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Overview
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Input and output: one-hot vectors and the softmax

Logistic Regression

Learning and Objective Functions

Gradient Descent

Word Embeddings

Reading: Sections 4 and 5 of Neubig (2017).
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What We’ve Seen So Far, and Agenda for Today

Lecture 3. Given finite vocabulary V, we want to define a
probability distribution P : V∗ → R+.

Let w be a sequence of words in V∗. Let |w| be its length and let
wi be its ith word. So, w = w1 . . .w|w|. Using the chain rule and
Markov assumptions, we get:

P(w1 . . .w|w|) ≈
|w|+1∏
i=1

P(wi | wi−n+1, . . . ,wi−1)
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What We’ve Seen So Far, and Agenda for Today

Lecture 3. Probability theory requires P(wi | wi−n+1, . . . ,wi−1) to
obey these constraints:

Probabilities are non-negative P : V→ R+

…and sum to one
∑
w∈V

P(w | wi−n+1, . . . ,wi−1) = 1

Any function P that satisfies these constraints is valid!

ML/AML/MLPR/MLP. The perceptron is a non-linear model with
a simple learning algorithm. The multilayer perceptron is a
universal function approximator.

This lecture. How can we use multilayer perceptrons to learn
P(wi | wi−n+1, . . . ,wi−1)?
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Representing n-gram probabilities
with neural networks



Think carefully about the form of P

Our constraints again:

Probabilities are non-negative P : V→ R+

…and sum to one
∑
w∈V

P(w | wi−n+1, . . . ,wi−1) = 1

This formulation says we have many different functions P, one
for each wi−n+1 . . .wi−1 ∈ Vn−1. In an n-gram model, these
functions are tables of parameters, and share nothing (unless
we use smoothing or backoff).

Alternatively, we can view P as a function from n-gram
histories to distributions over V. That is, P : Vn−1 → (V→ R+).

Constraints still hold!
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What is the input and output of function P?

Let’s work with P : Vn−1 → (V→ R+). How do we implement
this using a perceptron? What is the input x and the output y?

x1

x2

...

x|x|

...
...

. . .

. . .

. . .

...

y
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What is the input and output of function P?

Insight. Multilayer perceptrons aka neural networks have
exactly one data type: vectors. The input x is a vector. Each
hidden layer h is a vector. The output y is a vector, even if it is a
single number

…but it doesn’t have to be!

x1

x2

...

x|x|

...
...

. . .

. . .

. . .

...

y

...

y1

y2

...

y|y|

Consequence. If we can describe our input and output as
vectors, a neural network can model the mapping between
them.

8



What is the input and output of function P?

Insight. Multilayer perceptrons aka neural networks have
exactly one data type: vectors. The input x is a vector. Each
hidden layer h is a vector. The output y is a vector, even if it is a
single number …but it doesn’t have to be!

x1

x2

...

x|x|

...
...

. . .

. . .

. . .

...

y

...

y1

y2

...

y|y|

Consequence. If we can describe our input and output as
vectors, a neural network can model the mapping between
them.

8



What is the input and output of function P?

Insight. Multilayer perceptrons aka neural networks have
exactly one data type: vectors. The input x is a vector. Each
hidden layer h is a vector. The output y is a vector, even if it is a
single number …but it doesn’t have to be!

x1

x2

...

x|x|

...
...

. . .

. . .

. . .

...

y

...

y1

y2

...

y|y|

Consequence. If we can describe our input and output as
vectors, a neural network can model the mapping between
them. 8



Discrete symbols from a finite vocabulary are vectors!

If V is a finite set of (ordered) symbols, and w its ith element,
then the one-hot encoding of w is a vector with |V| elements, in
which all elements are 0 except for the ith element, which is 1.

Example. Suppose V = {is, cold, grey, hot, summer,winter}

Index i Symbol Vi One-hot encoding of…
summer is hot winter is

0 is 0 1 0 0 1
1 cold 0 0 0 0 0
2 grey 0 0 0 0 0
3 hot 0 0 1 0 0
4 summer 1 0 0 0 0
5 winter 0 0 0 1 0

To get “winter is”, concatenate: [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

9



Discrete symbols from a finite vocabulary are vectors!

If V is a finite set of (ordered) symbols, and w its ith element,
then the one-hot encoding of w is a vector with |V| elements, in
which all elements are 0 except for the ith element, which is 1.

Example. Suppose V = {is, cold, grey, hot, summer,winter}

Index i Symbol Vi

One-hot encoding of…
summer is hot winter is

0 is

0 1 0 0 1

1 cold

0 0 0 0 0

2 grey

0 0 0 0 0

3 hot

0 0 1 0 0

4 summer

1 0 0 0 0

5 winter

0 0 0 1 0

To get “winter is”, concatenate: [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

9



Discrete symbols from a finite vocabulary are vectors!

If V is a finite set of (ordered) symbols, and w its ith element,
then the one-hot encoding of w is a vector with |V| elements, in
which all elements are 0 except for the ith element, which is 1.

Example. Suppose V = {is, cold, grey, hot, summer,winter}

Index i Symbol Vi One-hot encoding of…
summer

is hot winter is

0 is 0

1 0 0 1

1 cold 0

0 0 0 0

2 grey 0

0 0 0 0

3 hot 0

0 1 0 0

4 summer 1

0 0 0 0

5 winter 0

0 0 1 0

To get “winter is”, concatenate: [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

9



Discrete symbols from a finite vocabulary are vectors!

If V is a finite set of (ordered) symbols, and w its ith element,
then the one-hot encoding of w is a vector with |V| elements, in
which all elements are 0 except for the ith element, which is 1.

Example. Suppose V = {is, cold, grey, hot, summer,winter}

Index i Symbol Vi One-hot encoding of…
summer is

hot winter is

0 is 0 1

0 0 1

1 cold 0 0

0 0 0

2 grey 0 0

0 0 0

3 hot 0 0

1 0 0

4 summer 1 0

0 0 0

5 winter 0 0

0 1 0

To get “winter is”, concatenate: [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

9



Discrete symbols from a finite vocabulary are vectors!

If V is a finite set of (ordered) symbols, and w its ith element,
then the one-hot encoding of w is a vector with |V| elements, in
which all elements are 0 except for the ith element, which is 1.

Example. Suppose V = {is, cold, grey, hot, summer,winter}

Index i Symbol Vi One-hot encoding of…
summer is hot

winter is

0 is 0 1 0

0 1

1 cold 0 0 0

0 0

2 grey 0 0 0

0 0

3 hot 0 0 1

0 0

4 summer 1 0 0

0 0

5 winter 0 0 0

1 0

To get “winter is”, concatenate: [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

9



Discrete symbols from a finite vocabulary are vectors!

If V is a finite set of (ordered) symbols, and w its ith element,
then the one-hot encoding of w is a vector with |V| elements, in
which all elements are 0 except for the ith element, which is 1.

Example. Suppose V = {is, cold, grey, hot, summer,winter}

Index i Symbol Vi One-hot encoding of…
summer is hot winter

is

0 is 0 1 0 0

1

1 cold 0 0 0 0

0

2 grey 0 0 0 0

0

3 hot 0 0 1 0

0

4 summer 1 0 0 0

0

5 winter 0 0 0 1

0

To get “winter is”, concatenate: [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

9



Discrete symbols from a finite vocabulary are vectors!

If V is a finite set of (ordered) symbols, and w its ith element,
then the one-hot encoding of w is a vector with |V| elements, in
which all elements are 0 except for the ith element, which is 1.

Example. Suppose V = {is, cold, grey, hot, summer,winter}

Index i Symbol Vi One-hot encoding of…
summer is hot winter is

0 is 0 1 0 0 1
1 cold 0 0 0 0 0
2 grey 0 0 0 0 0
3 hot 0 0 1 0 0
4 summer 1 0 0 0 0
5 winter 0 0 0 1 0

To get “winter is”, concatenate: [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

9



Discrete symbols from a finite vocabulary are vectors!

If V is a finite set of (ordered) symbols, and w its ith element,
then the one-hot encoding of w is a vector with |V| elements, in
which all elements are 0 except for the ith element, which is 1.

Example. Suppose V = {is, cold, grey, hot, summer,winter}

Index i Symbol Vi One-hot encoding of…
summer is hot winter is

0 is 0 1 0 0 1
1 cold 0 0 0 0 0
2 grey 0 0 0 0 0
3 hot 0 0 1 0 0
4 summer 1 0 0 0 0
5 winter 0 0 0 1 0

To get “winter is”, concatenate: [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

9



Discrete symbols from a finite vocabulary are vectors!

If V is a finite set of (ordered) symbols, and w its ith element,
then the one-hot encoding of w is a vector with |V| elements, in
which all elements are 0 except for the ith element, which is 1.

Example. Suppose V = {is, cold, grey, hot, summer,winter}

Index i Symbol Vi One-hot encoding of…
summer is hot winter is

0 is 0 1 0 0 1
1 cold 0 0 0 0 0
2 grey 0 0 0 0 0
3 hot 0 0 1 0 0
4 summer 1 0 0 0 0
5 winter 0 0 0 1 0

To get “winter is”, concatenate: [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0] 9



Probability distributions are vectors!
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0.10 
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Softmax turns any vector into a probability distribution

More formally, here’s how to convert a vector into a probability
distribution using the softmax function:

Input. A vector v of length |v|.

Output. softmax(v) is a distribution u over |v|, where:

ui =
exp vi∑|v|
j=1 exp vj

Have you seen this function before?
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Logistic regression is softmax over a linear layer

Now that we know how to represent input and output, we have
our first neural n-gram model: logistic regression!

Input. To get x, concatenate the one-hot encodings of the
history words wi−n+1, . . . ,wi−1, and binary variables for any
other features we can think of, e.g. does the word end in “able”?
Most words that do are adjectives, indicating a noun will follow.
So, we can explicitly engineer this function as part of the input
representation, and it will most likely improve the model.

Output. A distribution P : V→ R+.

y = softmax(Wx+ b)
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Interpreting logistic regression

y = softmax(Wx+ b)

• Matrix W and vector b are parameters of the model.
• Input x and output y can have different dimension. These
determine the dimension of W and b:

• W must be a |y| × |x| matrix. Element Wij of W relates the
jth feature in x to the ith outcome in y.

• b, the bias, must be a |y|-dimensional vector. The ith
element bi of b allows the model to express an
input-independent (dis)preference for the ith element of y.
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Learning and Objective Functions



There are multiple views of learning

Suppose we see the trigram “winter is cold” in our training
data. What does learning look like? How do we update the
model?

View 1. Choose parameters to maximize likelihood, as when
estimating an n-gram model.

View 2. Update parameters to minimize error, as in the
perceptron.

Index i Symbol Vi x1 . . . x6 x7 . . . x12 target t output o
0 is 0 1 0 0.01
1 cold 0 0 1 0.60
2 grey 0 0 0 0.27
3 hot 0 0 0 0.10
4 summer 0 0 0 0.01
5 winter 1 0 0 0.01
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Both views yield the same objective function!

The maximum likelihood view attempts aims put as much
probability as possible on the target output.

The neural network view minimizes the cross-entropy loss,
which penalizes the model for the proportion of the output
probability mass that it does not assign to the target output.

These do the same thing!
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Minimize error by gradient descent

Interpret the error E just as a mathematical function
depending on W and b and forget about its semantics. We are
faced with a problem of mathematical optimization:

minimize
W,b

E(W,b)

Conveniently, our functions are continuous and differentiable.

continuous, non differentiable
function

non continuous function differentiable function
(disrupted) (folded) (smooth)

x

y y y

x x
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Gradient and Derivatives: The Idea

• Gradient descent can be used for minimizing functions.
• The derivative is a measure of the rate of change of a
function, as its input changes;

• For function y = f(x), the derivative dy
dx indicates how much

y changes in response to changes in x.
• If x and y are real numbers, and if the graph of y is plotted
against x, the derivative measures the slope or gradient of
the line at each point, i.e., it describes the steepness or
incline.
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Gradient and Derivatives: The Idea

• So, we know how to use derivatives to adjust one input
value.

• But we have several weights to adjust!
• We need to use partial derivatives.
• A partial derivative of a function of several variables is its
derivative with respect to one of those variables, with the
others held constant.

Example
If y = f(x1, x2), then we can have ∂y

∂x1 and
∂y
∂x2 .

Given partial derivatives, update the weights:

w′
ij = wij +∆wij

where ∆wij = −η ∂E
∂wij 18



The learning rate must be set carefully
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The learning rate must be set carefully

Small η leads to convergence.
19



The learning rate must be set carefully

Very small η, convergence may take very long. 19



The learning rate must be set carefully

Case of medium size η, also converges. 19



The learning rate must be set carefully

Very lage η: divergence. 19



Gradient descent is the baseline for many learning algorithms

• Pure gradient descent is a nice theoretical framework but
of limited power in practice.

• Finding the right η is annoying. Approaching the minimum
is time consuming.

• Heuristics to overcome problems of gradient descent:
• gradient descent with momentum
• individual learning rates for each dimension
• adaptive learning rates
• decoupling step length from partial derivates

In logistic regression, it conveniently finds the minimum,
because error surface is convex. However …
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n-grams with a multilayer neural network

P(wi | wi−3,wi−2,wi−1) = softmax(Vh2 + b2)
h2 = tanh(Wh1 + b1)
h1 = Cwi−3;Cwi−2;Cwi−1
wi = onehot(wi) 21



Interpreting the feedforward n-gram model

• Each hidden layer is a representation of its input.
• Multiplying one-hot by C selects a row of C (a vector).
• We call ith row of C the embedding of ith word in V.
• Learned word embeddings replace hand-engineered
features of logistic regression.

• Output dimension of C (embedding size) can be small
(dense), unlike the large (sparse) representations of
logistic regression.

• Output of W represents the full n-gram history. 22



Learning in feedforward neural networks

General Idea: same as in a simple perceptron
1. Take the first input pattern x from the training set.
2. Get the output y.
3. Compare y with the “right answer” (target t) to get the
error and compute the weight updates.

4. Repeat with the next x from the training set.
5. Sum up the weight updates for all patterns in the training
set and modify the weights of the network.

6. Repeat from step 1 until the overall error is sufficiently
small.

We need to process the whole training set before making and
update. This often means convergence is slow.
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Stochastic (i.e. Online) Gradient Descent

1: Initialize all weights to small random values.
2: repeat
3: for each training example do
4: Compute error gradients to yield update

∆wij for all weights wij.
5: Update the weights using ∆wij.
6: end for
7: until stopping criteria reached.

• Common variant: update weights for minibatches of
examples.

• Automatic differentiation is a subroutine of SGD.
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Summary: neural networks, SGD, and learning

This class is about NLP, not ML, so lectures focus on intuition.
Details are in the required reading, and there are many
alternative tutorials—find one that works for you. Take time to
understand learning, but course will mostly focus on model
design, assuming learning is automated.

Ideas that generalize to many models:

• Learning requires gradients, but you rarely need to
compute them by hand (you will in coursework 1). Deep
learning toolkits compute them for you with automatic
differentation.

• SGD has a very large number of variants, also in toolkits.
• In general: can simply specify model, let toolkits deal with
gradient computation and learning. Very powerful!
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Summary

• We can represent n-gram probabilities with a neural
network, using one-hot vectors for input words and the
softmax function to guarantee that output is a probability
distribution.

• We can learn the model using stochastic gradient descent
to minimize cross-entropy loss, equivalent to maximum
likelihood for this model.

• Hidden layers of the model learn representations of the
input words: word embeddings.

• Any conditional probability distribution over discrete
variables can be parameterized using a similar strategy.

Next lecture. We will use neural networks to remove Markov
independence assumptions of language models!
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