
NLU: Lecture 14
LLMs as Formal Machines

Shay Cohen
(based on slides from Butoi et al.)

February 12, 2025

Shay Cohen NLU Lecture 14 1/35



Why formal study of LLMs?

• Opening the black box of LLMs: what are the underlying
computations they do?

• We can better understand the limitations of LLMs

• Find connections to previous models may help deriving
new methodology for LLMs

Shay Cohen NLU Lecture 14 2/35



What are language models?

• Let y = y1 · · · yn
• An autoregressive language model defines p(y)

p(y) = p(EOS | y)
n∏

t=1

p(yt | y<t)

Nothing new! Any distribution over strings can be written that
way

Food for thought: Why is that the case?

The chain rule

Shay Cohen NLU Lecture 14 3/35



What are language models?

• Let y = y1 · · · yn
• An autoregressive language model defines p(y)

p(y) = p(EOS | y)
n∏

t=1

p(yt | y<t)

Nothing new! Any distribution over strings can be written that
way

Food for thought: Why is that the case? The chain rule

Shay Cohen NLU Lecture 14 3/35



Representation-based language model

Remember the conditional probability model over words given a
representation, which is roughly:

p(yt | y1 · · · yt−1) = softmax(Eh(y1 · · · yt−1))yt

Shay Cohen NLU Lecture 14 4/35



Recurrent Neural Networks

We are given a sequence of x1, . . . xn.

The hidden state:

ht+1 = f (ht , xt)

f is a function that maps the current state and symbol into a
new state, so f : Rd × Σ → Rd

Shay Cohen NLU Lecture 14 5/35



Elman RNNs

We will focus on so-called Elman RNNs, an older model that
has been studied:

ht+1 = f (ht , xt) = σ(Uht + Vr(xt) + b)

where r is an embedding function, U and V are matrices and b
is a vector

Shay Cohen NLU Lecture 14 6/35



RNNs as language models

If we want to turn an RNN into a language model, we add
another layer that takes as input ht and returns a probability
distribution over the vocabulary

h1 h2 h3 h4

y1 y2 y3 y4

The dog is barking

x1 x2 x3 x4

<s> The dog is

Every yt is fed as an xt+1 in the next step

Shay Cohen NLU Lecture 14 7/35



RNNs as language models

Food for thought: What is the connection to n-grams?

Both approaches provide a probability distribution over
sentences

We multiply the probability of the n-grams together,
OR
We multiply the probability of the words emitted by
the RNN,

to get the probability over the string p(y1 · · · yn).

Food for thought: Why is it important that the mapping f is
deterministic? We do not need to “sum out” h!

Shay Cohen NLU Lecture 14 8/35



RNNs as language models

Food for thought: What is the connection to n-grams?

Both approaches provide a probability distribution over
sentences

We multiply the probability of the n-grams together,
OR
We multiply the probability of the words emitted by
the RNN,

to get the probability over the string p(y1 · · · yn).

Food for thought: Why is it important that the mapping f is
deterministic?

We do not need to “sum out” h!

Shay Cohen NLU Lecture 14 8/35



RNNs as language models

Food for thought: What is the connection to n-grams?

Both approaches provide a probability distribution over
sentences

We multiply the probability of the n-grams together,
OR
We multiply the probability of the words emitted by
the RNN,

to get the probability over the string p(y1 · · · yn).

Food for thought: Why is it important that the mapping f is
deterministic? We do not need to “sum out” h!

Shay Cohen NLU Lecture 14 8/35



Reminder: Finite State Machines

q0start q1 q2 q3

q4

the dog is

barkingrunning

A set of states Q with q0 the initial state, an alphabet Σ, a
transition function δ(q, y) = q′ and a set of final states F ⊆ Q.

Shay Cohen NLU Lecture 14 9/35



RNNs as Recognisers

h1 h2 h3 h4 h5

We like to run

grammatical?

• Apply a softmax or some other activation unit to binarise
the state after encoding into grammatical or not
grammatical

• Given an RNN, its language is defined as the set of all
strings it classifies as “grammatical”

Shay Cohen NLU Lecture 14 10/35



RNNs Have States Like Automata

• RNNs have many similarities to automata

• At each step, consume an input symbol, and calculate a
new state

• Rather than using a look-up table like transition, use a
mathematical formula to calculate a state vector

Food for thought: Does that change anything?

Answer: It depends!

Shay Cohen NLU Lecture 14 11/35



RNNs Have States Like Automata

• RNNs have many similarities to automata

• At each step, consume an input symbol, and calculate a
new state

• Rather than using a look-up table like transition, use a
mathematical formula to calculate a state vector

Food for thought: Does that change anything?

Answer: It depends!

Shay Cohen NLU Lecture 14 11/35



Characterising a formalism through its languages

Let F be a “formalism”, whether all RNNs as acceptors or
FSMs

Each specific instance in A ∈ F is a single RNN or an FSM

It defines a language L(A). We can characterise the formalism
by the set L(F) = {L(A) | A ∈ F}.

Two formalisms F ,F ′ are equivalent if L(F) = L(F ′).

Do you remember? Which languages do FSMs accept?

Regular languages
Indeed, the regular languages fully characterise FSMs.
L(FSM) = regular languages

Shay Cohen NLU Lecture 14 12/35



Characterising a formalism through its languages

Let F be a “formalism”, whether all RNNs as acceptors or
FSMs

Each specific instance in A ∈ F is a single RNN or an FSM

It defines a language L(A). We can characterise the formalism
by the set L(F) = {L(A) | A ∈ F}.

Two formalisms F ,F ′ are equivalent if L(F) = L(F ′).

Do you remember? Which languages do FSMs accept?
Regular languages
Indeed, the regular languages fully characterise FSMs.
L(FSM) = regular languages

Shay Cohen NLU Lecture 14 12/35



State Space in RNNs

• In principle, the state space for RNNs is infinite, not only
infinite, but continuous

• Can we use this fact somehow to simulate really complex
algorithms?

We will test RNNs in two cases: the case of unbounded
precision and computation and the case of bounded
computation and finite precision

Food for thought: What do you think the outcome will be?

Shay Cohen NLU Lecture 14 13/35



RNNs Power

Depending on the amount of power we provide to the latent
states of RNNs, they can either:

• Implement any computable function

• Be significantly limited to finite state languages

Shay Cohen NLU Lecture 14 14/35



Turing Machines

Church-Turing thesis: any reasonably computable function can
be implemented using a Turing machine!

Shay Cohen NLU Lecture 14 15/35



Two-stack Pushdown Automaton
An equivalent formalism to Turing machines

Rather than having an infinite tape, we have two stacks. A
two-stack PD automaton has:

• Q - a finite set of states

• Σ - a finite alphabet

• Γ - a finite stack alphabet (for both stacks)

• δ - a transition function in
Q × (Σ ∪ {ϵ})× Γ× Γ → Q × Γ∗ × Γ∗.
The transition outputs a new state and strings to replace
the top of the two stacks based on the current input
symbol and the top symbols of the two stacks

• q0 ∈ Q - an initial state

• qA ∈ Q - an accepting state

• qR ∈ Q - a reject state

Shay Cohen NLU Lecture 14 16/35



RNNs Power

Depending on the amount of power we provide to the latent
states of RNNs, they can either:

• Implement any computable function

We will start here and show how a 2-PDA can be
simulated using an RNN. This means we need to bridge
the continuous approach of RNNs with the discrete
manner PDAs work

• Be significantly limited to finite state languages

Class exercise: Spend a few minutes to try and construct this
simulation

Shay Cohen NLU Lecture 14 17/35



RNNs Power

Depending on the amount of power we provide to the latent
states of RNNs, they can either:

• Implement any computable function

We will start here and show how a 2-PDA can be
simulated using an RNN. This means we need to bridge
the continuous approach of RNNs with the discrete
manner PDAs work

• Be significantly limited to finite state languages

Class exercise: Spend a few minutes to try and construct this
simulation

Shay Cohen NLU Lecture 14 17/35



Encoding a Stack

• We will assume that our alphabet is Γ = {0, 1} in the
stack y1 · · · yn. (This is enough, why?)

• A stack can be represented as a number: 0.γNγN−1 . . . γ1

where γi =

{
1 if yi = 0,

3 otherwise.

• We need operations on the stack: mostly pushing and
popping

Food for thought: How do we simulate pushing and popping
on a number?

Shay Cohen NLU Lecture 14 18/35



Encoding a Stack

• We will assume that our alphabet is Γ = {0, 1} in the
stack y1 · · · yn. (This is enough, why?)

• A stack can be represented as a number: 0.γNγN−1 . . . γ1

where γi =

{
1 if yi = 0,

3 otherwise.

• We need operations on the stack: mostly pushing and
popping

Food for thought: How do we simulate pushing and popping
on a number?

Shay Cohen NLU Lecture 14 18/35



Performing Stack Operations

Stack operations can be performed by manipulating a real
number that represents the whole stack:

• Popping yN = 0 : 10× 0.γNγN−1 . . . γ1 − 1

• Popping yN = 1 : 10× 0.γNγN−1 . . . γ1 − 3

• Pushing y = 0 : 1
10 × 0.γNγN−1 . . . γ1 +

1
10

• Pushing y = 1 : 1
10 × 0.γNγN−1 . . . γ1 +

3
10

Shay Cohen NLU Lecture 14 19/35



Note: Automata transition between configurations

A configuration is a “state of the world” for the two-stack
automaton

It includes:

• The current state of the two stacks

• The current state the machine is in

The two-stack automaton can be thought of as transitioning
between configurations based on the input!

Shay Cohen NLU Lecture 14 20/35



Configurations

Given a 2-stack PDA, and an input x , there is a sequence of
configurations c1, . . . , cn that we transition to

c1 → c2 → · · · → cn

If we know how to move between configurations, we can
simulate any machine

We will show how RNNs can move between configurations,
represented by their latent state

Shay Cohen NLU Lecture 14 21/35



How to encode a “configuration” of a 2-stack PDA
machine?

• A vector in the RNN will be in Rd where
d = 2 + 3 + 3 + N where N is the number of states in the
Turing machine

• How to encode a configuration of a Turing machine using
a vector in the RNN h?

• h1 is the first stack encoded as before
• h2 is the second stack encoded as before
• h3, h4 and h5 encode the top element of the first stack

(remember the alphabet is {0, 1} and we need one more
slot for denoting an empty stack!)

• h6, h7 and h8 encode the top element of the second stack
• The rest of the vector (positions 9 to 8 + N) indicate

which state the Turing machine is currently in

Shay Cohen NLU Lecture 14 22/35



The Construction (adapted from Butoi et al.)

• Encode the contents of the two stacks

Shay Cohen NLU Lecture 14 23/35



The Construction (adapted from Butoi et al.)

• Encode the contents of the two stacks

• Encode the top of the two stacks

Shay Cohen NLU Lecture 14 24/35



The Construction (adapted from Butoi et al.)
• Encode the contents of the two stacks

• Encode the top of the two stacks

• Encode the current state

Shay Cohen NLU Lecture 14 25/35



How to simulate a 2-stack PDA?

We can set the parameters of the RNN U,V , b such that it will
transition between configurations of the Turing machine
according to its transition rules

For more details, see Siegelmann and Songtag (1992)

Note that we are not doing any training here! We figure out the
parameters in a constructive manner, not learning from data

Shay Cohen NLU Lecture 14 26/35



Summary: Turing Machines and RNNs

• Turing machines can be simulated using two-stack
automata

• Two-stack automata can be simulated using RNNs with
unbounded precision and computation

• The state in the RNN encodes the two stacks and the
state in the two-stack automaton (a “configuration”)

• Therefore: RNNs with unbounded precision and
computation are as powerful as Turing machines!

Shay Cohen NLU Lecture 14 27/35



Back to RNNs Power

Depending on the amount of power we provide to the latent
states of RNNs, they can either:

• Implement any computable function

• Be significantly limited to finite state languages

If RNNs are bounded in precision and computation, they
are equivalent to FSMs!

Shay Cohen NLU Lecture 14 28/35



Back to RNNs Power

Depending on the amount of power we provide to the latent
states of RNNs, they can either:

• Implement any computable function

• Be significantly limited to finite state languages

If RNNs are bounded in precision and computation, they
are equivalent to FSMs!

Shay Cohen NLU Lecture 14 28/35



Bounded precision and computation

• An RNN with the update rule

ht+1 = H(Uht + Vr(yt) + b)

can simulate any deterministic automaton (where
H(x) = 0 if x ≤ 0 and 1 otherwise; The Heaviside
function)

• An RNN with bounded precision is no more expressive
than a finite state automaton

Class exercise: Try to construct the latter argument

Shay Cohen NLU Lecture 14 29/35



Bounded precision and computation

• An RNN with the update rule

ht+1 = H(Uht + Vr(yt) + b)

can simulate any deterministic automaton (where
H(x) = 0 if x ≤ 0 and 1 otherwise; The Heaviside
function)

• An RNN with bounded precision is no more expressive
than a finite state automaton

Class exercise: Try to construct the latter argument

Shay Cohen NLU Lecture 14 29/35



Any RNN can be an FSM

(Note we assume that the activation leads to binary states!)

ht+1 = f (ht , yt)

h′t+1 = f (ht , y
′
t)

ht ht+1

h′t+1

yt

y ′t

Shay Cohen NLU Lecture 14 30/35



RNNs can simulate FSMs

• The construction takes any deterministic FSM and
transforms it into an RNN
Food for thought: What about non-deterministic FSMs?

Any non-deterministic FSM can be determinised

• The latent state ht will be indexed by a pair of state and
symbol. The state provides the current state in the
simulated machine, and the symbol provides the symbol
we are being fed

• ht+1 = H(Uht + Vr(yt) + b). We will set U to give 0.5 for
all elements in the vector (q, a) ranging over a such that
transition from q in ht provides q

′; We will set V to add
another 0.5 to all elements in the vector that correspond
to yt

• The H function now will zero out all those that are just
0.5 and keep only one element that is 1.0. We get from
that ht+1.

Shay Cohen NLU Lecture 14 31/35



RNNs can simulate FSMs

• The construction takes any deterministic FSM and
transforms it into an RNN
Food for thought: What about non-deterministic FSMs?
Any non-deterministic FSM can be determinised

• The latent state ht will be indexed by a pair of state and
symbol. The state provides the current state in the
simulated machine, and the symbol provides the symbol
we are being fed

• ht+1 = H(Uht + Vr(yt) + b). We will set U to give 0.5 for
all elements in the vector (q, a) ranging over a such that
transition from q in ht provides q

′; We will set V to add
another 0.5 to all elements in the vector that correspond
to yt

• The H function now will zero out all those that are just
0.5 and keep only one element that is 1.0. We get from
that ht+1.

Shay Cohen NLU Lecture 14 31/35



The devil is in the details

• To make the construction work we need more attention to
details, but that’s the construction at a high level

Shay Cohen NLU Lecture 14 32/35



A stark difference in the Chomsky hierarchy

RNNs with finite precision and bounded computation are
reduced from Type-0 to Type-3.

Shay Cohen NLU Lecture 14 33/35



Summary

• Studying LLMs in formal terms is a fertile ground to
understand them better

Shay Cohen NLU Lecture 14 34/35



References

A. Butoi, R. Chan, R. Cotterell, W. Merrill, F. Nowak, C. Pasti,
L. Strobl, A. Svete, Language Models and Formal Languages,
tutorial in ACL 2024, https://acl2024.ivia.ch/

H. T. Siegelman and E. D. Sontag. Neural networks with real
weights: analog computational complexity. COLT 1992.

Shay Cohen NLU Lecture 14 35/35

https://acl2024.ivia.ch/

