
NLU+: Lecture 14
Scaling laws of LLMs

Shay Cohen
partially based on material from Mohit Iyyer

February 14, 2024

Shay Cohen NLU+ Lecture 14 1/38



Recent news

Shay Cohen NLU+ Lecture 14 2/38



Recent news

Shay Cohen NLU+ Lecture 14 3/38



What helps large language modelling?

The common wisdom we had until now:

• More compute helps

• More data helps

• Bigger model helps

Can we be a bit more rigorous in finding the relationship
between these three parameters?

For example, given a fixed compute budget, what is the optimal
model size and training dataset size for training a Transformer
language model?

Shay Cohen NLU+ Lecture 14 4/38



What helps large language modelling?

The common wisdom we had until now:

• More compute helps

• More data helps

• Bigger model helps

Can we be a bit more rigorous in finding the relationship
between these three parameters?

For example, given a fixed compute budget, what is the optimal
model size and training dataset size for training a Transformer
language model?

Shay Cohen NLU+ Lecture 14 4/38



Scaling laws

These questions can be answered in terms of scaling laws

Scaling laws provide a relationship between compute budget C ,
size of model N and number of training tokens D

There is no clear agreement on these laws, and they are
suggested through empirical studies

Some of the conclusions may even contradict each other!

There is a rough consensus they can be modeled using power
laws or similar laws, and their combination

Shay Cohen NLU+ Lecture 14 5/38



Side note: power laws

A power law would be describing the relationship between a
variable x and some behavior of it

It has the form: f (x) = αx−κ

It has an important property: when multiplying x by a factor,
f (x) gets similarly multiplied by a factor as a function of κ

f (cx) = α(cx)−κ = αc−κx−κ = c−κf (x)

Shay Cohen NLU+ Lecture 14 6/38



Side note: power laws

A power law would be describing the relationship between a
variable x and some behavior of it

It has the form: f (x) = αx−κ

It has an important property: when multiplying x by a factor,
f (x) gets similarly multiplied by a factor as a function of κ

f (cx) = α(cx)−κ = αc−κx−κ = c−κf (x)

Shay Cohen NLU+ Lecture 14 6/38



Side note: power laws

Shay Cohen NLU+ Lecture 14 7/38



Side note: power laws

Seems familiar?
Shay Cohen NLU+ Lecture 14 8/38



Zipf’s law

Shay Cohen NLU+ Lecture 14 9/38



Scaling laws: why?

Experiments on large datasets with big models are expensive

We often require some form of preliminary experiments to make
decisions (hyperparameters, etc.)

Scaling laws can help with “lab testing” to know how a bigger
model will behave later

The bottom line: can save time and cost!

Shay Cohen NLU+ Lecture 14 10/38



Example

You trained your model and got a certain loss

You are now given much more resources to train your model
(×100)

Food for Thought: Do you collect more data (×100)? Do you
train with the same data longer? Do you increase the model
size by ×100?

Shay Cohen NLU+ Lecture 14 11/38



Solution (Kaplan et al., 2020)

Extrapolate how well a model will behave based on previous
runs, sometimes of a smaller scaler

Shay Cohen NLU+ Lecture 14 12/38



Kaplan et al. (2020)

Conclusions:

• The performance of a model strongly depends on scale
(number of model parameters, dataset size, compute
budget) and not so much on network topology (number of
layers, width of each layer)

• It is important to increase model size and dataset size
together

• Larger models are more sample efficient (what does that
mean?)

• Performance can indeed be modelled using power laws!

Shay Cohen NLU+ Lecture 14 13/38



Kaplan et al. (2020)

• On the left, different lines denote different model sizes

• In each plot, we keep the “other two” settings fixed

• As compute, dataset size and parameters increase, test
loss decreases

Shay Cohen NLU+ Lecture 14 14/38



Kaplan et al. (2020)

• Yellow - larger models; blue - smaller models

• Larger models reach lower loss with the same number of
tokens

• Smaller models “saturate” at less compute

Shay Cohen NLU+ Lecture 14 15/38



Criticism of Kaplan’s scaling laws

Main criticism: The authors used the same learning rate for all
training runs

This is regardless of how many training tokens or batches were
followed

The learning schedule needs to be adjusted based on the
number of training steps

Other issues are mentioned Hoffmann et al., 2022

Shay Cohen NLU+ Lecture 14 16/38



Chinchilla (Hoffmann et al., 2022)

Previous scaling laws: with an increased compute budget, it is
more important to increase model size rather than number of
tokens

• If compute increases by a factor of 100, increase both
model size by a factor of 25 and data size by 4

Hoffmann et al., 2022: increase both at the same rate

• If compute increases by a factor of 100, increase both
model and data size by a factor of 10

Shay Cohen NLU+ Lecture 14 17/38



Hoffmann et al. (2022)

• Each color denotes a fixed compute budget; to the left are
smaller models

• Clear valley in loss - for each compute, there is an optimal
number of parameters, it moves towards the right with compute

Shay Cohen NLU+ Lecture 14 18/38



• Take the minimum of each curve from before. Gives a
relationship between optimal loss and model/data size

Shay Cohen NLU+ Lecture 14 19/38



How to derive Chinchilla’s scaling laws?

• L - LM average test loss (cross-entropy loss)

• D - dataset size, number of tokens

• N - number of parameters (what is a parameter?)

• C - compute budget, C = C (N,D)

Given a fixed compute budget C ∗, find

argmin
N,D

L(N,D) such that C (N,D) = C ∗

Model it using power laws:

L(N,D) =
a

Nα
+

b

Dβ
+ c

• c - “ideal” test loss

Shay Cohen NLU+ Lecture 14 20/38



Fitting power laws

Power law curve assumed:

L(N,D) =
a

Nα
+

b

Dβ
+ c

If we train many models with different N,D,C values, we can
fit a curve of the above

Values: α = 0.38, β = 0.28, c = 1.69, a ≈ 400, b ≈ 400

Shay Cohen NLU+ Lecture 14 21/38



Experiment

Hoffmann et al. (2022) trained two models:

• Gopher: 280 billion parameters, 300 billion tokens,
L(N,D) = 1.993

• Chinchilla: 70 billion parameters, 1.4 trillion tokens
L(N,D) = 1.936

Their scaling law justifies the use of Chinchilla, and indeed it
does better on test loss and downstream tasks

Shay Cohen NLU+ Lecture 14 22/38



Hoffmann et al.’s scaling law

Shay Cohen NLU+ Lecture 14 23/38



What’s next?

“This is all nice! But can we just increase the amount of
compute like that, or can we make things more efficient
otherwise? And can we increase model size without
overfitting?”

Next:

• The power of GPUs

• Double descent

Shay Cohen NLU+ Lecture 14 24/38



What computation do we do?

Matrix multiplication is one of the most important operations
in deep learning

Similarly, the “summing to normalize” (softmax) is another
important operation

As a matter of fact, compactly, the Transformer “equation”
can be written as:

softmax(QK⊤)V

where Q,K ,V represent the queries/keys/values

Shay Cohen NLU+ Lecture 14 25/38



GPU hardware

GPU is a parallel processor:

• The basic computation unit is a thread

• Threads are grouped into blocks. All threads in a block
have a unique ID, but run the same code

• This is what allows them to use the extreme parallelisation
of GPUs

• A grid is a group of blocks. Each block can run a different
segment of the code

https:

//docs.nvidia.com/cuda/cuda-c-programming-guide/

index.html#compute-capabilities

Shay Cohen NLU+ Lecture 14 26/38

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities


GPU hardware

Shay Cohen NLU+ Lecture 14 27/38



GPU hardware

Memory:

• The GPU has global memory. It is big, but slow

• Each block has a shared (or block) memory – it is shared
across all threads in a block, it is highly efficient but small

When we write code, we want to minimise the use of global
memory (read/write) and use as often as possible the block
memory

Shay Cohen NLU+ Lecture 14 28/38



Example: matrix multiplication

A simple matrix multiplication algorithm for A = BC :
Aij = ⟨Bi :,C:j⟩.
Say the dimensions of all matrices is n × n.

• We can copy B and C into the block memory, and then
copy the dot product for different parts of the output

• Let’s say we are able to copy B and C in full into the
block memory

• Number of read/writes: O(n2) from global memory, O(n3)
in shared memory

• If all was done in global memory: O(n3) in global memory

Food for Thought: What happens if the matrix is too big to
fit into shared memory?

Shay Cohen NLU+ Lecture 14 29/38



Example: matrix multiplication

A simple matrix multiplication algorithm for A = BC :
Aij = ⟨Bi :,C:j⟩.
Say the dimensions of all matrices is n × n.

• We can copy B and C into the block memory, and then
copy the dot product for different parts of the output

• Let’s say we are able to copy B and C in full into the
block memory

• Number of read/writes: O(n2) from global memory, O(n3)
in shared memory

• If all was done in global memory: O(n3) in global memory

Food for Thought: What happens if the matrix is too big to
fit into shared memory?

Shay Cohen NLU+ Lecture 14 29/38



What if the matrix is big?

If the matrix is big, it might fit into the global memory, but not
the shared one

Solution:

• Break the matrix multplication into blocks. Calculate sums
on partial rows and partial columns

• Possibly use different thread blocks for each part of the
matrix

• Sum these intermediate results when copying to the global
memory

Shay Cohen NLU+ Lecture 14 30/38



Small note

This was a conceptual example!

In practice much more efficient matrix algorithms are
implemented for deep learning, still using the immense
parallelisation power of GPUs

The key thing: do as much compute in parallel accessing the
shared memory, and minimise access to global memory

Shay Cohen NLU+ Lecture 14 31/38



A bit about overfitting

“This is again all nice, but why would we make the model just
larger and larger? Won’t we suffer from overfitting eventually?”

• Double descent (term coined by Belkin et al., 2019)
exposes that this might not be the case

• Double descent: as the number of parameters grows, the
training and test error decreases, at some point test error
starts increasing, and then decreases again when the
number of parameters is even further increased

Shay Cohen NLU+ Lecture 14 32/38



Double descent

Shay Cohen NLU+ Lecture 14 33/38



Why double descent happens?

• We have three areas of the curve: underparameterised, the
interpolation threshold, overparameterised

• Interpolation threshold is the region where the training
data fits exactly the model

Shay Cohen NLU+ Lecture 14 34/38



The bias-variance tradeoff

Under some basic assumptions, the error of a model can always
be decomposed into its “bias” and “variance”

• The bias tells how well the model family we use can model
the data. High bias means the model is too simple

• The variance tells how sensitive the model learn is to small
fluctuations in the training data.

There is a tradeoff between the two (known as the
bias-variance tradeoff: if a model family is very rich, the bias
will be small, but the model will be highly sensitive to noise in
the data (and therefore will generalise not as well)

Shay Cohen NLU+ Lecture 14 35/38



Double descent - why?

It can be shown:

• Underparametrised case - model is too simple, bias is large
(but variance is small)

• At the interpolation threshold - the training data fits
exactly, bias is small, but the variance is large

• Overparameterised case - model can fit exactly the
training data, bias is small, but surprisingly the variance is
also small (see reason in Schaeffer et al., 2023)

Shay Cohen NLU+ Lecture 14 36/38



Summary

• Scaling laws give a relationship between dataset size,
compute and number of parameters

• GPUs are a piece of hardware that can accelerate the
computation of deep learning models

• Double descent shows that when model size keeps being
increased significantly, test error goes down

Shay Cohen NLU+ Lecture 14 37/38



References

• Scaling Laws for Neural Language Models, Kaplan et al.
(2020)

• Training Compute-Optimal Large Language Models,
Hoffmann et al. (2022)

• Double Descent Demystified: Identifying, Interpreting &
Ablating the Sources of a Deep Learning Puzzle, Schaeffer
et al. (2023)

• Reconciling modern machine learning practice and the
classical bias–variance trade-off, Belkin et al. (2019)

Shay Cohen NLU+ Lecture 14 38/38


