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Input Representation

how do we represent input?

• 1-hot encoding
• lookup of word embedding for input
• probability distribution over vocabulary for output

• large vocabularies
• increase network size
• decrease training and decoding speed

• typical network vocabulary size: 10 000–100 000 symbols
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Problem

NLU and NLG are open-vocabulary problems

• many training corpora contain millions of word types

• productive word formation processes (compounding;
derivation) allow formation and understanding of unseen
words

• names, numbers are morphologically simple, but open word
classes
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Problem

Research: we can download a clean corpus eg. Hansard,
Europarl, Penn Treebank
Real life: nothing like this

• What if we need data that is not available publically? medical,
financial, conversational

• What if it is for a low-resource language and none available?

• What if data we have is very noisy?

• What if there are very long dependencies over many
sentences?
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Modelling Data



Language Identification

Many datasets are crawls from the internet: CommonCrawl (250B
pages) or the Internet Archive (850B pages)

• First step is Language Identification: LID

• What languages are these?
• ndiyahamba (I’m going)
• This is lekker bru (This is lovely)

• Generally solved task for high-resource languages

• Challenge with low resource, closely related language,
code-switched or noisy data

• Solution: Fast lightweight classifiers

• Fasttext - Pre-trained models for 157 different languages
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Sentence Splitting

Real data comes unsegmented into sentences.

• Sentence Segmentation:
! ? Mostly unabiguous but "." is very ambiguous (eg. the U.N.)

• Many scripts do not have end of sentence marker

• Speech is often not easy to segment into complete sentences

• Clean sentences - normally what models are trained on can
struggle with shorter/longer sequences

• Solution: Language specific rules
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Tokenisation

What is a word?

• Lookup in dictionary - but morphology makes this harder

• Thing between spaces - what about language without spaces
or Finnish?

• Punctuation? Contractions? “that’s” → “that” “’s”

• Solution: For languages with spaces use spaces +
punctuation + rules

• For Chinese etc. large dictionaries, punctuation + rules
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Modelling Data

Critical for input to neural network - what is the input?
What sequence?

• Document, sentence, window, turn or utterance in a
conversation

Sequence of what?

• Words, tokenized words, word stems, morphemes

Very long sequences are harder to model.
Vocabulary size needs to be limited as it has a huge effect on
model size and efficiency.

7



Modelling words - open vocabulary
models



Non-Solution: Ignore Rare Words

• replace out-of-vocabulary words with UNK

• a vocabulary of 50 000 words covers 95% of text

• this gets you 95% of the way...
... if you only care about automatic metrics

why 95% is not enough
rare outcomes have high self-information

source Mr Gallagher has offered a ray of hope.
reference Herr Gallagher hat einen hoffnungsstrahl ausgesandt .
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Solution 1: Back-off Models

back-off models [Jean et al., 2015, Luong et al., 2015]

• replace rare words with UNK at training time

• when system produces UNK, align UNK to source word, and
translate this with back-off method

source Das Raumklima ist sehr angenehm.
reference The indoor temperature is very pleasant.
[Bahdanau et al., 2015] The UNK is very nice. 7

[Jean et al., 2015] The temperature is very nice. 7

limitations

• compounds: hard to model 1-to-many relationships

• morphology: hard to predict inflection with back-off dictionary

• names: if alphabets differ, we need transliteration

• alignment: attention model unreliable 9



Subwords for NMT: Motivation

Subwords units could be meaningful useful for translation

• compounding and other productive morphological processes
• they charge a carry-on bag fee.
• sie erheben eine Hand|gepäck|gebühr.

• names
• Edinburgh(English)
• Edimburgo(Spanish)

• Morphological variation: slightly exaggerated eg. Turkish
• OSMANLILAŞTIRAMAYABİLECEKLERİIMİZDENMİSŞINİZ
• OSMAN-LI-LAŞ-TIR-AMA-YABİL-ECEK-LER-İIMİZ-DEN-MİS-

ŞINİZ

• technical terms, numbers, etc.:
• 10-12-2020.
• December 10 2020.

10



Subword units

segmentation algorithms: wishlist

• open-vocabulary NMT: encode all words through small
vocabulary

• encoding generalizes to unseen words

• small text size

• good translation quality

our experiments [Sennrich et al., 2016]

• after preliminary experiments, we propose:
• character n-grams (with shortlist of unsegmented words)
• segmentation via byte pair encoding (BPE)

11



Byte pair encoding for word segmentation

bottom-up character merging

• starting point: character-level representation
→ computationally expensive

• compress representation based on information theory
→ byte pair encoding [Gage, 1994]

• repeatedly replace most frequent symbol pair (’A’,’B’) with ’AB’

• hyperparameter: when to stop
→ controls vocabulary size

word freq
’l o w’ 5
’l o w e r’ 2
’n e w e s t’ 6
’w i d e s t ’ 3

vocabulary:
l o w e r n s t i d

es est lo
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Byte pair encoding for word segmentation

why BPE?

• open-vocabulary:
operations learned on training set can be applied to unknown
words

• compression of frequent character sequences improves
efficiency
→ trade-off between text length and vocabulary size

’l o w e s t’

e s → es
es t → est
l o → lo

13



Byte pair encoding for word segmentation

why BPE?

• open-vocabulary:
operations learned on training set can be applied to unknown
words

• compression of frequent character sequences improves
efficiency
→ trade-off between text length and vocabulary size

’l o w es t’

e s → es
es t → est
l o → lo

13



Byte pair encoding for word segmentation

why BPE?

• open-vocabulary:
operations learned on training set can be applied to unknown
words

• compression of frequent character sequences improves
efficiency
→ trade-off between text length and vocabulary size

’l o w est’
e s → es
es t → est
l o → lo

13



Byte pair encoding for word segmentation

why BPE?

• open-vocabulary:
operations learned on training set can be applied to unknown
words

• compression of frequent character sequences improves
efficiency
→ trade-off between text length and vocabulary size

’lo w est’

e s → es
es t → est
l o → lo

13



Subword NMT: Translation Quality
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word-level NMT (with back-off) [Jean et al., 2015]

subword-level NMT: BPE
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Subword Models: BPE-Dropout

(a) (b)

Figure 1: Segmentation process of the word ‘unrelated’ using (a) BPE, (b) BPE-dropout. Hyphens indicate possi-
ble merges (merges which are present in the merge table); merges performed at each iteration are shown in green,
dropped – in red.

merge table built by BPE, but at each merge step,
some merges are randomly dropped. This results
in different segmentations for the same word (Fig-
ure 1(b)). Our method requires no segmentation
training in addition to BPE and uses standard BPE
at test time, therefore is simple. BPE-dropout is
superior compared to both BPE and Kudo (2018)
on a wide range of translation tasks, therefore is
effective.

Our key contributions are as follows:

• We introduce BPE-dropout – a simple and ef-
fective subword regularization method;

• We show that our method outperforms both
BPE and previous subword regularization on
a wide range of translation tasks;

• We analyze how training with BPE-dropout

affects a model and show that it leads to a bet-
ter quality of learned token embeddings and
to a model being more robust to noisy input.

2 Background

In this section, we briefly describe BPE and the
concept of subword regularization. We assume
that our task is machine translation, where a model
needs to predict the target sentence Y given the
source sentence X , but the methods we describe
are not task-specific.

2.1 Byte Pair Encoding (BPE)

To define a segmentation procedure, BPE (Sen-
nrich et al., 2016) builds a token vocabulary and
a merge table. The token vocabulary is initialized
with the character vocabulary, and the merge ta-
ble is initialized with an empty table. First, each
word is represented as a sequence of tokens plus a
special end of word symbol. Then, the method it-
eratively counts all pairs of tokens and merges the
most frequent pair into a new token. This token is

added to the vocabulary, and the merge operation
is added to the merge table. This is done until the
desired vocabulary size is reached.

The resulting merge table specifies which sub-
words have to be merged into a bigger subword, as
well as the priority of the merges. In this way, it
defines the segmentation procedure. First, a word
is split into distinct characters plus the end of word
symbol. Then, the pair of adjacent tokens which
has the highest priority is merged. This is done
iteratively until no merge from the table is avail-
able (Figure 1(a)).

2.2 Subword regularization

Subword regularization (Kudo, 2018) is a training
algorithm which integrates multiple segmentation
candidates. Instead of maximizing log-likelihood,
this algorithm maximizes log-likelihood marginal-
ized over different segmentation candidates. For-
mally,

L =
X

(X,Y )2D
E

x⇠P (x|X)
y⇠P (y|Y )

logP (y|x, ✓), (1)

where x and y are sampled segmentation candi-
dates for sentences X and Y respectively, P (x|X)
and P (y|Y ) are the probability distributions the
candidates are sampled from, and ✓ is the set of
model parameters. In practice, at each training
step only one segmentation candidate is sampled.

Since standard BPE segmentation is determinis-
tic, to realize this regularization Kudo (2018) pro-
posed a new subword segmentation. The intro-
duced approach requires training a separate seg-
mentation unigram language model to predict the
probability of each subword, EM algorithm to op-
timize the vocabulary, and Viterbi algorithm to
make samples of segmentations.

Subword regularization was shown to achieve
significant improvements over the method using a
single subword sequence. However, the proposed
method is rather complicated and forbids using

BPE BPE dropout

From [Provilkov et al., 2020]

• Hyphen - possible merge

• merges performed - in green

• merges dropped - in red
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Subword Models: BPE-Dropout

• BPE-Dropout: Simple and effective Subword Regularizations
[Provilkov et al., 2020]

• Adding stochastic noise to increase model robustness

• BPE: most frequent words are intact in vocabulary, learns how
to compose with infrequent words

• If we sometimes forget to merge, we will learn how words
compose, and better transliteration

• forget 1 in 10 times for most scripts, 6/10 in CKJ scripts

• Consistently give 1+ BLEU scores across language pairs -
widely used
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Character-level Models

• advantages:
• (mostly) open-vocabulary
• no heuristic or language-specific segmentation
• neural network can conceivably learn from raw character

sequences

• drawbacks:
• increasing sequence length slows training/decoding

(reported x2–x8 increase in training time)

• open questions
• on which level should we represent meaning?
• on which level should attention operate?
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Character Aware Neural Language Model [Kim et al., 2016]

• goal: vocabulary over character set

• Convolution over characters, highway network over words,
and LSTM layers
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Character Aware Neural Language Model [Kim et al., 2016]
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Beyond Character-level

• Massively multilingual settings character-level models can
result in a very large vocabulary. eg. Unicode 1,112,064
codepoints

• Byte level:
• better robustness to noise but longer training time ByT5: Towards a

token-free future with pre-trained byte-to-byte models [Xue et al., 2021]

• Claim: token free - but really use fixed Unicode tokenisation
which is not linguistically motivated

• Potentially unfair: Unicode characters beyond ASCII are much
longer byte sequences - more expensive to model

• Pixel level:
• similarities that human readers might pick up on eg. to

generalise to rare Chinese characters
• Makes translation significantly more robust to induced noise

(including unicode errors) Robust Open-Vocabulary Translation from Visual Text

Representations [Salesky et al., 2021] 20



Conclusion

• Understand how your data was preprocessed

• Important to model it correctly

• BPE and BPE-dropout is widely used

• There is no perfect method of handling tokenization.

• Opposing goals:
• Decompose maximally for simple and robust processing
• Desire to be computationally efficient in a way that is fair

across languages

• Still not learning entities jointly with the rest of the model:
separate preprocessing step

• How well these methods generalise from character strings to
higher level of representation still to be fully studied

→ next lecture: attention and transformers
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