Natural Language Understanding, Generation,
and Machine Translation

Lecture 8: Transformers

Shay Cohen
based on slides by Frank Keller

29 January 2025 (week 3)
School of Informatics

University of Edinburgh
scohen@inf.ed.ac.uk

scohen@inf.ed.ac.uk

The Story so Far
Self-attention
Multi-head Attention

The Transformer

Reading: Vaswani et al. [2017], Bloem [2019].

The Story so Far

Encoder-Decoder Architecture

When we do MT, we encode a source sentence and then decode it

into a target sentence:

Input: Sa varfor minskar inte vi vara utslapp?
Output: So why are we not reducing our emissions?

We can model this using an encoder-decoder architecture.
Sequence transduction is a common way to formulate NLP tasks:

e question answering
e syntactic and semantic parsing
e generation from a database

e image description

Often RNNs are used for both the encoder and the decoder.

Encoder-Decoder Architecture

of . course john fun
Decoder RNN % %
S1 P > # Sa » S5
y A A A
—» » » h3 >
Encoder RNN
natiirlich hat john spaB3

Encoder-Decoder with Attention

This works pretty well, but:

e the hidden representation is a bottleneck: it has to represent a
sentence of any length, but its size is fixed;

e RNNSs and their variants suffer from vanishing gradients;

e the encoder representation also has a recency bias: mostly
represents final words of the input;

e target words whose corresponding source words are at the
beginning therefore more difficult to generate correctly.

Solution: learn which input words are important for the decoder.

Encoder-Decoder with Attention

Decoder RNN

Encoder RNN

natiirlich hat john spalB3

Encoder-Decoder with Attention

Decoder RNN

S1
A
Attention history
[EEN
—> »
Encoder RNN
natiirlich hat john spalB3

Encoder-Decoder with Attention

of .
Decoder RNN
S1 »
A
0.6 0.1 Attention history
A B
—» h > h » hs » hy
Encoder RNN
natiirlich hat john spalB3

Encoder-Decoder with Attention

of . course

Decoder RNN

Vo
Ve

S1 7]

S3

Attention history

ﬁ‘

ha

v

Encoder RNN

natiirlich hat john spalB3

Encoder-Decoder with Attention

of . course john -
Decoder RNN
S1 > 2 > S3 # Sa
A

Attention history

i

Encoder RNN

natiirlich hat john spalB3

Encoder-Decoder with Attention

of . course john -

Decoder RNN .-,_ % ! %

S1

v
v
A AY
v

7]

Attention history

—» >
Encoder RNN
natiirlich hat john spalB3

Encoder-Decoder with Attention

of . course john - has . fun
Decoder RNN
S1 > 2 > S3 > S » S5

Attention history

Encoder RNN

natiirlich hat john spalB3

Encoder-Decoder with Attention

In the decoder softmax, the context is now a weighted average of

source hidden state vectors:

P(yi | y1;---sYi-1,X1,- -, Xx|) = softmax(W concat(s;, c;) + b)

x|

C, = E Oé,'jhj
j=1

«; is a distribution over elements of x. In its simplest form, we can

compute it as dot product attention:

a,-j:s,-~hj

a; = softmax(a;)

Encoder-Decoder with Attention

Observation:

e Attention is a powerful mechanism; maybe we can use it
simplify the encoder and the decoder?

e Removing the RNNs would make our model a lot more
efficient and scalable (larger models, more data).

Encoder-Decoder with Attention

Observation:

e Attention is a powerful mechanism; maybe we can use it
simplify the encoder and the decoder?

e Removing the RNNs would make our model a lot more
efficient and scalable (larger models, more data).
But first, we need to make attention more complicated:
e We use two types of attention: self-attention and multihead
attention.

e We split up the attention computation into key, value, and
query vectors.

Self-attention

Self-attention

The original Vaswani et al. [2017] paper is a bit impenetrable. We
will instead follow the tutorial by Bloem [2019].

Self-attention is what we get when compute attention over the
input sequence. Let x;,...,X; be the input vectors and y;,...,y;
be the output vectors:

Yi = E RY
J

We now compute the attention weight as the dot-product of each
input token with every other token.

! .)
Wjj = X; * X;

w; = softmax(w/)

Note that the attention weight is now called w’ and the attention
distribution w (rather than a and «).

Self-attention
Yi Yo Ys Ya

W21 W24

X1 X4

Figure from Bloem [2019].
10

Self-attention

Why is self-attention useful?

e The dot product returns large values when the two vectors are
similar. The softmax normalizes the resulting vectors.

e The output y; is the weighted sum of all input vectors,
weighted by their similarity with input x;.

e We have no trainable parameters! We're relying on the input
vectors x; being good representations for our task.

e The input is a position invariant, i.e., we have no way to

represent word order (unlike in an RNN).

11

Self-attention

Why is self-attention useful?

e The dot product returns large values when the two vectors are
similar. The softmax normalizes the resulting vectors.

e The output y; is the weighted sum of all input vectors,
weighted by their similarity with input x;.

e We have no trainable parameters! We're relying on the input
vectors x; being good representations for our task.

e The input is a position invariant, i.e., we have no way to
represent word order (unlike in an RNN).

Example: represent words as embeddings:
word sequence: the, cat, walks, on, the, street

inPUt (embeddings): Xthe: Xcatr Xwalks: Xon, Xthe: Xstreet

output: Yiner Ycat' Ywalks' Yonr Yther Ystreet
11

More Advanced Self-attention

Every input vector x; is used in three ways in self-attention:

e (Query: compare Xx; to every other vector to compute attention
weights for its own output y;.

e Key: compare x; to every other vector to compute attention
weights for the other outputs y;.

e Value: use x; in the weighted sum to compute every output

vector based on these weights.

We can make attention more flexible by assuming separate,
trainable weights for each of these roles: the k x k weight matrices

Wy, Wy, and W, (k: dimensionality of x and y).

12

More Advanced Self-attention

Now we compute attention as follows:

q;, = WqX,' k,' = WkX,' vV, = WVX;
Wi =q; - kj

w; = softmax(w})

Yi = E WijVj
J

Now the self-attention layer has parameters that allow it to modify
the incoming vectors to suit the three roles they must play.

13

More Advanced Self-attention

o R
]

L

X1 X2 X3 X4

Figure from Bloem [2019]. 14

Scaling the Dot Product

e The softmax function can be sensitive to very large input
values;

e this kills the gradient and can slow down learning or cause it
to stop;

e it helps to scale the dot product back to stop the inputs to

the softmax function from growing too large:

Lk
wh =3

b Vk

ii5)

Multi-head Attention

Multi-head Attention

Multi-head attention is able to jointly attend to different parts of

the input. If we just have a single head, have to average.

For example, one head could attend to the subject of a verb,
another one to its object. Or different heads could attend to
different referents of a pronoun.

© ©
2 ® 2
] u

T T m
@« = E e v 0]
£z ¢ s3@ 2z g2 392
= = z 2 = F @ T o £ v o z 2 =

@

= @
g:—-w] ®

@ o =] @

2 T g @ 2z oo 2 8 g 2
= = 8 = & © ¢ £ o = = 8 =

16

Multi-head Attention

We use separate weight matrices for each head: W, W/, W/

v

where r is an index over heads.

For the input x;, each attention head now produces a different
output y;. We concatenate them and pass them through a linear
transformation to reduce the dimensions to k. Two variants:

o Narrow self-attention: cut the input into chunks of size k/h
(h: number of heads), use weight matrices of size k/h x k/h.

o Wide self-attention: use weight matrices that cover the whole

input for each head, i.e., of size k x k.

17

The Transformer

The Transformer

The multi-head self attention mechanism needs to be integrated
into a larger architecture to be useful:

input transformer block output

self
attention

=l

] L1

Figure from Bloem [2019].

18

The Transformer

e The blue connections are residual connections. They prevent
the gradients from getting too large or small.

e Layer normalization makes training faster.

e The feedforward layer applies a single MLP independently to
each input vector.

19

Example: Movie Classification

Transformer to classify a movie review as

input word position
sequence embedding embedding

positive or negative:

output

prediction
sequence

move []+ I

390|q JauLIojsue}

390]q Jowosues]

390]q Jewosues}

NN

1
-

l .

Figure from Bloem [2019].

20

Example: Movie Classification

e At the core is a chain for transformer blocks.

e /nput: represent words as embeddings; these are then
combined with position encodings.

e Recall that attention is position invariant, i.e., the transformer
cannot directly represent word order.

e Output: apply average pooling to the final output sequence,
map the result to a softmaxed class vector.

21

Position Encodings

We choose a function f : N — R¥ that maps positions to real
valued vectors, and let the network learn how to interpret these.

The choice of encoding function is a hyperparameter. \Vaswani
et al. [2017] use:

PE(pos 2i) = sin(pos/10000%/%)
PE(pos2i+1) = cos(pos/10000%/ %)

where pos is the position and i is an index over dimensions.

The positions encoding is then added to the input embedding
(both are of dimensionality k).

22

What if we want to generate text as an output? Then we need an

autoregressive model:

input word, pos output character target
sequence embedding sequence probabilities sequence
T (E) e
g | 8 1
18 [8 [-
1 Tl (fe e |L] [ETT] 1
Q Q
= =
L 5 BIEES BEaE

For this, we need to ensure that the transformer cannot look

forward in the input when generating the output.

23

What if we want to generate text as an output? Then we need an

autoregressive model:

input word, pos output character target
sequence embedding sequence probabilities sequence
T (E) e
g | 8 1
18 [8 [-
1 Tl (fe e |L] [ETT] 1
Q Q
= =
L 5 BIEES BEaE

For this, we need to ensure that the transformer cannot look
forward in the input when generating the output.

Else it would just generate a copy of the input! We need masking.

23
Figure from Bloem [2019].

Masking

We apply a mask to the matrix of dot products, before the softmax

is applied. This disables all elements above the diagonal:

Y Yz Y3 Yu Ys Yo

/

raw attention weights mask X1 X2 X3 X4 X5 Xg

0} Spuale

The model can no longer look forward and just copy the upcoming
input; it behaves like an RNN!

Figure from Bloem [2019].

24

e The transformer overcomes the problem with recurrent
connections (serial bottleneck).

e It can model long-range dependencies using self-attention.
e Position encodings are needed to capture word order.
e Transformer blocks can be stacked to make models more

powerful; only limited by compute and memory.

e The transformer has only two sources of non-linearity: the
feedforward layer and the softmax in the self-attention.

e Masking makes it possible to use transformers in an
autoregressive way for sequence-to-sequence tasks.

Now we have covered most of the key modeling ideas in the course!

Next class: Word embeddings with and without transformers.

25

References

Peter Bloem. Transformers from Scratch.
http://www.peterbloem.nl/blog/transformers, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, tukasz Kaiser, and lllia Polosukhin. Attention
is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 5998-6008, Red
Hook, NY, 2017. Curran Associates.

26

http://www.peterbloem.nl/blog/transformers

	The Story so Far
	Self-attention
	Multi-head Attention
	The Transformer

