored attention is a commonly used design patterns for

transformer models. 23



Span Scores

The transformer encoder give us word-based vectors (summary

vectors yk). Now we turn these into span scores:

s(i , j , ·) = M2relu(LayerNorm(M1v + c1)) + c2

where v =
[
y⃗j − y⃗i ; ⃗y j+1 − ⃗y i+1

]
and M1, M2 are parameter

matrices and c1, c2 are constants.

Note that yk , the summary vector at position k , is split into two

halves y⃗k and ⃗yk .

We then use the span scores to decode the output, i.e., to

compute the best tree.

24



Results

Encoder Architecture F1 (dev) ∆

LSTM (Gaddy et al., 2018) 92.24 -0.43

Self-attentive (Section 2) 92.67 0.00

+ Factored (Section 3) 93.15 0.48

+ CharLSTM (Section 5.1) 93.61 0.94

+ ELMo (Section 5.2) 95.21 2.54

LR LP F1

Single model, WSJ only

Vinyals et al. (2015) – – 88.3

Cross and Huang (2016) 90.5 92.1 91.3

Gaddy et al. (2018) 91.76 92.41 92.08

Stern et al. (2017b) 92.57 92.56 92.56

Ours (CharLSTM) 93.20 93.90 93.55

ELMo is a pre-trained language model similar to BERT. 25



Summary

• We can use encoder-decoder architectures for parsing.

• For this, the output sequence has to be a linearized parse tree.

• Even a simple LSTM encoder-decoder works well, if given

enough training data.

• It learns to generate well-formed trees (balanced brackets).

• We can improve this further by using a transformer-based

encoder instead of an LSTM.

• For the decoder, we can use CYK over span scores to

compute the optimal output sequence.

26



References

Nikita Kitaev and Dan Klein. Constituency parsing with a self-attentive encoder. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics, pages 2676–2686, Melbourne, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all

you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems 30, pages 5998–6008, Red Hook, NY, 2017. Curran Associates.

Oriol Vinyals, Terry Koo, Lukasz Kaiser, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. Grammar as a foreign language. In C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, Red Hook, NY, 2015.

Curran Associates.

27


	The Story so Far
	Neural Parsing
	Potential Problems
	Results
	Parsing with Transformers

