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Finetuning

e With increasing model size, fine-tuning becomes
increasingly expensive

e The standard transfer learning formula breaks down
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Disadvantages of ICL

o Inefficiency: the prompt needs to be processed every time
the model makes a prediction

e Performance: prompting generally performs worse than
fine-tuning (Brown et al., 2020)

e Sensitivity to the wording of the prompt (Webson and
Pavlick, 2022), order of examples (Zhao et al., 2021; Lu et
al., 2022)

e Lack of clarity regarding what the model learns from the

prompt — even random label can provide non-trivial
results (Min et al., 2022)!
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Parameter-efficient Finetuning

Parameter-

efficient classification

Fine-tuning _  sequence labeling
question answering

Pretraining

BERT

P

Food for thought: Why is the memory constraint more critical
to training rather than inference?
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Parameter-efficient Finetuning

Parameter-

efficient classification

Fine-tuning _  sequence labeling
question answering

Pretraining

BERT

P

Food for thought: Why is the memory constraint more critical
to training rather than inference? More memory needed, for
example, gradients
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Parameter-efficient Finetuning

==

Full Fine-tuning
Update all model parameters

Parameter-efficient Fine-tuning

=

Update a small subset of model parameters
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PEFT

Parameter-Efficient Fine-Tuning (PEFT) is not really a new
ideal

e Updating the last layer of the model was common in
computer vision (Donahue et al., 2014).

e In NLP, people experimented with static (frozen) and
non-static (trainable) (Kim, 2014)

e ELMo did not fine-tune word embeddings (Peters et al.,
2018)
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PEFT

Parameter-Efficient Fine-Tuning (PEFT) is not really a new

ideal

Updating the last layer of the model was common in
computer vision (Donahue et al., 2014).

In NLP, people experimented with static (frozen) and
non-static (trainable) (Kim, 2014)

ELMo did not fine-tune word embeddings (Peters et al.,
2018)

In practice, fine-tuning everything seems to work better -
why go back o fine-tuning only some parameters?
Fine-tuning everything is impractical with large models

LLMs nowadays are massively over-parameterised —
PEFT matches full fine-tuning in downstream accuracy

Food for thought: How would you reduce the number of
parameters?
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Three Kinds of PEFT

Let /: X — Y be a neural network, which can be decomposed
into a composition of functions fy, © ... ® fy,, where each
function has parameters 6; with i € {1,..., n}.
A module with parameters ¢ can modify a function fj, as
follows:

e Parameter composition: gj(x) = fy,ee(x)

e Input composition: gj(x) = fy,([x, ¢])

e Function composition: gj(x) = fy, o f4(x)
Typically, only module parameters ¢ are updated while @ is fixed

Shay Cohen NLU Lecture 18 8/29



Three Kinds of PEFT
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Parameter composition

e Sparse Subnetworks, where module parameters ¢ are
enforced to be sparse

e Structured Composition, where we impose a structure
on the weights ; that we select - e.g., we update the
weights belonging to a pre-defined group

e Low-Rank Composition, where the module parameters ¢
lie in a low-dimensional space
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Parameter composition: Sparse networks

A common inductive bias on module parameters ¢ is sparsity:
when we do © (element-wise product), we mask part of the
neural network f. Most common sparsity method: pruning -
e.g., see (Han et al., 2017)
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Parameter composition: Sparse networks

We can impose a structure on the weights that we select: we
only modify the weights that are associated in a pre-defined
group G, for example, a layer, a group of layers, or more
fine-grained components.

Example: only update bias vectors — BitFit (Ben-Zaken et al.,
2022)
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Parameter composition: low-rank composition

Another useful inductive bias: module parameters ¢ should lie
in a low-dimensional space. Li et al., 2018 show that models
can be optimised in a low-dimensional, randomly oriented
subspace rather than the full parameter space.

Low-rank finetuning takes the form g = fy py where

P € RP*9 _ with a dense matrix of shape D x d, this scales as
O(D x d) in time and storage. D is the dimension of the model
parameter, and d is a reduced size.

Standard fine-tuning: &) O(D) \
e, _ ({l
9P = g§P) 4 9P "6 9(D> R A
Ve (D) — P
0, L Y
- Arandom D x d PN 1z
projection matrix ) N
. Everything but §(@) is fixed. Only D=3
D=3 d dimensions are optimized.
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Parameter composition: LoRA

Low-Rank Adaptation — instead of learning a low-rank
factorisation via a random matrix P, we can learn the
projection matrix directly. LoRA (Hu et al., 2022) learns two
matrices B € RY*" and A € R"*¥ that are applied to the
self-attention weights:

h=[Wo+ AW]x = [Wp + BAJx

h
A 7R

In our notation: Pretrained
Weights
8i = ﬁg,‘-i-B,-A,'vvﬁ €G = Rdxd
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Parameter composition: LoRA

Applying LoRA to a Transformer layer - remember how
Transformers work:

MultiHead(Q, K, V) = Concat(heads, . .., head,)Wp

where
head; = Attention(QWQ,,-, KWKJ, VW\/J)

and

! T
Attention(Q’, K, V') = softmax < >
(Y Va

with d’ being the dimension of the relevant head
We can use LoRA to adapt the weights Wg ;, Wi ;, and/or
Wy ; — in the case of W( ;, the updated weights will be:

WQ,/': WQ,I' + AWQ’,'
— WQ,/' + BQ,/’AQ,i with BQ,/‘ c Rdxr,AQJ e Rrxd’
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Comparison of Kinds of PEFT

Parameter Training Inference

efficiency efficiency efficiency Performance
Methods such Pruning Does not E.g., LoRA
Parameter EE3 as LoRA requires increase the achieves
composition ) require < 3% of re-training . strong
. " model size
parameters iterations performance
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Three Kinds of PEFT
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Input composition

Augment the input of the model with a learnable vector ¢:

gi(x) = fy,([i, x])

Input Composition and Prompting — standard prompting
can be seen as finding a discrete text prompt that, when
embedded using the model's embedding layer, yields ¢;

However, models tend to be sensitive to the choice of the
prompt (Webson and Pavlick, 2022) and the order of examples
(Zhao et al., 2021; Lu et al., 2022)
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Prompt tuning

Idea — we can directly learn a SR F'Tu"'"g
continuous prompt which is pre- adomer immastin ‘
pended to the input (Liu et al., L R pe i

2021; Hambardzumyan et al., LoudLl JJU)
2021; Lester et al., 2021) ﬁ s

Here the module parameters is e o e
typically a matrix consisting of a

sequence of continuous prompt B v e i vl

embeddings (Li and Liang, 2021)
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Prompt tuning works well at scale

—m— Prompt Design
Model Tuning
== Prompt Tuning *

Only using trainable parameters %
at the input layer limits its ca-

S a0
pacity for adaptation 3 - .
Prompt tuning performs poorly %m / . /-/
at smaller model sizes and on o x _,-/ -
harder tasks (Mahabadi et al., 7
2021; Liu et al., 2022) 10° b o

(Li and Liang, 2021)
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Multi-layer prompt tuning

Instead of learning the module parameters ¢; only at the input
layer, we can learn them at every layer of the model (Li and
Jiang, 2021; Liu et al., 2022)

In practice, continuous prompts ¢; are concatenated with the
keys and values in the self-attention layer (Li and Jiang, 2021)
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Prompt tuning Multi-layer prompt tuning
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Comparison of Kinds of PEFT

Parameter Training Inference
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Parameter
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Three Kinds of PEFT

N E—
Parameter Input Function
Composition Composition Composition
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Function composition

Function composition augments a model’s functions with new
task-specific functions:

gi(x) = fo, © fy(x)

Commonly used in multi-task learning, where we have multiple
task-specific models composed together — e.g., see the surveys
in (Ruder, 2017; Crawshaw, 2020)

However, here we focus on functions that can be added to
pre-trained models like LLMs
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Adapters

The main purpose of functions f,

added to a pre-trained model is to

adapt it to a new task — these func- (" CGaesrom) )
tions are also known as adapters f =

In NLP, an adapter in a Trans-
former layer typically consists of

a feed-forward down-projection 2

Wp € RF*4 3 feed-forward  up-

projection Wy € Rk and an

activation function o (Houlsby et al.,
2019)

Add & Norm

Multi-Head
Attention

Adapter usually placed after multi- L\_MJ
head attention and/or after the feed-
forward layer

fs;(x) = Wp [0 (Wyx)]
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Benefits of adapters

ColA (1k) MNLI (1k) ColA (5k) MNLI (5k)
o5 L4
- .? PR IS N 1 +* b
? o i o '
g . g -
' o g
0z 076 .

o1 0.4 o1 ‘
wl . B, e =] o R I

265 4e5 665 8e5 led
learning rate

265 aes 66-5 Be-5 led
learning rate

265 aes 665 8e-5 led
learning rate

™
2e-5 de-5 6e-5 B8e-5 led

learning rate

Increased robustness (He et al., 2021; Han et al., 2021)

(blue - finetuning; orange - adapters)

e Adapters are more stable varying over tasks and learning

rates
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Benefits of adapters

Average scores on GLUE

651 I TSease
60 - —+ HyperFormer++p, ¢

0 1000 2000 3000 4000
# Samples per task
Increased sample efficiency (Mahabadi et al., 2021)
Results on GLUE with different numbers of training examples
per task
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Benefits of adapters

Parameter Training Inference
. . gy Performance
efficiency efficiency efficiency
Parameter
composition + = ++ +
Input
composition ++ == == =
Does not New Match or
. Adapters 3 .
Function depend onthe reauire functions outperform
Composition ep X gradients of increase # of  standard
hidden size . . .
frozen params  operations fine-tuning
- + - ++
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Summary

e We need PEFT because it is difficult to finetune the model
in full

e We learned about three kinds of PEFT methods:
parameter composition, input composition, function
composition

e Each has its own advantages and disadvantages

o | oRA and adapters are probably the most commonly used
PEFT methods in practice
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