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Multilingual MT



Why Multilingual MT?

• Google 133 languages: Avoid deployment/maintenance
1000’s of bilingual models

• Positive transfer between languages:
• Low-resource languages benefit from related language,
also from unrelated high quality corpora

• Zero-shot language pairs - one model Korean-English and
English-German: Korean-German
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Low-Resource MT



Diversity of Languages
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What is low-resource?

6284

Figure 2: Language Resource Distribution: The size of
the gradient circle represents the number of languages
in the class. The color spectrum VIBGYOR, repre-
sents the total speaker population size from low to high.
Bounding curves used to demonstrate covered points
by that language class.

2.2 Repositories
We focus our attention on the LDC catalog1 and
the ELRA Map2 for labeled datasets. Although
there are other repositories of data available on-
line, we found it practical to treat these organized
collections as a representation of labeled dataset
availability. This way, we look at standardized
datasets that have established data quality and con-
sistency, and which have been used in prior work.
There are strong efforts such as PanLex (Kamholz
et al., 2014), which is a large lexical database of
a wide range of languages being used for a lexi-
cal translator, and OLAC (Simons and Bird, 2003),
which contains a range of information for different
languages (e.g. text collections, audio recordings,
and dictionaries). However, keeping within the
purview of NLP datasets used in *CL conferences,
we decided to focus on popular repositories such
as the above-mentioned.

We look at Wikipedia pages as a measure for
unlabeled data resources. With regards to language
technologies, Wikipedia pages represent a strong
source of unsupervised training data which are
freely and easily accessible. In the perspective of
digital resource availability, they are a comprehen-
sive source of factual information and are accessed
by a large, diverse set of online users.

2.3 Language Classes
Figure 2 is a visualization of the taxonomy. We
find a set of distinct partitions which can be used

1https://catalog.ldc.upenn.edu/
2http://catalog.elra.info/en-us/

to categorize languages into 6 unique positions in
the language resource ‘race’:

0 - The Left-Behinds These languages have been
and are still ignored in the aspect of language tech-
nologies. With exceptionally limited resources, it
will be a monumentous, probably impossible effort
to lift them up in the digital space. Unsupervised
pre-training methods only make the ‘poor poorer’,
since there is virtually no unlabeled data to use.

1 - The Scraping-Bys With some amount of un-
labeled data, there is a possibility that they could
be in a better position in the ‘race’ in a matter of
years. However, this task will take a solid, orga-
nized movement that increases awareness about
these languages, and also sparks a strong effort to
collect labelled datasets for them, seeing as they
have almost none.

2 - The Hopefuls With light at the end of the tun-
nel, these languages still fight on with their gasping
breath. A small set of labeled datasets has been
collected for these languages, meaning that there
are researchers and language support communities
which strive to keep them alive in the digital world.
Promising NLP tools can be created for these lan-
guages a few years down the line.

3 - The Rising Stars Unsupervised pre-training
has been an energy boost for these languages. With
a strong web presence, there is a thriving cultural
community online for them. However, they have
been let down by insufficient efforts in labeled data
collection. With the right steps, these languages
can be very well off if they continue to ride the
‘pre-training’ wave.

4 - The Underdogs Powerful and capable, these
languages pack serious amounts of resource ‘fire-
power’. They have a large amount of unlabeled
data, comparable to those possessed by the win-
ners, and are only challenged by lesser amount of
labeled data. With dedicated NLP communities
conducting research on these languages, they have
the potential to become winners and enjoy the fruits
of ‘digital superiority’.

5 - The Winners Running strong and fast, these
languages have been in the lead for quite a while
now, some longer than others. With a dominant
online presence, there have been massive indus-
trial and government investments in the develop-
ment of resources and technologies for these lan-
guages. They are the quintessential rich-resource

The State and Fate of

Linguistic Diversity and Inclusion in the NLP World [Joshi et al., 2020]
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What is low-resource?

6285

Class 5 Example Languages #Langs #Speakers % of Total Langs
0 Dahalo, Warlpiri, Popoloca, Wallisian, Bora 2191 1.2B 88.38%
1 Cherokee, Fijian, Greenlandic, Bhojpuri, Navajo 222 30M 5.49%
2 Zulu, Konkani, Lao, Maltese, Irish 19 5.7M 0.36%
3 Indonesian, Ukranian, Cebuano, Afrikaans, Hebrew 28 1.8B 4.42%
4 Russian, Hungarian, Vietnamese, Dutch, Korean 18 2.2B 1.07%
5 English, Spanish, German, Japanese, French 7 2.5B 0.28%

Table 1: Number of languages, number of speakers, and percentage of total languages for each language class.
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(d) Web

Figure 3: Plots of different available resources for different languages. Languages to the far right do not have a
representation in the resource category. Languages annotated are: Class 0-Dahalo (Dh), Wallisian(Wl); Class
1-Bhojpuri (Bh), Greenlandic (Gr); Class 2-Lao (La), Zulu (Zu); Class 3- Bengali (Bn), Indonesian (In);
Class 4- Korean (Ko), Italian (It); Class 5- English (En), Spanish (Es).

languages, reaping benefit from each state-of-the-
art NLP breakthrough.

Some more information about the taxonomy is
shown in Table 1. We also take 10 languages, and
annotate their positions in Figure 3.

2.4 Findings

On your marks As can be seen in Figure 3, the
Winners take pole position in all rankings, and
Class 0 languages remain ‘out of the race’ with
no representation in any resource. The Wikipedia
distribution seems to be more fair for classes 1, 2,
and 3 when compared to classes 4 and 5, whereas
the Web distribution has a clear disparity.

Talk ain’t cheap Looking at Table 1, we see that
Class 0 contains the largest section of languages
and represents 15% of all speakers across classes.
Although there is a large chunk of speakers which
converse with Class 5 languages, the lack of tech-
nological inclusion for different languages could
draw native speakers away from Class 0 languages
and towards Class 5, exacerbating the disparity.

3 Typology

Linguistic typology is a field which involves the
classification of languages based on their structural
and semantic properties. Large-scale efforts have
led to the creation of a database of typological

features (Dryer and Haspelmath, 2013). Such doc-
umentation becomes important as there are barely
any other classifications of similar scale. In the
context of NLP research, there has been work in-
dicating the effectiveness of injecting typological
information to guide the design of models (Ponti
et al., 2019). Also, transfer learning of resource-
rich to resource-poor languages have been shown
to work better if the respective languages contain
similar typological features (Pires et al., 2019). We
look at how skewed language resource availability
leads to an under-representation of certain typolog-
ical features, which may in turn cause zero-shot
inference models to fail on NLP tasks for certain
languages.

We look at the WALS data (Dryer and Haspel-
math, 2013), which contains typological features
for 2679 languages. There are a total of 192 typo-
logical features, with an average of 5.93 categories
per feature. We take the languages in classes 0, 1,
2, all of which have limited or no data resources
as compared to 3, 4, 5 and look at how many cat-
egories, across all features, exist in classes 0, 1,
2 but not 3, 4, 5. This comes to a total of 549
out of 1139 unique categories, with an average of
2.86 categories per feature being ignored. Typo-
logical features with the most and least ‘ignored’
categories are shown in Table 2.

To get an idea of what these typological ‘exclu-

The State and Fate of Linguistic Diversity and Inclusion in the NLP World [Joshi et al., 2020]
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What is low-resource?

“Low-resourced”-ness is a complex problem going beyond data
availability and reflects systemic problems in society.

Masakhane [Nekoto et al., 2020]
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Using Monolingual Data



Synthetic Parallel Data

• Back translation  

• use English->Yoruba system to translate English 

• Train Yoruba->English system on <Yoruba, English> 

• iterative translation - self learning 

• Train Yoruba->English, English->Yoruba, English->Yoruba etc. 

• Unsupervised MT  

English Swahili
Parallel + Synthetic

English Swahili

Parallel

EnglishSwahili

sw-en
en-sw

Improving Neural Machine Translation Models with Monolingual Data [Sennrich et al., 2016]

• Back translation still most popular and effective method
• Iterated back translation: 2-3 iterations sufficient
• Can fail if the initial system is too weak
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Using Multilingual Data



Transfer Learning Using Parallel Data

• Back translation  

• use English->Yoruba system to translate English 

• Train Yoruba->English system on <Yoruba, English> 

• iterative translation - self learning 

• Train Yoruba->English, English->Yoruba, English->Yoruba etc. 

• Unsupervised MT  

High Resource 

sw-ende-en
Initialise

Low Resource 

• Initial work showed this working for Turkic languages
[Zoph et al., 2016]

• Parent and Child do not need to be related [Kocmi and Bojar, 2018]

• Extensive investigation of choice of parents [Lin et al., 2019]

• Data set size and lexical overlap important
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Transfer learning from Many Monolingual Corpora

Early 2020: Large pretrained models had little influence of
machine translation - why?

• MT is a very highly-resourced task for the most-studied
language pairs

• MT models are encoder-decoders while most pretrained
models at the time consists of only an encoder

• These models are very large and their computation time
during inference can be prohibitive

This all changed with mBART
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mBART

• Multilingual Denoising Pre-Training for NMT (mBART)
[Liu et al., 2020]

• Pre-train massive monolinugal corpus: 25 languages from
Common Crawl

• Then fine-tune parallel data separately for each
translation direction

Figure 1: Sizes of the CC25 Corpus. A list of 25

languages ranked with monolingual corpus size.

BLEU points. For the unsupervised case, we

see consistent gains and produce the first non-

degenerate results for less related language pairs

(e.g., 9.5 BLEU gain on Nepali-English). Previous

pre-training schemes have only considered subsets

of these applications, but we compare performance

where possible and demonstrate that mBART

consistently performs the best.

We also show that mBART enables new types

of transfer across language pairs. For example,

fine-tuning on bi-text in one language pair (e.g.,

Korean-English) creates a model that can translate

from all other languages in the monolingual pre-

training set (e.g., Italian-English), with no further

training. We also show that languages not in the

pre-training corpora can benefit from mBART,

strongly suggesting that the initialization is at least

partially language universal. Finally, we present

a detailed analysis of which factors contribute

the most to effective pre-training, including the

number of languages and their overall similarity.

2 Multilingual Denoising Pre-training

We use the Common Crawl (CC) corpus (§2.1) to

pre-train BART models (§2.2). Our experiments

in the later sections involve fine-tuning a range of

models pre-trained on different subsets (§2.3).

2.1 Data: CC25 Corpus

Datasets We pre-train on 25 languages (CC25)

extracted from the CC corpora (Wenzek et al.,

2019; Conneau et al., 2019).2 CC25 includes

languages from different families and with varied

amounts of text (Figure 1). Following Lample and

Conneau (2019), we re-balanced the corpus by

2https://github.com/facebookresearch/cc

net.

up/down-sampling text from each language i with

a ratio λi:

λi =
1

pi
·

pαi∑
i
pα
i

, (1)

where pi is the percentage of each language in

CC-25. We use the smoothing parameter α = 0.7.

Pre-processing We tokenize with a sentence-

piece model (SPM; Kudo and Richardson, 2018)

learned on the full CC data that includes 250,000

subword tokens. Although not all of these lan-

guages are used for pre-training, this tokeniza-

tion supports fine-tuning on additional languages.

We do not apply additional preprocessing, such

as true-casing or normalizing punctuation/

characters.

2.2 Model: mBART

Our models follow the BART (Lewis et al., 2019)

Seq2Seq pre-training scheme, as reviewed in this

section. Whereas BART was only pretrained for

English, we systematically study the effects of

pre-training on different sets of languages.

Architecture We use a standard Seq2Seq Trans-

former architecture (Vaswani et al., 2017), with

12 layers of encoder and 12 layers of decoder with

model dimension of 1024 on 16 heads (∼ 680M

parameters). We include an additional layer-

normalization layer on top of both the encoder

and decoder, which we found stabilized training

at FP16 precision.

Learning Our training data coversK languages:

D = {D1, . . . ,DK} where each Di is a collection

of monolingual documents in language i. We (1)

assume access to a noising function g, defined

below, that corrupts text, and (2) train the model

to predict the original text X given g(X). More

formally, we aim to maximize Lθ:

Lθ =
∑

Di∈D

∑

X∈Di

logP (X|g(X); θ) , (2)

where X is an instance in language i and the

distribution P is defined by the Seq2Seq model.

Noise Function Following Lewis et al. (2019),

we use two types of noise in g. We first remove

spans of text and replace them with a mask token.

We mask 35% of the words in each instance by

randomly sampling a span length according to a

Poisson distribution (λ = 3.5). We also permute

727

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00343/1923401/tacl_a_00343.pdf by guest on 09 M
arch 2022

9



mBART

Pretrain on multiple monolingual data

Figure 2: Framework for our multilingual denoising pre-training (left) and fine-tuning on downstream

MT tasks (right), where we use (1) sentence permutation and (2) word-span masking as the injected

noise. A special language id token is added at both the encoder and decoder. One multilingual pre-trained

model is used for all tasks.

All models use the same vocabulary (§2.1). Not

all tokens will frequently occur in all pre-training

corpora, but later experiments show that this

large vocabulary can improve generalization in

multilingual settings even for unseen languages.

2.4 Scaling-up Matters

Scaling-up the training data and model parameters

has been a key factor in pre-training (Devlin

et al., 2019; Conneau et al., 2019; Raffel et al.,

2019). Compared to conventional semi-supervised

methods (e.g., back-translation) and other pre-

training for MT (Lample and Conneau, 2019;

Song et al., 2019), we pre-train mBART on much

more monolingual data with relatively deeper

architecture. This scale, in combination with the

new multi-lingual training, is central to our results

(sections 3 to 5), although future work could

more carefully study the relative contributions

of each.

3 Sentence-level Machine Translation

This section shows that mBART pre-training

provides consistent performance gains in low

to medium resource sentence-level MT settings,

including bi-text only and with back translation,

and outperforms other existing pre-training

schemes (§3.2). We also present a detailed analysis

to understand better which factors contribute

the most to these gains (§3.3), and show that

pre-training can even improve performance for

languages not present in the pre-training data

(§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-

able parallel corpora that cover all the languages

in CC25 (Figure 1). Most pairs are from previous

WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es, Zh,

De, Ru, Fr ↔ En) and IWSLT (Vi, Ja, Ko, Nl,

Ar, It ↔ En) competitions. We also use FLoRes

pairs (Guzmán et al., 2019, En-Ne and En-Si),

En-Hi from IITB (Kunchukuttan et al., 2017), and

En-My from WAT19 (Ding et al., 2018, 2019).

We divide the datasets into three categories—low

resource (<1M sentence pairs), medium resource

(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune mBART

on a single pair of bi-text data, feeding the

source language into the encoder and decod-

ing the target language. As shown in Figure 2,

we load the pre-trained weights and train the MT

model on bi-texts with teacher forcing. For all

directions, we train with 0.3 dropout, 0.2 label

smoothing, 2500 warm-up steps, 3e−5 maximum

learning rate. We use a maximum of 40K training

updates for all low and medium resource pairs and

100K for high resource pairs. The final models are

selected based on validation likelihood. We use

beam-search with beam size 5 for decoding. Our

initial experiments indicate that the fine-tuning

process is generally stable with different seeds.

Therefore, to reduce the total computation, all

our results are reported with single execution. We

validate the statistical significance with scripts

from the mosesdecoder.3

3https://github.com/moses-smt/mosesdecoder

/blob/master/scripts/analysis/bootstrap

-hypothesis-difference-significance.pl.

729

from [Liu et al., 2020]
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mBART

Fine-tune on parallel data

Figure 2: Framework for our multilingual denoising pre-training (left) and fine-tuning on downstream

MT tasks (right), where we use (1) sentence permutation and (2) word-span masking as the injected

noise. A special language id token is added at both the encoder and decoder. One multilingual pre-trained

model is used for all tasks.

All models use the same vocabulary (§2.1). Not

all tokens will frequently occur in all pre-training

corpora, but later experiments show that this

large vocabulary can improve generalization in

multilingual settings even for unseen languages.

2.4 Scaling-up Matters

Scaling-up the training data and model parameters

has been a key factor in pre-training (Devlin

et al., 2019; Conneau et al., 2019; Raffel et al.,

2019). Compared to conventional semi-supervised

methods (e.g., back-translation) and other pre-

training for MT (Lample and Conneau, 2019;

Song et al., 2019), we pre-train mBART on much

more monolingual data with relatively deeper

architecture. This scale, in combination with the

new multi-lingual training, is central to our results

(sections 3 to 5), although future work could

more carefully study the relative contributions

of each.

3 Sentence-level Machine Translation

This section shows that mBART pre-training

provides consistent performance gains in low

to medium resource sentence-level MT settings,

including bi-text only and with back translation,

and outperforms other existing pre-training

schemes (§3.2). We also present a detailed analysis

to understand better which factors contribute

the most to these gains (§3.3), and show that

pre-training can even improve performance for

languages not present in the pre-training data

(§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-

able parallel corpora that cover all the languages

in CC25 (Figure 1). Most pairs are from previous

WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es, Zh,

De, Ru, Fr ↔ En) and IWSLT (Vi, Ja, Ko, Nl,

Ar, It ↔ En) competitions. We also use FLoRes

pairs (Guzmán et al., 2019, En-Ne and En-Si),

En-Hi from IITB (Kunchukuttan et al., 2017), and

En-My from WAT19 (Ding et al., 2018, 2019).

We divide the datasets into three categories—low

resource (<1M sentence pairs), medium resource

(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune mBART

on a single pair of bi-text data, feeding the

source language into the encoder and decod-

ing the target language. As shown in Figure 2,

we load the pre-trained weights and train the MT

model on bi-texts with teacher forcing. For all

directions, we train with 0.3 dropout, 0.2 label

smoothing, 2500 warm-up steps, 3e−5 maximum

learning rate. We use a maximum of 40K training

updates for all low and medium resource pairs and

100K for high resource pairs. The final models are

selected based on validation likelihood. We use

beam-search with beam size 5 for decoding. Our

initial experiments indicate that the fine-tuning

process is generally stable with different seeds.

Therefore, to reduce the total computation, all

our results are reported with single execution. We

validate the statistical significance with scripts

from the mosesdecoder.3

3https://github.com/moses-smt/mosesdecoder

/blob/master/scripts/analysis/bootstrap

-hypothesis-difference-significance.pl.

729

from [Liu et al., 2020]
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mBART

• Encoder-Decoder architecture
• Objective: loss over full text reconstruction (not just over
masked spans)

• Two kinds of noise:
• mask spans of text: 35% of words
• permute the order of sentences

• Language token for both source and target language
• Massive computational cost: trained for 2.5 weeks on 256
Nvidia V100 GPUs
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mBART

Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko

Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17

Size 10K 91K 133K 207K 223K 230K

Direction ← → ← → ← → ← → ← → ← →

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3

mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro

Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K

Direction ← → ← → ← → ← → ← → ← →

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3

mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv

Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M

Direction ← → ← → ← → ← → ← → ← →

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9

mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 1: Low/medium resource machine translation Pre-training consistently improves over a

randomly initialized baseline, with particularly large gains on low resource language pairs (e.g.,

Vi-En).

3.2 Main Results

As shown in Table 1, initializing with the pre-

trained mBART25 weights shows gains on all the

low and medium resource pairs when compared

with randomly initialized baselines. We observe

gains of 12 or more BLEU points on low

resource pairs such as En-Vi, En-Tr, and noisily

aligned pairs like En-Hi. Fine-tuning still fails

in extremely low-resource cases such as En-Gu,

which have ∼10k examples. In these settings,

unsupervised translation is more appropriate,

see §5.2. For high resource cases (Table 2),

we do not observe consistent gains, and pre-

training slightly hurts performance when more

than 25M parallel sentences are available. When

a significant amount of bi-text data is given, we

suspect that supervised training washes out the

pre-trained weights.

Note that some reported runs of our baseline

systems using the vanilla Transformers with

randomly initialized weights have considerably

noticeable gaps between the SoTA systems

reported in the original competitions.4 The differ-

ence is mainly because we train and search

4http://matrix.statmt.org/.

Languages Cs Es Zh De Ru Fr

Size 11M 15M 25M 28M 29M 41M

RANDOM 16.5 33.2 35.0 30.9 31.5 41.4

MBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 2: High resource machine translation

where all the datasets are from their latest WMT

competitions. We only evaluate our models on

En-X translation.

the hyper-parameters for baselines on officially

provided bitext only without using any mono-

lingual corpus or multilingual adaptation. For

instance, the SoTA score for En→Gu is 28.2

in WMT19, compared with 0 in Table 1. It is

basically because the quality of the original bitext

data is low, and the SoTA systems commonly

used additional languages such as Hi to boost

the performance. Similar gaps can also be

observed in pairs such as Kk-En and Lt-En,

where Ru as the additional language is also

crucial. The main purpose of this part is to

discuss the effects of multilingual pre-training in a

constrained bitext setting for a better comparison.

We will include more discussions of combining

730

Consistent improvement over low- and medium resourced
language pairs

Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko

Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17

Size 10K 91K 133K 207K 223K 230K

Direction ← → ← → ← → ← → ← → ← →

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3

mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro

Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K

Direction ← → ← → ← → ← → ← → ← →

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3

mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv

Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M

Direction ← → ← → ← → ← → ← → ← →

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9

mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 1: Low/medium resource machine translation Pre-training consistently improves over a

randomly initialized baseline, with particularly large gains on low resource language pairs (e.g.,

Vi-En).

3.2 Main Results

As shown in Table 1, initializing with the pre-

trained mBART25 weights shows gains on all the

low and medium resource pairs when compared

with randomly initialized baselines. We observe

gains of 12 or more BLEU points on low

resource pairs such as En-Vi, En-Tr, and noisily

aligned pairs like En-Hi. Fine-tuning still fails

in extremely low-resource cases such as En-Gu,

which have ∼10k examples. In these settings,

unsupervised translation is more appropriate,

see §5.2. For high resource cases (Table 2),

we do not observe consistent gains, and pre-

training slightly hurts performance when more

than 25M parallel sentences are available. When

a significant amount of bi-text data is given, we

suspect that supervised training washes out the

pre-trained weights.

Note that some reported runs of our baseline

systems using the vanilla Transformers with

randomly initialized weights have considerably

noticeable gaps between the SoTA systems

reported in the original competitions.4 The differ-

ence is mainly because we train and search

4http://matrix.statmt.org/.

Languages Cs Es Zh De Ru Fr

Size 11M 15M 25M 28M 29M 41M

RANDOM 16.5 33.2 35.0 30.9 31.5 41.4

MBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 2: High resource machine translation

where all the datasets are from their latest WMT

competitions. We only evaluate our models on

En-X translation.

the hyper-parameters for baselines on officially

provided bitext only without using any mono-

lingual corpus or multilingual adaptation. For

instance, the SoTA score for En→Gu is 28.2

in WMT19, compared with 0 in Table 1. It is

basically because the quality of the original bitext

data is low, and the SoTA systems commonly

used additional languages such as Hi to boost

the performance. Similar gaps can also be

observed in pairs such as Kk-En and Lt-En,

where Ru as the additional language is also

crucial. The main purpose of this part is to

discuss the effects of multilingual pre-training in a

constrained bitext setting for a better comparison.

We will include more discussions of combining

730

Does not improve over random baseline for language pairs
with large number of translated sentences
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mBART

• mBART50 [Tang et al., 2021] offers two main extensions:
• Extension to 50 languages
• Fine-tuning on parallel data to give many-to-many
translation

3454

Data size Languages

10M+ German, Czech, French, Japanese, Spanish, Russian, Polish, Chinese
1M - 10M Finnish, Latvian, Lithuanian, Hindi, Estonian

100k to 1M Tamil, Romanian, Pashto, Sinhala, Malayalam, Dutch, Nepali, Italian, Arabic, Korean, Hebrew, Turkish,
Khmer, Farsi, Vietnamese, Croatian, Ukrainian

10K to 100K Thai, Indonesian, Swedish, Portuguese, Xhosa, Afrikaans, Kazakh, Urdu, Macedonian, Telugu, Slove-
nian, Burmese, Georgia

10K- Marathi, Gujarati, Mongolian, Azerbaijani, Bengali

Table 1: Languages in ML50 Benchmark. We display the languages included in the ML50 Benchmark and the quantity of
training data in bitext pairs. Full breakdown is provided in Table 6.

Multilingual Finetuning from mBART50 We
finetune the mBART50 model into Many-to-one
(M!1), one-to-Many (1!M), and Many-to-Many
(M$M) models with the ML50 training dataset us-
ing English as pivot as described in Section 3.1.
We finetune the models for 300K updates and
sweep through different batch sizes (4096 and
8000 maximum tokens per GPU), learning rates
(1e�4, 2e�4, 5e�4) , and upsampling temperature
(1.5, 3, 5) for best performing multilingual mod-
els on validation, using 32 GPUs for each training
instance.

4.3 Baselines
We compare our proposed multilingual finetuning
to three strong baselines: bilingual training from
scratch, bilingual finetuning, and multilingual mod-
els trained from scratch.

Bilingual Trained from Scratch (BL-SC) We
train bilingual translation models with standard
Transformer (Vaswani et al., 2017) models for
translation into and from English to 49 languages.
For directions with more than 1 million bitext train-
ing data (de, cs, fr, ja, es, ru, pl, zh, fi, lv, lt, and hi),
we train Transformer Big models as there is more
data to benefit from additional model capacity. For
directions with more than 10 million bitext training
data (de, cs, fr, ja, es, ru, pl, and zh), we also train
Transformer Large models as there is even more
data to benefit from additional model capacity. The
best performing bilingual model is selected as the
Bilingual Train from Scratch baseline. Please refer
to Table 5 for details of these architectures.

Bilingual Finetuning (BL-FT) Bilingual fine-
tuning adapts the mBART model into bilingual
machine translation models by training for longer
on translation bitext. For each language direction,
we follow Liu et al. (2020) and finetune for 40K
updates to obtain the Bilingual Finetuning baseline.

Multilingual Trained from Scratch (ML-SC)
We train 3 different multlilingual models from
scratch: Many-to-one (M!1), one-to-Many
(1!M), and Many-to-Many (M$M) with En-
glish as pivot. We train for 500K updates and
sweep through different batch sizes (4096 and
8000 maximum tokens per GPU), learning rates
(1e�4, 2e�4, 5e�4) , and upsampling temperature
(1.5, 3, 5) for best performing multilingual model
on validation, using 32 GPUs for each training in-
stance.

4.4 Evaluation and Generation

We evaluate performance with tokenized BLEU,
following the tokenization in mBART (Liu et al.,
2020). To generate, we decode using beam search
with beam size N = 5 with length penalty= 1.0 on
the validation set. We do not perform checkpoint
averaging. To select the best performing model in
a sweep, we compare BLEU on the validation set.

5 Multilingual Finetuning Performance

We evaluate the performance of multilingual fine-
tuning on the ML50 Benchmark — we compare
multilingual finetuning models with bilingual train-
ing from scratch, bilingual finetuning, and multilin-
gual training from scratch. Results of multilingual
finetuning comparing to all baselines are displayed
in Table 2 (per direction comparison is available in
Figure 1). The results demonstrate strong improve-
ment over the baselines on many-to-English and
comparable performance on English-to-many di-
rections. We also evaluate multilingual finetuning
many-to-many models zero-shot performance on
non-English directions without bitext data. Our re-
sults demonstrates multilingual finetuning models’
strong improvement on zero-shot directions com-
paring to multilingual models trained from scratch.

• Both mBART and mBART50 available in HuggingFace
• Basis of much practical work on low-resource MT

14



Multilingual Models

Idea: Handle all N by N translation directions with a single
model (instead of O(N2))

• Usually 1-n or n-1
• Use a small number of related langauges [Mueller et al., 2020]

• Or go big: 103 languages Massively Multilingual Neural Machine Translation in the Wild

[Arivazhagan et al., 2019]

• There is a trade-off:
• Transfer: benefit from addition of other languages
• Interferance: performance is degraded due to having to
also learn to translate other languages

• Benefits are more noticeable for the many-to-English and
low-resource pairs

• High-resource pairs tend to be harmed
• Massive systems require capacity

15



Multilingual Models

Figure 2: Quality (measured by BLEU) of in-
dividual bilingual models on all 204 supervised
language pairs, measured in terms of BLEU (y-
axes). Languages are arranged in decreasing order
of available training data from left to right on the
x-axes (pair ids not shown for clarity). Top plot
reports BLEU scores for translating from English
to any of the other 102 languages. Bottom plot
reports BLEU scores for translating from any of
the other 102 languages to English. Performance
on individual language pairs is reported using dots
and a trailing average is used to show the trend.

baselines we use a batch size of 1M tokens per-
batch, by using large scale data parallelism over
16 TPUv3 chips (Jouppi et al., 2017). We find
that increasing the batch size offers noticeable im-
provements in model quality, while also signifi-
cantly speeding up convergence.

We plot the BLEU scores for different lan-
guage pairs in Figure 2. These results are also
summarized in Table 1. For brevity, we plot
two main directions separately in different plots.
When the source language is in English and we
are translating from English to any other language,
En!Any is used for convenience, and similarly
Any!En for the opposite directions. We notice

from Moses to evaluate BLEU scores.

En!Any High 25 Med. 52 Low 25
Bilingual 29.34 17.50 11.72
Any!En High 25 Med. 52 Low 25
Bilingual 37.61 31.41 21.63

Table 1: Average translation quality (BLEU) of
bilingual models over different groups of lan-
guages. High 25 refers to the top 25 languages
by dataset size (left-most portion of Fig. 1), while
low 25 refers to the bottom 25 (right-most portion
of Fig. 1).

that translation performance on both En!Any and
Any!En falls as the size of the training dataset
decreases, as expected. In the next section we
empirically analyze how multilingual models fare
on the transfer-interference trade-off by using and
comparing against the baselines introduced in this
section.

4 Learning

Multilingual NMT is one of the largest multi-task
problems being studied in academia or industry
(Neubig and Hu, 2018; Aharoni et al., 2019), with
hundreds of tasks (one per language pair) being
learned in a single model. As is evident from
Figure 1, multilingual NMT suffers from a severe
data imbalance problem when studied in an un-
constrained realistic setting.7 While there is an
abundance of data for some language pairs, mak-
ing it difficult to go through even a single epoch
over the entire dataset before model convergence,
low resource languages suffer from data scarcity,
making learning difficult. To make things worse,
these learning problems might have varying levels
of learning ‘difficulty’ due to the linguistic proper-
ties of particular languages; designing a learning
algorithm to train a single model on all of these
tasks simultaneously is non-trivial.

In this section we will study the learning as-
pect of multilingual NMT, first examining the in-
teraction between transfer and interference in our
setup. Next, we will touch upon solutions to
counter interference and lay out a set of future di-
rections. And last, we will delve deeper into the

7The data-imbalance problem is also apparent in academ-
ical settings when multiple datasets are mixed, e.g. mixing
TED talks with UN corpus.

5

Massively Multilingual Neural Machine Translation in the Wild [Arivazhagan et al., 2019]

BLEU score for langauge pairs ordered from most training data
on left to least on the right 16



Multilingual Models

Figure 3: Effect of sampling strategy on the per-
formance of multilingual models. From left to
right, languages are arranged in decreasing order
of available training data. While the multilingual
models are trained to translate both directions,
Any!En and En!Any, performance for each of
these directions is depicted in separate plots to
highlight differences. Results are reported rela-
tive to those of the bilingual baselines (2). Per-
formance on individual language pairs is reported
using dots and a trailing average is used to show
the trend. The colors correspond to the following
sampling strategies: (i) Blue: original data distri-
bution, (ii) Green: equal sampling from all lan-
guage pairs. Best viewed in color.

translating from Any!En, contrary to existing re-
sults in multilingual NMT (Firat et al., 2016a;
Johnson et al., 2017), exaggerated by the limited
model capacity and the scale and imbalance of
our dataset. All these observations again under-
score the difficulty in multitask learning, espe-
cially when hundreds of tasks are to be learned
simultaneously, each of which may come from
a different distribution. Although (Maurer et al.,
2016) demonstrates the benefit of multitask learn-
ing when invariant features can be shared across
all tasks, such a premise is not guaranteed when

hundreds of languages from different families are
jointly considered.

4.2 Countering Interference: Baselines and

Open Problems

The results in Figure 3 indicate that, in a large
multi-task setting, high resource tasks are starved
for capacity while low resource tasks benefit sig-
nificantly from transfer, and the extent of inter-
ference and transfer are strongly related. How-
ever, this trade-off could be controlled by applying
proper data sampling strategies.

To enable more control over sampling, we in-
vestigate batch balancing strategies (Firat et al.,
2017; Lee et al., 2017), along the lines of the tem-
perature based variant used for training multilin-
gual BERT (Devlin et al., 2018). For a given lan-
guage pair, l, let Dl be the size of the available
parallel corpus. Then if we adopt a naive strat-
egy and sample from the union of the datasets, the
probability of the sample being from language l is
pl =

Dl
⌃kDk

. However, this strategy would starve
low resource languages. To control the ratio of
samples from different language pairs, we sam-
ple a fixed number of sentences from the training
data, with the probability of a sentence belong-

ing to language pair l being proportional to p
1
T
l ,

where T is the sampling temperature. As a result,
T = 1 corresponds to true data distribution and
T = 100 corresponds to (almost) equal number
of samples for each language (close to a uniform
distribution with over-sampled low-resource lan-
guages). Please see Figure 4 for an illustration of
the effect of temperature based sampling overlaid
on our dataset distribution.

Figure 4: Temperature based data sampling strate-
gies overlaid on the data distribution.

We repeat the experiment in Section 4.1 with
temperature based sampling, setting T = 5 for

7

Massively Multilingual Neural Machine Translation in the Wild [Arivazhagan et al., 2019]

Difference in BLEU score from bilingual baseline. Blue: original
data distribution, Green: equal sampling from all languages
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Multilingual Models WMT2021

212

MMT Model cs-en de-en ha-en is-en ja-en ru-en zh-en Avg Incremental �

7 Bilingual 28.9 41.5 15.9 30.3 19.7 40.2 34.8 30.2 —
7 + Backtranslation 28.3 38.0 28.3 34.5 21.1 38.0 30.8 31.3 +1.1
7 + Finetuning 30.4 42.8 30.3 35.5 24.6 39.5 36.2 34.2 +2.9

3 + Multilingual 32.1 43.8 36.1 39.4 26.7 40.6 36.9 36.5 +2.3
3 + Ensemble 32.3 44.5 37.2 39.9 27.2 40.9 37.8 37.1 +0.6
3 + Reranking 32.7 44.4 38.2 40.5 27.8 41.4 38.0 37.6 +0.5

7 WMT20 Winner 29.9 43.8 — — 26.6 39.2 36.9
� over WMT20 +2.8 +0.6 — — +1.2 +2.2 +1.1

MMT Model en-cs en-de en-ha en-is en-ja en-ru en-zh Avg Incremental �

7 Bilingual 33.1 38.7 14.7 25.8 25.4 25.8 40.0 29.1 —
7 + Backtranslation 33.1 39.6 23.1 29.4 26.1 25.7 42.4 31.3 +2.3
7 + Finetuning 35.7 39.5 23.3 29.4 27.7 26.0 43.0 32.1 +0.7

3 + Multilingual 36.4 40.8 24.6 31.2 29.7 26.8 43.6 33.3 +1.2
3 + Ensemble 36.8 41.1 25.0 32.5 29.7 26.9 43.6 33.7 +0.4
3 + Reranking 37.2 41.1 25.5 32.8 29.7 27.4 43.6 33.9 +0.2
3 + Postprocessing 39.8 42.6 25.5 34.5 29.8 28.8 48.2 35.6 +1.7

7 WMT20 Winner 36.8 38.8 — — 28.4 25.5 47.3
� over WMT20 +3.0 +3.8 — — +1.4 +3.3 +0.9

Table 9: Full Results of Submitted Models. Starting with a bilingual baseline, we depict the incremental gain
of different techniques across language pairs. Our final submission is a multilingual ensemble with noisy channel
reranking, trained on all available data including backtranslation. On all language pairs, we observe improvement
compared to the previous WMT20 winning models. The column MMT denotes if the model is multilingual. Note
Hausa and Icelandic were not present in WMT20.

of other directions. Thus, we analyze further in this
section the continued importance of backtransla-
tion, even in multilingual systems.

Backtranslation in Bilingual Systems. First,
we investigate if backtranslated data is still helpful,
even after we augment the training dataset with
mined and publicly available training data, beyond
what is distributed in the WMT Shared Task. Our
results in Table 7 show that backtranslation is help-
ful for 10 out of 14 directions, especially for low re-
source directions such as ha-en and is-en. However,
for high resource directions such as de-en, ru-en,
zh-en, bilingual systems trained with backtransla-
tion had slightly lower validation BLEU compared
to those trained without backtranslation.

Finetuning Corrects Overfitting to Transla-
tionese We further investigate the anomaly that
high-resource directions can suffer from adding
backtranslated data. Figure 1 shows that the mi-
nor BLEU degradation from adding backtransla-
tion mostly disappears after applying in-domain
finetuning. For zh-en and cs-en after in-domain
finetuning, the system trained with backtransla-
tion has stronger performance (+0.4 BLEU) com-
pared to the system trained without backtransla-
tion. Previous studies of this effect have indicated

that backtranslation produces translationese, which
has distinct qualities compared to original training
data (Marie et al., 2020; Zhang and Toral, 2019;
Graham et al., 2020). We hypothesize that in-
domain finetuning, which trains the model on non-
backtranslated data, can have a corrective effect
that counteracts overfitting on translationese.

Backtranslation in Multilingual Systems. Ta-
ble 8 summarizes the performance improvement
from adding backtranslation to multilingual mod-
els in an ablation study. Overall, despite creat-
ing a fully unconstrained system with substantially
greater training data and leveraging the data shar-
ing potential of multilingual translation, we find
that backtranslation still improves the performance.
We believe this is influenced by the fact that back-
translation fully utilizes available monolingual data.
While data mining techniques can identify poten-
tially parallel sentences, it is naturally limited to
identifying only a subset of the full monolingual
data the algorithms utilize to mine.

4.3 Ablation on Components of Final
Submission

Finally, we end by analyzing each aspect in our
final submission and the cumulative effect. The
effect of each component is shown in Table 9.

Facebook AI’s WMT21 News Translation Task Submission [Tran et al., 2021]

• First place: cs, ha, is
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Reducing Negative Interference
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Figure 1: Diagrams depicting (i) Left: the proposed layout of a Transformer enhanced with language specific
adapters (ii) Right: the architecture of each residual adapter layer. While the figure depicts use of adapters for
multilingual NMT, the same formulation can be used for domain adaptation.

bility to adapt to tasks of varying complexity and
adaptation corpus sizes, within a single model.

In this work we propose using light-weight
adapter layers, which are transplanted between the
layers of a pre-trained network and fine-tuned on
the adaptation corpus. Adapting only the light-
weight layers enables our approach to be param-
eter efficient, and eases the scalability of the ap-
proach to large models. The capacity of these
adapters can be adjusted to match the requirements
of the target task, making them suitable for a va-
riety of adaptation tasks. By separating the pa-
rameters of the original network and each adapta-
tion task, our approach circumvents catastrophic
interference (McCloskey and Cohen, 1989) with
the original model parameters, and allows us to si-
multaneously adapt a single model to multiple do-
mains and languages, while retaining the quality
on the source languages and domains.

We make three major contributions in this work:
(i) we propose a formulation of adapter layers
for NMT adaptation that enables us to tune their
capacity according to the target task complex-
ity and corpus size, (ii) we evaluate our ap-
proach on domain adaptation, and demonstrate
that light-weight adapters match the performance
of full fine-tuning based adaptation at a fraction
of the per-domain parameter cost, and (iii) we use
adapters to train a massively multilingual model
on 103 languages, and demonstrate that it is pos-
sible to train a single model that significantly im-
proves transfer performance on low resource lan-

guages, without huge regression on high resource
language pairs.

By demonstrating the effectiveness of adapters
on domain adaptation and massively multilingual
translation, we make progress towards a flexible
universal translation model for all languages and
domains.

2 Related Work
Several approaches have been proposed in recent
literature that try to address the shortcomings of
full fine-tuning when applied to domain adaptation
(Chu and Wang, 2018). Michel and Neubig (2018)
proposed a space efficient approach to adaptation
that introduces domain-specific biases to the out-
put vocabulary, enabling extreme personalization
in settings where small amounts of data are avail-
able for a lot of different domains. Thompson
et al. (2018) fine-tune selected components of the
base model architecture, in order to determine how
much fine-tuning each component contributes to
the final adaptation performance. Wuebker et al.
(2018) propose introducing sparse offsets from the
base model parameters for every domain, reduc-
ing the memory complexity of loading and unload-
ing domain specific parameters in real world set-
tings. Bapna and Firat (2019) train the base model
to utilize neighboring samples from the training
set, enabling the model to adapt to new domains
without the need for additional parameter updates.
Learning Hidden Unit Contribution (LHUC) (Vi-
lar, 2018) is perhaps closest to our work in spirit.

Simple, Scalable Adaptation for Neural Machine Translation [Bapna and Firat, 2019]

• Inject tiny task specific adapter layers
• Bridges the gap between individual bilingual models and
one massively multilingual model
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Figure 7: Trendlines depicting translation performance improvement in multilingual models with residual adapters.
From left to right, languages are arranged in decreasing order of available training data. y-axis depicts the BLEU
score relative to the bilingual baseline trained on the corresponding language pair. The plots correspond to the
following models: (1.) Red: Multilingual model trained with sampling temperature, T = 5 (2.) Blue: Multilingual
model + Small adapters, b = 2048 (3.) Pink: Multilingual model + Large adapters, b = 4096.
Note: For adapter experiments, we choose the best performance between b = 0, b = 2048 and b = 4096.

accumulators and restart from step 0. For our
experiments we use the same bottle-neck dimen-
sion, b = 2048, for all language pairs. This was
meant to reduce the number of experiments given
the large number of language pairs in our setup.
For language pairs that were worse than their bilin-
gual models after adding adapters with b = 2048,
we re-run fine-tuning with larger adapters, with
b = 4096. In an ideal setting, the bottle-neck
could be larger for the highest resource languages
and b = 0 (no adapters) for the smallest languages.

5.4 Results and Analysis

We plot the translation quality on different lan-
guage pairs in Figure 7. As we can see, the multi-

lingual model significantly out-performs the bilin-
gual baselines in the extremely low resource set-
ting. These gains are even more amplified when
translating into English, agreeing with previous
work in multilingual NMT (Neubig and Hu, 2018;
Aharoni et al., 2019). However, owing to the
huge training corpus, we observe significant per-
formance deterioration in the high resource lan-
guages. We attribute this deterioration to two fac-
tors: (i) Languages compete for capacity given the
limited model size, and (ii) The model converges
much before it trains on significant portions of the
high resource datasets.

As is apparent from Figure 7, performance on
high and medium resource languages improves

Simple, Scalable Adaptation for Neural Machine Translation [Bapna and Firat, 2019]

• Can be parameter inefficient if very many language pairs
• No sharing between related languages eg. Hindi - Nepali
• More in Lecture 27!
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Evaluation of Low-resource MT

• Evaluation of MT is hard anyway
• Is automatic evaluation of low-resource languages harder?

• Metrics are designed with high-resource langauges in mind
• Metrics are less reliable on poor systems
• Lack of good test sets and human evaluations for training
metrics

• Human evaluation is preferable
• Researchers need to connect to language communities
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Where are we now?

• Much progress on low-resource MT
• Much more data for some languages e.g. English–Hindi
now has 10M sentence pairs

However:

• NMT models are very data-inefficient
• Lack good techniques for incorporating knowledge
• Vast majority of world’s languages not supported
• Need to work with language communities: Masekhane,
AmericasNLP
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Summary

• Collect more data
• Monolingual Data
• Multilingual Data

Next: NLP Ethics
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