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The Story so Far



Encoder-Decoder Architecture

When we do MT, we encode a source sentence and then decode it

into a target sentence:

Input: S̊a varför minskar inte vi v̊ara utsläpp?

Output: So why are we not reducing our emissions?

We can model this using an encoder-decoder architecture.

Sequence transduction is a common way to formulate NLP tasks:

• question answering

• syntactic and semantic parsing

• generation from a database

• image description

Often RNNs are used for both the encoder and the decoder.
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Encoder-Decoder Architecture
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Encoder-Decoder with Attention

This works pretty well, but:

• the hidden representation is a bottleneck: it has to represent a

sentence of any length, but its size is fixed;

• RNNs and their variants suffer from vanishing gradients;

• the encoder representation also has a recency bias: mostly

represents final words of the input;

• target words whose corresponding source words are at the

beginning therefore more difficult to generate correctly.

Solution: learn which input words are important for the decoder.
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Encoder-Decoder with Attention
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Encoder-Decoder with Attention
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Encoder-Decoder with Attention

In the decoder softmax, the context is now a weighted average of

source hidden state vectors:

P(yi | y1, . . . , yi−1, x1, . . . , x|x |) = softmax(W concat(si , ci ) + b)

ci =

|x |∑
j=1

αijhj

αi is a distribution over elements of x . In its simplest form, we can

compute it as dot product attention:

aij = si · hj
αi = softmax(ai )
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Encoder-Decoder with Attention

Observation:

• Attention is a powerful mechanism; maybe we can use it

simplify the encoder and the decoder?

• Removing the RNNs would make our model a lot more

efficient and scalable (larger models, more data).

But first, we need to make attention more complicated:

• We use two types of attention: self-attention and multihead

attention.

• We split up the attention computation into key, value, and

query vectors.
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Self-attention



Self-attention

The original Vaswani et al. [2017] paper is a bit impenetrable. We

will instead follow the tutorial by Bloem [2019].

Self-attention is what we get when compute attention over the

input sequence. Let x1, . . . , xt be the input vectors and y1, . . . , yt
be the output vectors:

yi =
∑
j

wijxj

We now compute the attention weight as the dot-product of each

input token with every other token.

w ′
ij = xi · xj

wi = softmax(w′
i )

Note that the attention weight is now called w′ and the attention

distribution w (rather than a and α).
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Self-attention

Figure from Bloem [2019].
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Self-attention

Why is self-attention useful?

• The dot product returns large values when the two vectors are

similar. The softmax normalizes the resulting vectors.

• The output yi is the weighted sum of all input vectors,

weighted by their similarity with input xi .

• We have no trainable parameters! We’re relying on the input

vectors xj being good representations for our task.

• The input is a position invariant, i.e., we have no way to

represent word order (unlike in an RNN).

Example: represent words as embeddings:

word sequence: the, cat, walks, on, the, street

input (embeddings): xthe , xcat , xwalks , xon, xthe , xstreet
output: ythe , ycat , ywalks , yon, ythe , ystreet
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More Advanced Self-attention

Every input vector xi is used in three ways in self-attention:

• Query: compare xi to every other vector to compute attention

weights for its own output yi .

• Key: compare xi to every other vector to compute attention

weights for the other outputs yj .

• Value: use xi in the weighted sum to compute every output

vector based on these weights.

We can make attention more flexible by assuming separate,

trainable weights for each of these roles: the k × k weight matrices

Wq, Wk , and Wv (k : dimensionality of x and y).
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More Advanced Self-attention

Now we compute attention as follows:

qi = Wqxi ki = Wkxi vi = Wvxi

w ′
ij = qi · kj

wi = softmax(w′
i )

yi =
∑
j

wijvj

Now the self-attention layer has parameters that allow it to modify

the incoming vectors to suit the three roles they must play.
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More Advanced Self-attention

Figure from Bloem [2019].
14



Scaling the Dot Product

• The softmax function can be sensitive to very large input

values;

• this kills the gradient and can slow down learning or cause it

to stop;

• it helps to scale the dot product back to stop the inputs to

the softmax function from growing too large:

w ′
ij =

qi · kj√
k
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Multi-head Attention

Multi-head attention is able to jointly attend to different parts of

the input. If we just have a single head, have to average.

For example, one head could attend to the subject of a verb,

another one to its object. Or different heads could attend to

different referents of a pronoun.
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Multi-head Attention

We use separate weight matrices for each head: W r
q , W r

k , W r
v ,

where r is an index over heads.

For the input xi , each attention head now produces a different

output yri . We concatenate them and pass them through a linear

transformation to reduce the dimensions to k. Two variants:

• Narrow self-attention: cut the input into chunks of size k/h

(h: number of heads), use weight matrices of size k/h × k/h.

• Wide self-attention: use weight matrices that cover the whole

input for each head, i.e., of size k × k .
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The Transformer



The Transformer

The multi-head self attention mechanism needs to be integrated

into a larger architecture to be useful:

Figure from Bloem [2019].
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The Transformer

• The blue connections are residual connections. They prevent

the gradients from getting too large or small.

• Layer normalization makes training faster.

• The feedforward layer applies a single MLP independently to

each input vector.
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Example: Movie Classification

Transformer to classify a movie review as positive or negative:

Figure from Bloem [2019].
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Example: Movie Classification

• At the core is a chain for transformer blocks.

• Input: represent words as embeddings; these are then

combined with position encodings.

• Recall that attention is position invariant, i.e., the transformer

cannot directly represent word order.

• Output: apply average pooling to the final output sequence,

map the result to a softmaxed class vector.
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Position Encodings

We choose a function f : N → Rk that maps positions to real

valued vectors, and let the network learn how to interpret these.

The choice of encoding function is a hyperparameter. Vaswani

et al. [2017] use:

PE(pos,2i) = sin(pos/100002i/k)

PE(pos,2i+1) = cos(pos/100002i/k)

where pos is the position and i is an index over dimensions.

The positions encoding is then added to the input embedding

(both are of dimensionality k).

22



Masking

What if we want to generate text as an output? Then we need an

autoregressive model:

For this, we need to ensure that the transformer cannot look

forward in the input when generating the output.

Else it would just generate a copy of the input! We need masking.

Figure from Bloem [2019].
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Masking

We apply a mask to the matrix of dot products, before the softmax

is applied. This disables all elements above the diagonal:

The model can no longer look forward and just copy the upcoming

input; it behaves like an RNN!

Figure from Bloem [2019].
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Summary

• The transformer overcomes the problem with recurrent

connections (serial bottleneck).

• It can model long-range dependencies using self-attention.

• Position encodings are needed to capture word order.

• Transformer blocks can be stacked to make models more

powerful; only limited by compute and memory.

• The transformer has only two sources of non-linearity: the

feedforward layer and the softmax in the self-attention.

• Masking makes it possible to use transformers in an

autoregressive way for sequence-to-sequence tasks.

Now we have covered most of the key modeling ideas in the course!

Next class: Word embeddings with and without transformers.
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