
Natural Language Understanding, Generation,

and Machine Translation

Lecture 7: Sequence-to-sequence Models with Attention

Shay Cohen

29 January 2024 (week 3)

School of Informatics

University of Edinburgh

scohen@inf.ed.ac.uk

Based on slides by Frank Keller, Adam Lopez, Rico Sennrich.

1

scohen@inf.ed.ac.uk

Overview

Encoding and decoding sequences

RNN for Translation

Translation as String Completion

Encoder-Decoder Architecture

Attention

Attention Distribution over Source Words

Bidirectional RNN

Attention and Alignment

Reading: Sections 7–9 of Neubig (2017).

2

Agenda for Today

Last week: We saw that we could model a probability distribution

over a strings, like w = w1 . . .w|w |:

1. Use the chain rule, P(w) =
∏|w |+1

i=1 P(wi | w1, . . . ,wi−1), and

2. Use universal function approximators in the form of neural

networks to model the conditional distributions

P(wi | w1, . . . ,wi−1)

The second idea brings many benefits over classic n-gram models.

It gives us parameter sharing and representation learning, and it

frees us from zero probabilities and independence assumptions.

Today: We will see how to model conditional probability

distributions like P(y | x), where x and y are both sequences of

discrete symbols, aka strings.

3

Encoding and decoding sequences

How would you model translation with n-grams?

Input: S̊a varför minskar inte vi v̊ara utsläpp?

Output: So why are we not reducing our emissions?

Let x be the source (Swedish) sentence, y be the target (English)

sentence.

x = x1...x|x |
y = y1...y|y |

How can we define P(y | x)?

Expand using the chain rule:

P(y | x) =
|y |+1∏
i=1

P(yi | y1, . . . , yi−1, x1, . . . x|x |)

4

Idea: use RNN language models for translation

h1 h2 h3

y1 y2 y3

I love you

x1 x2 x3

<s> I loveIch liebe dichJe t’ aimeTe quiero

Word order is different! Different number of words!

5

Syntax is very different across languages

English & German

6

Syntax is very different across languages

press
conference

the
day

current
strategy

Iraqi
government

enough
progress American

troops

7

Syntax is very different across languages

English & Turkish

8

Syntax is very different across languages

9

Idea: model translation as string completion

h1 h2 h3 h4 h5 h6 h7 h8

y1 y2 y3 y4 y5 y6 y7 y8

Ich liebe dich <translate> I love you </s>

x1 x2 x3 x4 x5 x6 x7 x8

<s> Ich liebe dich <translate> I love you

Does this design make sense? Why or why not?

10

Translation and Language Modeling are different

Language model:

p(y) =
n∏

i=1

p(yi |y1, . . . , yi−1)

Translation model:

p(y | x) =
n∏

i=1

p(yi |y1, . . . , yi−1, x1, . . . , x|x |)

We could treat sentence pair as one long sequence, but:

• This is really a model of P(x , y) = P(x)P(y | x).
• But we do not care about P(x)!

• The source and target language may have very different

vocabulary and morphosyntactic structure.

Insight. We need two RNNs, one for source and one for target.
11

Use one RNN to encode source, another to decode target

s1

y1

of

s2

y2

course

s3

y3

john

s4

y4

has

s5

y5

fun

h1 h2 h3 h4

x1 x2 x3 x4

natürlich hat john spaß

Decoder RNN

Encoder RNN

12

Formalizing the Encoder-Decoder approach

An RNN is a function of a hidden state and new input vector,

returning a hidden state (so any RNN variant can be used).

Encoder:

hi = RNNenc(xi ,hi−1)

Decoder:

si = RNNdec(yi−1, si−1)

P(yi | y1, . . . , yi−1, x1, . . . , x|x |) = softmax(W concat(si ,h|x |) + b)

Final encoder hidden state h|x | is context for decoder softmax.

13

Interpreting the Encoder-Decoder approach

• Given a conditional probability P(y | x), we can design two

neural architectures: one to encode x into a hidden

representation, and one to decode y from that representation.

• In machine translation, RNNs are a reasonable choice for both

encoder and decoder.

• The hidden representation from the encoder is supplied as

input to the decoder at every time step.

• But the idea is general. Encoder and decoder can be designed

to suit the task.

• The encoder RNN does not need to compute P(x). It only

needs to compute a representation.

14

Q: Does this architecture make sense for translation?

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

of course john has fun

h1 h2 h3 h4

x1 x2 x3 x4

natürlich hat john spaß

Decoder RNN

Encoder RNN

4 time steps 1 time step

15

Encoder-decoder models must consider structure of input

• Hidden representation is a bottleneck: it must be able to

represent a sentence of any length, but its size is fixed.

• RNNs and their variants suffer from vanishing gradients.

• So, representation from the encoder also has a recency bias: it

mostly represents final words of the input sentence.

• Target words whose corresponding source words are at the

beginning of the sentence therefore depend on information

that originates further away in the computation graph.

16

Encoder-decoder models must consider structure of input

• Empirically, this means the model forgets first words of input!

• Reversing input order makes model forget final words of input.

Source: https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Q. What can we do?

17

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention

Decoder attends to relevant input at each step

h1 h2 h3 h4

x1 x2 x3 x4

natürlich hat john spaß

+

s1

y1

of

s2

y2

course

s3

y3

john

s4

y4

has

s5

y5

fun

0.7

0.1
0.1

0.1 Attention history0.6

0.2
0.1

0.10.1

0.1
0.7

0.10.1

0.7
0.1

0.10.1

0.1
0.1

0.7

Decoder RNN

Encoder RNN

18

Attention computes a distribution over source words

In decoder softmax, the context is now a weighted average of

source hidden state vectors:

P(yi | y1, . . . , yi−1, x1, . . . , x|x |) = softmax(W concat(si , ci) + b)

ci =

|x |∑
j=1

αi ,jhj

Notice that αi is a distribution over elements of x . But the length

of x can vary! So how can we compute it? A simple solution:

ai ,j = si · hj
αi = softmax(ai)

19

Interpreting attention

ai ,j = si · hj
αi = softmax(ai)

• Attention solves a problem: we have a variable length input,

and we want to summarize it into a fixed vector, focusing only

on the relevant parts of the input.

• But relevance depends on current prediction task! So we

compute a function of the output hidden state (the query)

and each of the available input vectors (the keys).

• This computation can take many alternative forms:

ai ,j = siVhj (bilinear model)

ai ,j = FFN(si ,hj) (feedforward neural network)

20

Aside: RNN hidden states encode words in context

• Attention treats each hidden state of an RNN as a

representation of the corresponding source word.

• Last week, we introduced RNNs as a way of summarizing the

complete history of a sequence. So hi represents x1 . . . xi .

• Truth is in between: recency bias means that hi mostly

represents xi , but in the context of x1 . . . xi−1.

• This makes sense to disambiguate different meanings of xi ,

but what about context xi+1 . . . x|x |?

Idea. Use two encoder RNNs: one left-to-right, one right-to-left.

Concatenate their states at position i . This is a bidirectional RNN.

Widely used for encoding input strings.

Q. Can decoders be bidirectional? A. No! Right context missing.

21

Attention is not alignment (but alignment inspired attention)

• We are directly modeling P(y | x).
• We modeled alignment as a latent variable to work around

Markov assumptions: P(y , z | x)
• Our neural model has no Markov assumptions. Attention is

deterministic, not stochastic. It does not represent a

probabilistic choice and we do not marginalize it out.

• Practically: attention looks somewhat like alignment, but

since information can flow along recurrent connections, it is

more difficult to interpret.

Source: https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/ 22

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention is a widespread design pattern

23

Encoder-decoder with attention is a common design pattern

We surveyed many applications in the first lecture.

Task Input type Output type

Question answering string string

Sentiment analysis string label

Syntactic parsing string tree

Semantic parsing string graph (logical form)

Generation table string

Image captioning image string

Machine translation string string

Q. How might you use encoder-decoder with attention to model

text classification?

24

Summary

• To model a conditional probability distribution P(y | x), use a

neural architecture to encode x , and another to decode y .

• A bidirectional encoder uses both left and right context.

• A decoder can choose to attend to different elements of the

encoded input. This shortcut avoids long distances between

encoded and decoded elements.

• Attention uses a query vector to compute a distribution over

a key vectors, using the softmax function.

• Encoding, decoding, and attention are general ideas. Choose

architectures that are appropriate to input and output types.

Next lecture. Transformers. Then we’ll have covered most of the

key modeling ideas in the course!

25

References

• Neural Machine Translation and Sequence-to-sequence

Models: A Tutorial (2017), Neubig, arXiv 1703.01619.

26

	Encoding and decoding sequences
	RNN for Translation
	Translation as String Completion
	Encoder-Decoder Architecture

	Attention
	Attention Distribution over Source Words
	Bidirectional RNN
	Attention and Alignment

