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The Story so Far



Encoder-Decoder Architecture

When we do MT, we encode a source sentence and then decode it

into a target sentence:

Input: Sa varfor minskar inte vi vara utslapp?
Output: So why are we not reducing our emissions?

We can model this using an encoder-decoder architecture.
Sequence transduction is a common way to formulate NLP tasks:

e question answering
e syntactic and semantic parsing
e generation from a database

e image description

Often RNNs are used for both the encoder and the decoder.
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Encoder-Decoder with Attention

This works pretty well, but:

e the hidden representation is a bottleneck: it has to represent a
sentence of any length, but its size is fixed;

e RNNSs and their variants suffer from vanishing gradients;

e the encoder representation also has a recency bias: mostly
represents final words of the input;

e target words whose corresponding source words are at the
beginning therefore more difficult to generate correctly.

Solution: learn which input words are important for the decoder.
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Encoder-Decoder with Attention
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Encoder-Decoder with Attention
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Encoder-Decoder with Attention
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Encoder-Decoder with Attention
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Encoder-Decoder with Attention

In the decoder softmax, the context is now a weighted average of

source hidden state vectors:

P(yi | y1;---sYi-1,X1,- -, Xx|) = softmax(W concat(s;, c;) + b)

x|

C, = E Oé,'jhj
j=1

«; is a distribution over elements of x. In its simplest form, we can

compute it as dot product attention:

a,-j:s,-~hj

a; = softmax(a;)



Encoder-Decoder with Attention

Observation:

e Attention is a powerful mechanism; maybe we can use it
simplify the encoder and the decoder?

e Removing the RNNs would make our model a lot more
efficient and scalable (larger models, more data).



Encoder-Decoder with Attention

Observation:

e Attention is a powerful mechanism; maybe we can use it
simplify the encoder and the decoder?

e Removing the RNNs would make our model a lot more
efficient and scalable (larger models, more data).
But first, we need to make attention more complicated:
e We use two types of attention: self-attention and multihead
attention.

e We split up the attention computation into key, value, and
query vectors.
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Self-attention

The original Vaswani et al. [2017] paper is a bit impenetrable. We
will instead follow the tutorial by Bloem [2019].

Self-attention is what we get when compute attention over the
input sequence. Let x;,...,X; be the input vectors and y;,...,y;
be the output vectors:

Yi = E RY
J

We now compute the attention weight as the dot-product of each
input token with every other token.

! . )
Wjj = X; * X;

w; = softmax(w/)

Note that the attention weight is now called w’ and the attention
distribution w (rather than a and «).



Self-attention
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Self-attention

Why is self-attention useful?

e The dot product returns large values when the two vectors are
similar. The softmax normalizes the resulting vectors.

e The output y; is the weighted sum of all input vectors,
weighted by their similarity with input x;.

e We have no trainable parameters! We're relying on the input
vectors x; being good representations for our task.

e The input is a position invariant, i.e., we have no way to

represent word order (unlike in an RNN).
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Self-attention

Why is self-attention useful?

e The dot product returns large values when the two vectors are
similar. The softmax normalizes the resulting vectors.

e The output y; is the weighted sum of all input vectors,
weighted by their similarity with input x;.

e We have no trainable parameters! We're relying on the input
vectors x; being good representations for our task.

e The input is a position invariant, i.e., we have no way to
represent word order (unlike in an RNN).

Example: represent words as embeddings:
word sequence: the, cat, walks, on, the, street

inPUt (embeddings): Xthe: Xcatr Xwalks: Xon, Xthe: Xstreet

output: Yiner Ycat' Ywalks' Yonr Yther Ystreet
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More Advanced Self-attention

Every input vector x; is used in three ways in self-attention:

e (Query: compare Xx; to every other vector to compute attention
weights for its own output y;.

e Key: compare x; to every other vector to compute attention
weights for the other outputs y;.

e Value: use x; in the weighted sum to compute every output

vector based on these weights.

We can make attention more flexible by assuming separate,
trainable weights for each of these roles: the k x k weight matrices

Wy, Wy, and W, (k: dimensionality of x and y).
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More Advanced Self-attention

Now we compute attention as follows:

q;, = WqX,' k,' = WkX,' vV, = WVX;
Wi =q; - kj

w; = softmax(w})

Yi = E WijVj
J

Now the self-attention layer has parameters that allow it to modify
the incoming vectors to suit the three roles they must play.
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More Advanced Self-attention
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Scaling the Dot Product

e The softmax function can be sensitive to very large input
values;

e this kills the gradient and can slow down learning or cause it
to stop;

e it helps to scale the dot product back to stop the inputs to

the softmax function from growing too large:

Lk
wh =3

b Vk
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Multi-head Attention



Multi-head Attention

Multi-head attention is able to jointly attend to different parts of

the input. If we just have a single head, have to average.

For example, one head could attend to the subject of a verb,
another one to its object. Or different heads could attend to
different referents of a pronoun.
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Multi-head Attention

We use separate weight matrices for each head: W, W/, W/

v

where r is an index over heads.

For the input x;, each attention head now produces a different
output y;. We concatenate them and pass them through a linear
transformation to reduce the dimensions to k. Two variants:

o Narrow self-attention: cut the input into chunks of size k/h
(h: number of heads), use weight matrices of size k/h x k/h.

o Wide self-attention: use weight matrices that cover the whole

input for each head, i.e., of size k x k.
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The Transformer

The multi-head self attention mechanism needs to be integrated
into a larger architecture to be useful:

input transformer block output

self
attention
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Figure from Bloem [2019].
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The Transformer

e The blue connections are residual connections. They prevent
the gradients from getting too large or small.

e Layer normalization makes training faster.

e The feedforward layer applies a single MLP independently to
each input vector.
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Example: Movie Classification

Transformer to classify a movie review as

input word position
sequence embedding embedding

positive or negative:

output

prediction
sequence
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Figure from Bloem [2019].
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Example: Movie Classification

e At the core is a chain for transformer blocks.

e /nput: represent words as embeddings; these are then
combined with position encodings.

e Recall that attention is position invariant, i.e., the transformer
cannot directly represent word order.

e Output: apply average pooling to the final output sequence,
map the result to a softmaxed class vector.
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Position Encodings

We choose a function f : N — R¥ that maps positions to real
valued vectors, and let the network learn how to interpret these.

The choice of encoding function is a hyperparameter. \Vaswani
et al. [2017] use:

PE(pos 2i) = sin(pos/10000%/%)
PE(pos2i+1) = cos(pos/10000%/ %)

where pos is the position and i is an index over dimensions.

The positions encoding is then added to the input embedding
(both are of dimensionality k).
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What if we want to generate text as an output? Then we need an

autoregressive model:

input word, pos output character target
sequence embedding sequence probabilities  sequence
T (E ) e
g | 8 1
18 [ 8 [ -
1 Tl (fe e |L] [ETT] 1
Q Q
= =
L 5 BIEES BEaE

For this, we need to ensure that the transformer cannot look

forward in the input when generating the output.
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What if we want to generate text as an output? Then we need an

autoregressive model:

input word, pos output character target
sequence embedding sequence probabilities  sequence
T (E ) e
g | 8 1
18 [ 8 [ -
1 Tl (fe e |L] [ETT] 1
Q Q
= =
L 5 BIEES BEaE

For this, we need to ensure that the transformer cannot look
forward in the input when generating the output.

Else it would just generate a copy of the input! We need masking.

23
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Masking

We apply a mask to the matrix of dot products, before the softmax

is applied. This disables all elements above the diagonal:

Y Yz Y3 Yu Ys Yo

/

raw attention weights mask X1 X2 X3 X4 X5  Xg

0} Spuale

The model can no longer look forward and just copy the upcoming
input; it behaves like an RNN!

Figure from Bloem [2019].
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e The transformer overcomes the problem with recurrent
connections (serial bottleneck).

e It can model long-range dependencies using self-attention.
e Position encodings are needed to capture word order.
e Transformer blocks can be stacked to make models more

powerful; only limited by compute and memory.

e The transformer has only two sources of non-linearity: the
feedforward layer and the softmax in the self-attention.

e Masking makes it possible to use transformers in an
autoregressive way for sequence-to-sequence tasks.

Now we have covered most of the key modeling ideas in the course!

Next class: Word embeddings with and without transformers.
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