Natural Language Understanding, Generation, and Machine
Translation (2023—24)

School of Informatics, University of Edinburgh
Alexandra Birch

Tutorial 1: Neural Network Language Models (Week 4)

This tutorial includes both calculation questions and more open-ended questions. Question
3 is intended to help you think about how to apply models you’ve seen before to new
problems. Most of the points on the exam will come from questions of this form, that
require you to think through a new, open-ended scenario.

1 The Softmax Function

The softmax function takes an arbitrary vector v as input, with |v| dimensions. It computes
an output vector, also of |v| dimensions, whose ith element is given by:

softmax(v); = li‘xl)i
Zj:l exp(v;)

Question 1: Softmax Function

a. What is the purpose of the softmax function?
b. What is the purpose of the expression in the numerator?
c. What is the purpose of the expression in the denominator?

Now consider how a neural language model with a softmax output layer compares with a
classic n-gram language model. Typically, we use techniques like smoothing or backoff in
conjunction with n-gram models.

d. Does this problem arise in the neural model? Why or why not?

2 Feedforward Language Models

Consider a feedforward language model of the type discussed in lecture 5. In this
model, the probability P(w; | wi—pt1, ..., wi—1) is given by:
P(w; | wi—p+1, ..., wi—1) = softmax(Vhg + ba)
hy; = tanh(Wh1 + bl)

h; = concatenate(Cw;_y,41,...,Cw;_1)
w; = onehot(w;) <for all 4
In this notation, V, W, and C are matrices, while by, bs, hy, hy, and w;_p41,...,W;—1

are vectors. The parameters of the model are V, W, C, by, and by, while the remaining
variables are intermediate layers computed by the network.

Now consider the number of parameters required to represent this model. This number
is determined by the size of the vocabulary (given to you by the data), the order n, and the
dimension of the two hidden layers, h; and hy, which we will denote d; and ds, respectively
(Note that the first dimension must be divisible by n — 1, but you can ignore this detail
in your calculations). Dimensions d; and dy are modeling choices, though the practical
consideration is how they impact the model’s accuracy.

Question 2: Parameters of Neural Nets

a. How would you express the number of model parameters in terms of |V|, n, di,
and do?

b. An effective size for the hidden dimension of a neural NLP model is often in the
hundreds. For n from 2 to 5, how many parameters would your model have if d; /(n—
1) = dy = 100? What if dy /(n — 1) = da = 10007

c. What do you conclude about the relative memory efficiency of classic n-gram and
feedforward neural language models? If you increased n even further, what would
happen?

d. How would you expect the number of parameters in an RNN model to scale with n
and |V]?

e. Can you think of any strategies to substantially reduce the number of parameters?

The next problem looks at how to apply neural models you’ve just learned about to a
problem you’ve seen in previous courses: part-of-speech tagging. Given an input sentence
T = I1...%T),, we want to predict the corresponding tag sequence y = y1 ...y, Let z;
denote the ith word of x, y; denote the ith word of y, and |z| denote the length of x. Note
that |y| = |z|. For example:

1= 1 2 3 4 5 6 7 8 9 10
z; = FKach day starts with one or two lectures by researchers
yy= DT NN VBZ IN CD CC JJR NNS IN NNS

We have access to many training examples like this, and our goal is to model the
conditional probability of the tag sequence given the sentence, that is: P(y |). There are
many possible choices here. To simplify the problem, let’s assume that each element of y
is conditionally independent of each other. That is, we want to model:

[yl

P(y|x) =] Pyl
i=1
Question 3: Model Design

a. Design a feedforward neural network to model P(y; |). Identify any independence
assumptions you make. Draw a diagram that illustrates how the model computes
probabilities for the tag of the word “with”: What is the input, and how is the
output distribution computed from the input? Write out the basic equations of the
model, and explain your choices.

b. Design an RNN to model P(y; | z). Identify any independence assumptions you
make. Draw a diagram that illustrates how the model computes probabilities for
the tag of the word “with”: What is the input, and how is the output distribution
computed from the input? Write out the basic equations of the model, and explain
your choices.

c. [Advanced, for now| Can you model P(y; |) without independence assumptions,
using multiple RNNs?

For each question, the goal is to design a simple model for the distribution. You solution
should only use architectures that we discussed in the first two weeks of the course. If you
are aware of other architectures, you should not use them here.

Literature

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to
Align and Translate. In Proceedings of the International Conference on Learning Representations
(ICLR).

Gage, P. (1994). A New Algorithm for Data Compression. C' Users J., 12(2):23-38.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015). On Using Very Large Target Vocabulary
for Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1-10, Beijing, China. Association for Computational
Linguistics.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. (2016). Character-aware neural language models.
In Proceedings of the AAAI conference on artificial intelligence, volume 30.

Luong, T., Sutskever, 1., Le, Q., Vinyals, O., and Zaremba, W. (2015). Addressing the Rare
Word Problem in Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the Tth International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 11-19, Beijing, China. Association
for Computational Linguistics.

Provilkov, I., Emelianenko, D., and Voita, E. (2020). Bpe-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 1882-1892.

Salesky, E., Etter, D., and Post, M. (2021). Robust open-vocabulary translation from visual text
representations. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7235-7252, Online and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 5/th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715-1725, Berlin, Germany.

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S., Kale, M., Roberts, A., and Raffel, C.
(2021). Byt5: Towards a token-free future with pre-trained byte-to-byte models.

