
NLU+: Lecture 16
Instruction Fine-tuning and RLHF

Shay Cohen
partially based on slides by Pasquale Minervini

February 24, 2025

Shay Cohen NLU+ Lecture 16 1/49

Large language models

Shay Cohen NLU+ Lecture 16 2/49

Large language models

Shay Cohen NLU+ Lecture 16 3/49

Large language models

Shay Cohen NLU+ Lecture 16 4/49

Generative Pre-Training: GPT (2018)

Shay Cohen NLU+ Lecture 16 5/49

Generative Pre-Training: GPT-2 (2019)

Shay Cohen NLU+ Lecture 16 6/49

Emergent Zero-Shot Learning

Shay Cohen NLU+ Lecture 16 7/49

Emergent Zero-Shot Learning

Shay Cohen NLU+ Lecture 16 8/49

Emergent Zero-Shot Learning

Shay Cohen NLU+ Lecture 16 9/49

GPT-3 (2020)

Shay Cohen NLU+ Lecture 16 10/49

In-context Learning

Shay Cohen NLU+ Lecture 16 11/49

From LLMs to assistants

Emergent zero-shot and few-shots in-context learning abilities:

• Can learn a new task without fine-tuning, but,

• Results are highly sensitive to the prompt

• Limited to what you can fit into the input context

Shay Cohen NLU+ Lecture 16 12/49

Large language models

We have seen until now how to pre-train language models

We will see now how to align them with human values,
preferences, and expectations

Shay Cohen NLU+ Lecture 16 13/49

Example (Ouyang et al., 2022)

LLMs are not aligned with user intents

Shay Cohen NLU+ Lecture 16 14/49

Example (Ouyang et al., 2022)

LLMs are not aligned with user intents

Shay Cohen NLU+ Lecture 16 15/49

Example (Zhao et al., 2021)

LLMs are not aligned with human values

Shay Cohen NLU+ Lecture 16 16/49

Example (Zhao et al., 2021)

LLMs are not aligned with human values

Shay Cohen NLU+ Lecture 16 17/49

Alignment

But what is alignment exactly? Based on [Askell et al., 2020]:

[..] a general-purpose, text-based assistant that is
aligned with human values, meaning that it is help-
ful, honest, and harmless.

Shay Cohen NLU+ Lecture 16 18/49

LLMs as Assistants

Emergent Zero-Shot (ZS) and Few-Shots (FS) In-Context
Learning Abilities:

• Can learn a task without fine-tuning

However:

• Results are highly sensitive to the prompt being used

• Limited to what you can fit in the input context

Food for thought: What would you do to make LLMs turn
into assistants?

We will start with instruction fine-tuning

Shay Cohen NLU+ Lecture 16 19/49

LLMs as Assistants

Emergent Zero-Shot (ZS) and Few-Shots (FS) In-Context
Learning Abilities:

• Can learn a task without fine-tuning

However:

• Results are highly sensitive to the prompt being used

• Limited to what you can fit in the input context

Food for thought: What would you do to make LLMs turn
into assistants? We will start with instruction fine-tuning

Shay Cohen NLU+ Lecture 16 19/49

Instruction fine-tuning

Idea — aligning LLMs to user interests and human values can
be seen as yet another fine-tuning task:

Shay Cohen NLU+ Lecture 16 20/49

Instruction fine-tuning

Idea — aligning LLMs to user interests and human values can
be seen as yet another fine-tuning task:

Shay Cohen NLU+ Lecture 16 21/49

Instruction fine-tuning

Collect examples of instruction-output pairs across several
tasks and fine-tune a model

Shay Cohen NLU+ Lecture 16 22/49

Instruction fine-tuning

Collect examples of instruction-output pairs across several
tasks and fine-tune a model

Shay Cohen NLU+ Lecture 16 23/49

Natural instructions

Shay Cohen NLU+ Lecture 16 24/49

Super-natural instructions

Shay Cohen NLU+ Lecture 16 25/49

Instruction fine-tuning datasets

• (Super-)Natural Instructions:
https://instructions.apps.allenai.org/

• PromptSource: https:
//github.com/bigscience-workshop/promptsource

• P3:
https://huggingface.co/datasets/bigscience/P3

• FLAN-collection:
https://github.com/google-research/FLAN

• Self-Instruct:
https://github.com/yizhongw/self-instruct

• Unnatural Instructions: https:
//github.com/orhonovich/unnatural-instructions

Shay Cohen NLU+ Lecture 16 26/49

https://instructions.apps.allenai.org/
https://github.com/bigscience-workshop/promptsource
https://github.com/bigscience-workshop/promptsource
https://huggingface.co/datasets/bigscience/P3
https://github.com/google-research/FLAN
https://github.com/yizhongw/self-instruct
https://github.com/orhonovich/unnatural-instructions
https://github.com/orhonovich/unnatural-instructions

Instruction fine-tuning example

Shay Cohen NLU+ Lecture 16 27/49

Instruction fine-tuning example

Shay Cohen NLU+ Lecture 16 28/49

Instruction fine-tuning example

Shay Cohen NLU+ Lecture 16 29/49

Scaling instruction fine-tuning

Shay Cohen NLU+ Lecture 16 30/49

Scaling instruction fine-tuning

Shay Cohen NLU+ Lecture 16 31/49

Is instruction-fine tuning enough?

Instruction fine-tuning is simple and improves generalisation
However:

• Doesn’t tell which response is better when there are two
plausible ones

• Still not completely adapted to user preference

• Only fine-tuned! No feedback from users on quality

We will now show how to optimise for human preferences
(Reinforcement Learning from Human Feedback)

Shay Cohen NLU+ Lecture 16 32/49

Reward model for human preferences

Shay Cohen NLU+ Lecture 16 33/49

Optimising for human preferences

Shay Cohen NLU+ Lecture 16 34/49

Logic behind learning from human feedback

• Say we had human “rewards” – a score that tells how
much a human prefers a completion. Say there is such
function called r(x , y) that maps prompt and completion
to a reward.

• We would want to find an LLM with parameters θ such
that

θ = argmax
θ

Epθ(x ,y)[r(x , y)].

This is the model that maximises the expected reward
according to humans.

• Two problems: (a) we do not have such function yet; (b)
how to find θ?

Shay Cohen NLU+ Lecture 16 35/49

The REINFORCE algorithm (Williams, 1992)
Maximise expected reward:

θ = argmax
θ

Epθ(x ,y)[r(x , y)]

Take the gradient! But how? Say z = (x , y) is a generation,
then:

∇θ[Epθ(x ,y)[r(x , y)]] = ∇θ

∑
z

pθ(z)r(z)

=
∑
z

r(z)∇θpθ(z)

=
∑
z

r(z)pθ(z)∇θ log pθ(z)

= Epθ(z) [r(z)∇θ log pθ(z)]

where the second to last identity (and the main “trick”) stems

from ∇θ log pθ(z) =
∇θpθ(z)

pθ(z)
.

Shay Cohen NLU+ Lecture 16 36/49

The REINFORCE algorithm (Williams, 1992)
Maximise expected reward:

θ = argmax
θ

Epθ(x ,y)[r(x , y)]

Take the gradient! But how? Say z = (x , y) is a generation,
then:

∇θ[Epθ(x ,y)[r(x , y)]] = ∇θ

∑
z

pθ(z)r(z)

=
∑
z

r(z)∇θpθ(z)

=
∑
z

r(z)pθ(z)∇θ log pθ(z)

= Epθ(z) [r(z)∇θ log pθ(z)]

where the second to last identity (and the main “trick”) stems

from ∇θ log pθ(z) =
∇θpθ(z)

pθ(z)
.

Shay Cohen NLU+ Lecture 16 36/49

The REINFORCE algorithm (Williams, 1992)
Maximise expected reward:

θ = argmax
θ

Epθ(x ,y)[r(x , y)]

Take the gradient! But how? Say z = (x , y) is a generation,
then:

∇θ[Epθ(x ,y)[r(x , y)]] = ∇θ

∑
z

pθ(z)r(z)

=
∑
z

r(z)∇θpθ(z)

=
∑
z

r(z)pθ(z)∇θ log pθ(z)

= Epθ(z) [r(z)∇θ log pθ(z)]

where the second to last identity (and the main “trick”) stems

from ∇θ log pθ(z) =
∇θpθ(z)

pθ(z)
.

Shay Cohen NLU+ Lecture 16 36/49

The REINFORCE algorithm (Williams, 1992)
Maximise expected reward:

θ = argmax
θ

Epθ(x ,y)[r(x , y)]

Take the gradient! But how? Say z = (x , y) is a generation,
then:

∇θ[Epθ(x ,y)[r(x , y)]] = ∇θ

∑
z

pθ(z)r(z)

=
∑
z

r(z)∇θpθ(z)

=
∑
z

r(z)pθ(z)∇θ log pθ(z)

= Epθ(z) [r(z)∇θ log pθ(z)]

where the second to last identity (and the main “trick”) stems

from ∇θ log pθ(z) =
∇θpθ(z)

pθ(z)
.

Shay Cohen NLU+ Lecture 16 36/49

Using the rewards

∇θ[Epθ(x ,y)[r(x , y)]] = Epθ(x,y) [r(x , y)∇θ log pθ(x , y)]

In practice, collect “human feedback” – rewards from humans,
and then estimate the above as

∇θEpθ(x ,y)[r(x , y)] ≈
1

n

n∑
i=1

r(xi , yi)∇θ log pθ(xi , yi)

We can now use gradient descent to update an LLM starting
from a base policy (the pre-trained LLM) θ0 such that

θt ← θt−1 +
α

n

n∑
i=1

r(xi , yi)∇θ log pθt−1(xi , yi)

.

Shay Cohen NLU+ Lecture 16 37/49

Problems?

Food for thought: What could be some problems with the
above “pipeline?”

• Human annotation of rewards is costly

• Human annotation of rewards is noisy

Shay Cohen NLU+ Lecture 16 38/49

Problems?

Food for thought: What could be some problems with the
above “pipeline?”

• Human annotation of rewards is costly

• Human annotation of rewards is noisy

Shay Cohen NLU+ Lecture 16 38/49

Problems?

What could be some problems with the above “pipeline?”

• Human annotation of rewards is costly

• Human annotation of rewards is noisy

Shay Cohen NLU+ Lecture 16 39/49

When we do not have much data...

• We have a pre-trained LLM, but it is not necessarily
aligned

• Collect some data that explicitly marks human preference

• Train a model to predict such preference based on this
data (or not?)

• Tune the original LLM so that it follows the preference
model/data

Shay Cohen NLU+ Lecture 16 40/49

Problems?

What could be some problems with the above “pipeline?”

• Human annotation of rewards is costly

• Human annotation of rewards is noisy

What is an alternative to rewards that is less noisy?

Shay Cohen NLU+ Lecture 16 41/49

Bradley-Terry Model

A simple model from 1950s to compare a set of elements in a
pairwise manner.

Given two elements from a population with probabilities pi and
pj , it estimates:

p(i > j) =
pi

pi + pj
.

This means that if we assign probabilities to completions yk for
a prompt x , we have a model to measure which one is preferred!

Shay Cohen NLU+ Lecture 16 42/49

How to assign probabilities?

Let’s assume that there is some score r(x , y) that tells the fit
of y to x .
We can now use it as following in the Bradley-Terry model for
a pair of completions y1 and y2:

p(y1 > y2) = σ(r(x , y1)− r(x , y2))

which is the same as:

p(y1 > y2) =
er1

er1 + er2

where ri = r(x , yi). (Why is it the BT model?)

We now have a model for preference between completions!

Shay Cohen NLU+ Lecture 16 43/49

Reminder: the sigmoid function

The x axis is r(x , y1)− r(x , y2) and the y axis gives the
probability of preference (y1 > y2).

Shay Cohen NLU+ Lecture 16 44/49

Using human feedback with trained reward
Let (xi , y1,i , y2,i) be the set of preferences

Let R be a set of reward functions (for example, parameterised
reward functions)

Then
r∗ = max

r∈R

∑
i

log σ(r(x , y1,i)− r(x , y2,i)).

Now, let P be a the space of language models, where the
original LLM p0 ∈ P. Then we can optimise:

max
p∈P

1

n

∑
i

Ep[r(xi , y)]−
β

n

∑
i

DKL(p(· | xi)||p0(· | xi)).

Now p is the LLM we use, which is based on human feedback
but does not diverge from the original LLM too much.

Shay Cohen NLU+ Lecture 16 45/49

Do we need a reward function?

Direct Preference Optimisation (DPO): It turns out that

p∗ = argmax
p∈P

1

n

∑
i

Ep[r(xi , y)]−
β

n

∑
i

DKL(p(· | xi)||p0(· | xi)).

can be solved analytically! (Rafailov et al., 2023)

log p∗(y | x) = log p0(y | x) +
r(x , y)

β
+ const

Or, alternatively,

r(x , y) = β log p(y | x)− β log p0(y | x)

Shay Cohen NLU+ Lecture 16 46/49

Do we need a reward function?

Reminder:

r(x , y) = β log p(y | x)− β log p0(y | x)

We can now substitute r(x , y) in the optimisation for p∗ and
get:

p∗ = argmax
p∈P

∑
i

log σ

(
β log

p0(y1,i | x)
p(y1,i | x)

− β log
p0(y2,i | x)
p(y2,i | x)

)
.

Shay Cohen NLU+ Lecture 16 47/49

Direct Preference Optimisation

DPO turns the problem of reinforcement learning from human
feedback into a finetuning-like problem from preference data

Shay Cohen NLU+ Lecture 16 48/49

Summary

• LLMs as pre-trained models are not aligned with human
needs

• Instruction fine-tuning tries to partially address that by
creating an “assistant mode” based on instructions

• RLHF further proceeds with improving LLMs through
direct user feedback

Shay Cohen NLU+ Lecture 16 49/49

