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The Story so Far



Encoder-Decoder Architecture

• So far, we have used the encoder-decoder architecture for

machine translation and other tasks.

• But it can be used for any task where both the input and

output are sequences of symbols.

• In this lecture, we will use it for syntactic parsing.

• We will see an LSTM-with-attention encoder-decoder, but

also discuss a transformer-based model.

• This approach can be used to generate any structured

representation that can be linearized (e.g., trees, graphs).
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Reminder: Encoder-Decoder Architecture
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Neural Parsing



Parsing

Parsing is the task of turning a sequence of words:

(1) You saw a man with a telescope. into a syntax tree:
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Linearizing the Input

But how can we use an encoder-decoder model for parsing? The

input is a sequence, but the output is not.
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We can linearize the syntax tree:

(S (NP (Pro You ) ) (VP (V saw ) (NP (Det a ) (N man ) (PP (P with ) (Det

a ) (N telescope ) ) ) ) )
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Linearizing the Input

Now we have a sequence that represents the syntax tree:

(S (NP (Pro You ) ) (VP (V saw ) (NP (Det a ) (N man ) (PP (P

with ) (Det a ) (N telescope ) ) ) ) )

We can simplify it by stripping out the words:

(S (NP Pro ) (VP V (NP Det N (PP P Det N ) ) ) )

And we can make it easier to process by annotating also the

closing brackets:

(S (NP Pro )NP (VP V (NP Det N (PP P Det N )PP )NP )VP )S
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An Encoder-Decoder for Parsing
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An Encoder-Decoder for Parsing

Essentially, that is our parsing model! But in order for this to work

properly, we also need to:

• Add an end-of-sequence symbol, as output sequences can vary

in length.

• Reverse the input string: results in small performance gain.

• Make the network deeper. Vinyals et al. [2015] use three

LSTM layers for both encoder and decoder.

• Add attention. This essentially works like the encoder-decoder

with attention we saw for MT (lecture 7).

• Use pre-trained word embeddings as input (here: word2vec).

• Get lots of training data. Vinyals et al. [2015] use an existing

parser (the Berkeley parser) to parse a large amount of text,

which they then use as training data.
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An Encoder-Decoder for Parsing

This is how they draw their model architecture:
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Potential Problems

But wait! Can this really work? What about:

• How do we make sure that opening and closing brackets

match?

Else we won’t have a well-formed tree!

• How do we associate the words in the input with the leaves of

the tree in the output?

• The output sequence can be longer than the input sequence,

isn’t this a problem?

• How can I make sure that the model outputs the best overall

sequence, not just the best symbol at each time step?
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Potential Problems

How to deal with these problems:

• This is really rare (0.8–1.5% of sentences). And if it occurs,

just fix the brackets in post-processing (add brackets to

beginning or end of the sequence).

• You could just associate each input word with a PoS in the

output, in sequence order. But in practice: only the tree is

evaluated. Vinyals et al. [2015] replace all PoS tags with XX.

• Not a problem, also happens in MT. And only the tree is

evaluated.

• Use beam search to generate the output (as in MT). However,

in practice, beam size has very little impact on performance.

12



Potential Problems

How to deal with these problems:

• This is really rare (0.8–1.5% of sentences). And if it occurs,

just fix the brackets in post-processing (add brackets to

beginning or end of the sequence).

• You could just associate each input word with a PoS in the

output, in sequence order. But in practice: only the tree is

evaluated. Vinyals et al. [2015] replace all PoS tags with XX.

• Not a problem, also happens in MT. And only the tree is

evaluated.

• Use beam search to generate the output (as in MT). However,

in practice, beam size has very little impact on performance.

12



Potential Problems

How to deal with these problems:

• This is really rare (0.8–1.5% of sentences). And if it occurs,

just fix the brackets in post-processing (add brackets to

beginning or end of the sequence).

• You could just associate each input word with a PoS in the

output, in sequence order. But in practice: only the tree is

evaluated. Vinyals et al. [2015] replace all PoS tags with XX.

• Not a problem, also happens in MT. And only the tree is

evaluated.

• Use beam search to generate the output (as in MT). However,

in practice, beam size has very little impact on performance.

12



Potential Problems

How to deal with these problems:

• This is really rare (0.8–1.5% of sentences). And if it occurs,

just fix the brackets in post-processing (add brackets to

beginning or end of the sequence).

• You could just associate each input word with a PoS in the

output, in sequence order. But in practice: only the tree is

evaluated. Vinyals et al. [2015] replace all PoS tags with XX.

• Not a problem, also happens in MT. And only the tree is

evaluated.

• Use beam search to generate the output (as in MT). However,

in practice, beam size has very little impact on performance.

12



Results



Training Corpora

Training corpora used:

• Wall Street Journal (WSJ): treebank with 40k manually

annotated sentences.

• BerkeleyParser corpus: 90k sentences from WSJ and several

other treebanks, and 11M sentences parsed with Berkeley

Parser.

• High-confidence corpus: 90k sentences from WSJ from several

treebanks, and 11M sentences for which two parsers produce

the same tree (length resampled).
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Results

Results reported by Vinyals et al. [2015]:

Parser Training Set WSJ 22 WSJ 23

baseline LSTM+D WSJ only < 70 < 70
LSTM+A+D WSJ only 88.7 88.3

LSTM+A+D ensemble WSJ only 90.7 90.5

baseline LSTM BerkeleyParser corpus 91.0 90.5
LSTM+A high-confidence corpus 92.8 92.1

Petrov et al. (2006) [12] WSJ only 91.1 90.4
Zhu et al. (2013) [13] WSJ only N/A 90.4

Petrov et al. (2010) ensemble [14] WSJ only 92.5 91.8

Zhu et al. (2013) [13] semi-supervised N/A 91.3
Huang & Harper (2009) [15] semi-supervised N/A 91.3
McClosky et al. (2006) [16] semi-supervised 92.4 92.1

The second half of the table lists results for various versions of the

Berkeley parser.

Current state of the art: 95–96. 14
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Results

Summary of results:

• The encoder-decoder model only works if attention is used.

• Ensembling models helps. Which is almost always the case.

• If we have a lot of training data, we get a large boost. And

even the simple model without attention starts to work.

• A simple encoder-decoder model can match the performance

of the Berkeley parser (a probabilistic chart parser; O(n3)

complexity).

• Even though we use an LSTM, performance by sentence

length is same or better than the Berkeley parser.
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Analyzing the Attention

• Attention matrix shows that the model focuses on one word

as it produces the parse tree.

• It moves through the input sequence monotonically (left to

right).

• Model learns stack-like behavior when producing the output.

• Note that if model focuses on position i , that state has

information for all words after i (input is reversed).

• In some cases, the model skips words.
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Parsing with Transformers



Parsing with Transformers

Could we use transformers for parsing, wouldn’t that work even

better? Yes! We will briefly look at Kitaev and Klein [2018]:

• They use a transformer to encode the input.

• This results in a “context aware summary vector”

(embedding) for each input word.

• The embedding encodes word, PoS tag, and position

information.

• The embedding layers are combined to obtain span scores.

• The attention blocks and the attention heads are just like in

Vaswani et al. [2017].

• But they also try factored attention heads, which separate

position and content information.
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Parsing with Transformers

The decoder of Kitaev and Klein [2018] works as follows:

A real-valued score s(T ) is assigned to a tree T :

s(T ) =
∑

(i ,j ,l)∈T

s(i , j , l)

where s(i , j , l) is a score for the constituent located between

position i and position j with label l .

At test time, we compute:

T̂ = argmax
T

s(T )

This can be found efficiently using CYK (remember ANLP?). This

gives us the optimal output sequence, unlike beam search!
19



Overall Architecture
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Transformer Block
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Single Attention Head
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Here, P(i → j) is the probability that word i attends to word j .
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Factored Attention Head
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Factored attention is a commonly used design patterns for

transformer models. 23



Span Scores

The transformer encoder give us word-based vectors (summary

vectors yk). Now we turn these into span scores:

s(i , j , ·) = M2relu(LayerNorm(M1v + c1)) + c2

where v =
[
y⃗j − y⃗i ; ⃗y j+1 − ⃗y i+1

]
and M1, M2 are parameter

matrices and c1, c2 are constants.

Note that yk , the summary vector at position k , is split into two

halves y⃗k and ⃗yk .

We then use the span scores to decode the output, i.e., to

compute the best tree.
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Results

Encoder Architecture F1 (dev) ∆

LSTM (Gaddy et al., 2018) 92.24 -0.43

Self-attentive (Section 2) 92.67 0.00

+ Factored (Section 3) 93.15 0.48

+ CharLSTM (Section 5.1) 93.61 0.94

+ ELMo (Section 5.2) 95.21 2.54

LR LP F1

Single model, WSJ only

Vinyals et al. (2015) – – 88.3

Cross and Huang (2016) 90.5 92.1 91.3

Gaddy et al. (2018) 91.76 92.41 92.08

Stern et al. (2017b) 92.57 92.56 92.56

Ours (CharLSTM) 93.20 93.90 93.55

ELMo is a pre-trained language model similar to BERT. 25



Summary

• We can use encoder-decoder architectures for parsing.

• For this, the output sequence has to be a linearized parse tree.

• Even a simple LSTM encoder-decoder works well, if given

enough training data.

• It learns to generate well-formed trees (balanced brackets).

• We can improve this further by using a transformer-based

encoder instead of an LSTM.

• For the decoder, we can use CYK over span scores to

compute the optimal output sequence.
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