
Natural Language Understanding, Generation,

and Machine Translation

Lecture 9: Pretrained Language Models

Shay Cohen

based on slides by Frank Keller

31 January 2025 (week 3)

School of Informatics

University of Edinburgh

scohen@inf.ed.ac.uk

1

scohen@inf.ed.ac.uk

The Story so Far

Bert Architecture

Masked Training

Pre-training and Finetuning Bert

Reading: Devlin et al. [2019].

2

The Story so Far

Self-attention

Self-attention is what we get when compute attention over the

input sequence. Let x1, . . . , xt be the input vectors and y1, . . . , yt
be the output vectors:

yi =
∑
j

wijxj

We now compute the attention weight as the dot-product of each

input token with every other token.

w ′
ij = xi · xj

wi = softmax(w′
i)

Note that the attention weight is now called w′ and the attention

distribution w (rather than a and α).

3

Self-attention

Figure from Bloem [2019].

4

Multi-head Attention

Multi-head attention is able to jointly attend to different parts of

the input. If we just have a single head, have to average.

For example, one head could attend to the subject of a verb,

another one to its object. Or different heads could attend to

different referents of a pronoun.

5

The Transformer

The multi-head self attention mechanism needs to be integrated

into a larger architecture to be useful:

Figure from Bloem [2019].

6

Position Encodings

We choose a function f : N → Rk that maps positions to real

valued vectors, and let the network learn how to interpret these.

The choice of encoding function is a hyperparameter. Vaswani

et al. [2017] use:

PE(pos,2i) = sin(pos/100002i/k)

PE(pos,2i+1) = cos(pos/100002i/k)

where pos is the position and i is an index over dimensions.

The positions encoding is then added to the input embedding

(both are of dimensionality k).

7

Masking

We apply a mask to the matrix of dot products, before the softmax

is applied. This disables all elements above the diagonal:

The model can no longer look forward and just copy the upcoming

input; it behaves like an RNN!

Figure from Bloem [2019].

8

From Transformers to Embeddings

• We saw how we can stack transformers and use them for

classification. We apply mean pooling to the output and map

it onto a class vector.

• We can also use transformers for sequence prediction. For this

we need to mask some of the input.

• Using transformers, we can build language models that

represent context very well: contextualized embeddings.

• These language models can be used for feature extraction, but

also in a pre-training/finetuning setup.

9

Reminder about Embeddings

• An embedding for a word (or a sub-word) is a mapping of it

to a vector

• In ANLP you studied about word2vec, which provides static

word embeddings

• Contextualized embeddings map words (or sub-words) to

vectors based on their context

10

Pre-training and Finetuning

Instead of just extracting embeddings, we can retrain the model for

a new task using new data:

• Pre-training: train a generic source model on a standard,

large dataset.

• Finetuning: then take the resulting model, keep its

parameters, and replace the output layer to suit the new task.

Now train this target model on the dataset for the new task.

Transfer learning by finetuning.

You can think of pre-training as a way of initializing the

parameters of your target model to good values.

11

Pre-training and Finetuning

12

Pre-training and Finetuning

Things to bear in mind when finetuning:

• Often, you truncate the last layer when you replace it (you

typically have fewer output classes).

• It’s often a good idea to use a smaller learning rate when

fine-tuning (you have already initialized to good values!).

• Typically, you only finetune a handful of final layers, you keep

the other ones fixed: weight freezing.

• Finetuning without weight freezing is normally too slow.

13

Bert Architecture

Bert Architecture

Bert (Bidirectional Encoder Representations from Transformers):

• designed for pre-training deep bidirectional representations

from unlabeled text;

• conditions on left and right context in all layers;

• pre-trained model can be finetuned with one additional output

layer for many tasks (e.g., NLI, QA, sentiment);

• for many tasks, no modifications to the Bert architecture are

required;

• Devlin et al. [2019] report SotA results on 11 tasks using

pre-training/finetuning approach.

14

Bert Architecture

Bert uses bidirectional transformer representations. This is shown

to be superior to competing architectures:

• GPT [Radford et al., 2018] also uses transformers, but is only

trained left-to-right;

• Elmo [Peters et al., 2018] uses shallow concatenation of

independently trained left-to-right and right-to-left LSTMs.

Main attraction of Bert: pre-training/finetuning approach (though

this is also present in GPT).

15

Bert Architecture

 !"#$%&'()*

#(+ #(+ #(+

#(+ #(+ #(+

,,,

,,,

#(+ #(+ #(+

#(+ #(+ #(+

,,,

,,,

&-./01$23#

$#
8

#
9 $#

:
,,,

$!
8

!
9 $!

:
,,,

$#
8

#
9 #

:
,,,

$!
8

!
9

$!
:,,,

Figure from Devlin et al. [2019].

16

Bert Architecture

4)5+

!467

4)5+ 4)5+

4)5+ 4)5+ 4)5+

4)5+ 4)5+ 4)5+

4)5+ 4)5+ 4)5+

,,,

,,,

,,,

,,,

$#
8

#
9 $#

:
,,,

$!
8

!
9 $!

:
,,,

Figure from Devlin et al. [2019].

17

Bert Architecture

Basic Bert architecture:

• multi-layer bidirectional transformer [Vaswani et al., 2017];

• L: layers (transformer blocks); H: dimensionality of hidden

layer, A: number of self-attention heads;

• Bert Base: L = 12, H = 768, A = 12, 110M parameters;

• Bert Large: L = 24, H = 1024, A = 16, 340M parameters.

18

Input/Output Representation

• Input sequence: can be ⟨Question, Answer⟩ pair, single
sentence, or any other string of tokens;

• 30,000 token vocabulary, represented as WordPiece

embeddings (handles OOV words);

• first token is always [CLS]: aggregate sentence representation

for classification tasks;

• sentence pairs separated by [SEP] token; and by segment

embeddings;

• token position represented by position embeddings.

19

Bert Architecture

 !"#$! "#$!% &"'())#*+ ,-./01(23+ #% 456! ,-./0%&'()

*
 !"#$

.
 !

.
"#$!%

.
&"'(

.
))#*+

.
,-./0

.
1(

.
23+

.
#%

.
456!

.
,-./0

+,-.&

*/0.112&34

*
5

.
7

.
7

.
7

.
7

.
7

.
8

.
8

.
8

.
8

.
8

#.3/.&)

*/0.112&34

*
6

.
9

.
:

.
;

.
<

.
=>

.
=

.
?

.
@

.
A

.
B

7,42)2,&

*/0.112&34

E : input embedding, C : final hidden vector of [CLS]; Ti : final

hidden vector for the i-th input token.

Note: C and Ti used in subsequent slides.

Figure from Devlin et al. [2019].

20

Masked Training

Masked Language Model

Important departure from previous embedding models (including

GPT and Elmo):

Don’t train the model to predict the next word, but train it to

predict the whole context.

• Problem: how can we prevent trivial copying via the

self-attention mechanism?

• Solution: mask 15% of the tokens in the input sequence; train

the model to predict these.

21

Masked Language Model

Important departure from previous embedding models (including

GPT and Elmo):

Don’t train the model to predict the next word, but train it to

predict the whole context.

• Problem: how can we prevent trivial copying via the

self-attention mechanism?

• Solution: mask 15% of the tokens in the input sequence; train

the model to predict these.

21

Masked Language Model

Problem: masking creates mismatch between pre-training and

finetuning: [MASK] token is not seen during fine-tuning. Solution:

• do not always replace masked words with [MASK], instead

choose 15% of token positions at random for prediction;

• if i-th token is chosen, we replace the i-th token with:

1. the [MASK] token 80% of the time;

2. a random token 10% of the time;

3. the unchanged i-th token 10% of the time.

• Now use Ti to predict original token with cross entropy loss.

22

Masked Language Model

Problem: masking creates mismatch between pre-training and

finetuning: [MASK] token is not seen during fine-tuning. Solution:

• do not always replace masked words with [MASK], instead

choose 15% of token positions at random for prediction;

• if i-th token is chosen, we replace the i-th token with:

1. the [MASK] token 80% of the time;

2. a random token 10% of the time;

3. the unchanged i-th token 10% of the time.

• Now use Ti to predict original token with cross entropy loss.

22

Masked Language Model

Why this masking scheme?

• if we always use [MASK] token, the model would not have to

learn good representation for other words;

• if we only use [MASK] token or random word, model would

learn that observed word is never correct;

• if we only use [MASK] token or observed word, model would

just learn to trivially copy.

23

Secondary Task: Next Sentence Prediction

• Bert is designed to be used for tasks such a question

answering (QA) and natural language inference (NLI) that

require sentence pairs;

• Bert uses a special mechanism to capture this: pre-training on

next sentence prediction task;

• generate training data: choose two sentences A and B, such

that 50% of the time B is the actual next sentence of A, and

50% of the time a randomly selected sentence.

24

Pre-training and Finetuning Bert

Pre-training and Finetuning Bert

 !"# !"#

!
$%&'(!

)
*!

$'!+(,,, !
-

!
)
. ,,, !

/
.

% #
)

#
$'!+(,,, #

-
#
)
. ,,, #

/
.

$%&'(#01*) *$'!+(,,, #01*- #01*) ,,, #01/

23456708 +9:9;:9<=

'69:6>!8?*'<98

 !"# !"# !"#

!
$%&'(!

)
*!

$'!+(,,, !
-

!
)
. ,,, !

/
.

% #
)

#
$'!+(,,, #

-
#
)
. ,,, #

/
.

$%&'(#01*) *$'!+(,,, #01*- #01*) ,,, #01/

/9514?*'48648@4*A /9514?*'48648@4*

 !"# !"#

+:4B6:97878; C784B#3878;

-'+ /951*&/ /951*&/

D8E9F4E4?*'48648@4*A*98?* *+97:*

 !"#$

23456708*A85G4:*+97:

 !"#$%&' !"#$%&'%&'(%)*

Figure from Devlin et al. [2019].

25

Pre-training and Finetuning Bert

• Pre-training on BooksCorpus (800M words) and English

Wikipedia (2,500M words);

• to finetune for a new task, we plug task-specific inputs and

outputs into Bert and re-train its parameters;
• input: designed to be two sentences:

1. sentence pairs in paraphrasing;

2. hypothesis-premise pairs in entailment;

3. question-passage pairs in question answering;

4. text-∅ pair in text classification or sequence tagging;

• output:
1. sequence of tokens in tasks such as QA (mark answer span);

2. sequence of labels in tagging tasks such as NER;

3. [CLS] representation is fed into an output layer for

classification, such as entailment or sentiment.

• appendix of Devlin et al. [2019] gives examples.
26

Bert Results: Glue Benchmark

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -

Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0

BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0

OpenAI GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1

BERTBASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6

BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Glue is a mixture of various natural language understanding tasks: MNLI,

QNLI, WNLI: natural language inference; QQP: question equivalence;

SST-2: sentiment; CoLA: linguistic acceptability; STS-B: semantic

similarity; MRPC: paraphrasing; RTE: entailment.

27

Feature Extraction vs. Finetuning: Named Entity Recognition

System Dev F1 Test F1

ELMo (Peters et al., 2018a) 95.7 92.2
CVT (Clark et al., 2018) - 92.6
CSE (Akbik et al., 2018) - 93.1

Fine-tuning approach
BERTLARGE 96.6 92.8
BERTBASE 96.4 92.4

Feature-based approach (BERTBASE)
Embeddings 91.0 -
Second-to-Last Hidden 95.6 -
Last Hidden 94.9 -
Weighted Sum Last Four Hidden 95.9 -
Concat Last Four Hidden 96.1 -
Weighted Sum All 12 Layers 95.5 -

28

Bert and the State of the Art

The current state of the art in NLP owes a lot to Bert (and many

subsequent large language models):

• pre-training a large language model and then fine-tuning or

prompting is state of the art for many NLP tasks

• pre-training requires lots of resources! Estimate for Bert (Tim

Dettmers): 4 GPUs (RTX 2080Ti) for 100 days

• fine-tuning existing model is relatively quick, but fitting model

in GPU memory can be a challenge

• getting new state of the art results with ever-larger models

and data is a game that will continue, but only few can play

• positive (for everybody else): we also need smart ideas for

architectures, objective functions, evaluation, etc.

29

Summary

• Bert is a contextualized language model that uses a deep,

bidirectional transformer architecture;

• it is pre-trained on unlabeled text using masking and next

sentence prediction;

• it is designed for finetuning with minimal architectural

modifications;

• the input uses sentence pairs; the output can be sentences,

labels, classification decisions, depending on task;

• Bert-based models are state of the art on many NLP tasks.

• There are many variants of Bert . . .

30

31

References

Peter Bloem. Transformers from scratch. Blog, http://www.peterbloem.nl/blog/transformers, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of

the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, pages 4171–4186, Minneapolis, MN, 2019.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In

Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, pages 2227–2237, New

Orleans, LA, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding with unsupervised learning. Technical report, OpenAI, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 5998–6008, Red

Hook, NY, 2017. Curran Associates.

32

http://www.peterbloem.nl/blog/transformers

	The Story so Far
	Bert Architecture
	Masked Training
	Pre-training and Finetuning Bert

