
Natural Language Understanding, Generation, and Machine
Translation (2023–24)
School of Informatics, University of Edinburgh
Alexandra Birch

Tutorial 1: Neural Network Language Models (Week 4)
This tutorial includes both calculation questions and more open-ended questions. Question
3 is intended to help you think about how to apply models you’ve seen before to new
problems. Most of the points on the exam will come from questions of this form, that
require you to think through a new, open-ended scenario.

1 The Softmax Function
The softmax function takes an arbitrary vector v as input, with |v| dimensions. It computes
an output vector, also of |v| dimensions, whose ith element is given by:

softmax(v)i =
exp(vi)∑|v|
j=1 exp(vj)

Question 1: Softmax Function

a. What is the purpose of the softmax function?

b. What is the purpose of the expression in the numerator?

c. What is the purpose of the expression in the denominator?

Now consider how a neural language model with a softmax output layer compares with a
classic n-gram language model. Typically, we use techniques like smoothing or backoff in
conjunction with n-gram models.

d. Does this problem arise in the neural model? Why or why not?

Solution 1:

a. The softmax converts an arbitrary vector of |v| dimensions into a valid
categorical probability distribution over |v| possible outcomes. In particu-
lar it ensures that all individual elements (probabilities) are non-negative
and sum to one.

b. The numerator ensures that all values are positive. Note that this is
stronger than needed: the axioms of probability simply require all val-
ues to be non-negative. But exponentiation is only zero in the (negative)
limit.

c. The denominator normalises the distribution so that all individual prob-
abilities sum to one.

d. No—softmax ensures that the model will always return a non-zero prob-
ability for any n-gram.

1

2 Feedforward Language Models
Consider a feedforward language model of the type discussed in lecture 5. In this
model, the probability P (wi | wi−n+1, ..., wi−1) is given by:

P (wi | wi−n+1, ..., wi−1) = softmax(Vh2 + b2)

h2 = tanh(Wh1 + b1)

h1 = concatenate(Cwi−n+1, . . . ,Cwi−1)

wi = onehot(wi) ◁ for all i

In this notation, V, W, and C are matrices, while b1, b2, h1, h2, and wi−n+1, . . . ,wi−1

are vectors. The parameters of the model are V, W, C, b1, and b2, while the remaining
variables are intermediate layers computed by the network.

Now consider the number of parameters required to represent this model. This number
is determined by the size of the vocabulary (given to you by the data), the order n, and the
dimension of the two hidden layers, h1 and h2, which we will denote d1 and d2, respectively
(Note that the first dimension must be divisible by n − 1, but you can ignore this detail
in your calculations). Dimensions d1 and d2 are modeling choices, though the practical
consideration is how they impact the model’s accuracy.
Question 2: Parameters of Neural Nets

a. How would you express the number of model parameters in terms of |V |, n, d1,
and d2?

b. An effective size for the hidden dimension of a neural NLP model is often in the
hundreds. For n from 2 to 5, how many parameters would your model have if d1/(n−
1) = d2 = 100? What if d1/(n− 1) = d2 = 1000?

c. What do you conclude about the relative memory efficiency of classic n-gram and
feedforward neural language models? If you increased n even further, what would
happen?

d. How would you expect the number of parameters in an RNN model to scale with n
and |V |?

e. Can you think of any strategies to substantially reduce the number of parameters?

Solution 2:

a. • For V: d2|V |
• For W: d1d2 because d1 is predefined, and will be equal to (n− 1) ∗

|embedding|
• For C: |V |d1/(n− 1) because |embedding| = d1/(n− 1)

• For b1: d2
• For b2: |V |
• For the complete model, add up the above:

(1 + d1/(n− 1) + d2)|V |+ d1d2 + d2

b. The key here is that (1+d1/(n−1)+d2)|V | dominates, and this is deter-
mined by the mapping between the one-hot vocabulary vectors and the
hidden dimensions. A reasonable guess for |V | in most neural network lan-
guage models is 20000 and d1/(n− 1) = d2 = 100 should give parameters
of about 4M parameters. If d1/(n− 1) = d2 = 1000 then you have about
40M parameters. However if we try to model an open vocabulary in this
model we will struggle to fit this in memory on a GPU whose memory is
generally far smaller than a CPU machine.

2

c. The number of parameters in the n-gram model is highly sensitive to
changes in n, while the number of parameters in the neural model is
almost unchanged. Hence, the feedforward model can be easily extended
to larger n, which might be advantageous.

d. An RNN scales in the same way as the feedforward model: the domi-
nant factor is the vocabulary size. It’s entirely insensitive to n since it
(theoretically) models n = ∞.

e. For RNN models, the key to reducing the number of parameters is to re-
duce vocabulary size. This can be done with subword modeling (discussed
in lecture 6). Notice that this is inappropriate for the n-gram model, since
it would be conditioning on less information! Note that the feedforward
model has a similar limitation, though it is easier to increase the order n
of the feedforward model.
Note: In the deep learning literature, it’s common to replace rare words
with an unknown word token (often denoted UNK) in order to keep the
vocabulary size down. This might be ok for certain types of lab exper-
iments focusing on algorithmic differences, but has no place in real use
cases, because you simply cannot have a machine translation or NLG
system that generates UNK everywhere.

The next problem looks at how to apply neural models you’ve just learned about to a
problem you’ve seen in previous courses: part-of-speech tagging. Given an input sentence
x = x1 . . . x|x|, we want to predict the corresponding tag sequence y = y1 . . . y|x|. Let xi
denote the ith word of x, yi denote the ith word of y, and |x| denote the length of x. Note
that |y| = |x|. For example:

i = 1 2 3 4 5 6 7 8 9 10
xi = Each day starts with one or two lectures by researchers
yi = DT NN VBZ IN CD CC JJR NNS IN NNS

We have access to many training examples like this, and our goal is to model the
conditional probability of the tag sequence given the sentence, that is: P (y | x). There are
many possible choices here. To simplify the problem, let’s assume that each element of y
is conditionally independent of each other. That is, we want to model:

P (y | x) =
|y|∏
i=1

P (yi | x)

Question 3: Model Design

a. Design a feedforward neural network to model P (yi | x). Identify any independence
assumptions you make. Draw a diagram that illustrates how the model computes
probabilities for the tag of the word “with”: What is the input, and how is the
output distribution computed from the input? Write out the basic equations of the
model, and explain your choices.

b. Design an RNN to model P (yi | x). Identify any independence assumptions you
make. Draw a diagram that illustrates how the model computes probabilities for
the tag of the word “with”: What is the input, and how is the output distribution
computed from the input? Write out the basic equations of the model, and explain
your choices.

c. [Advanced, for now] Can you model P (yi | x) without independence assumptions,
using multiple RNNs?

3

For each question, the goal is to design a simple model for the distribution. You solution
should only use architectures that we discussed in the first two weeks of the course. If you
are aware of other architectures, you should not use them here.

Solution 3: The goal of this exercise is for you to use feedforward networks
and RNNs (which you’ve seen for language modeling) and repurpose them for
tagging problems, which are very common in NLP.

a. An effective design for the feedforward network is to model P (yi |
xi−k, . . . , xi+k) for some fixed window size 2k+1. You might, for example,
use something like this:

P (yi | xi−k, . . . , xi+k) = softmax(Wh+ b2)

h = tanh(Vx+ b1)

x = onehot(xi−k); . . . ; onehot(xi+k)

Here, the semicolon (;) denotes concatenation. The choice of non-linearity
is not important for this question, but since it asks for a feedforward net-
work, you should have a hidden layer. This is about the simplest possible
model.
Note that your solution should not depend on previous tags, since the
question explicitly assumes that the tags are conditionally independent.

b. One design for the RNN is to model P (yi | x1, . . . , xi). That is, the RNN
reads x1 through xi one step at a time, and at the ith step produces a
distribution for possible tags yi. For simplicity, let’s use RNN to denote
a unit that receives an input and a previous hidden state, and produces
a new hidden state; it can easily be replaced with an LSTM or other
recurrent unit of your choice:

P (yi | x1 . . . xi) = softmax(Whi + b)

hi = RNN(onehot(xi),hi−1)

One thing you might notice here is that, while this model conditions on
all words the left of xi, it does not use any words to its right! Because of
this, the feedforward might have an advantage. Can you think of a reason
why you should not use k words of right context in this model?

c. A bidirectional RNN can model P (yi | x1, . . . , x|x|). It consists of two
RNNs, each with its own set of parameters: one that encodes from left
to right (RNN), and one that encodes from right to left (RNN′). Again
using the semicolon to denote concatenation:

P (yi | x1 . . . x|x|) = softmax(W(hi;h
′
i) + b)

hi = RNN(onehot(xi),hi−1)

h′
i = RNN′(onehot(xi),h

′
i+1)

A poor answer to any of these questions is to use a sequence-to-sequence model
with attention for tagging. Why do you think that sequence-to-sequence models
are inappropriate for tagging?

4

Literature
Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to

Align and Translate. In Proceedings of the International Conference on Learning Representations
(ICLR).

Gage, P. (1994). A New Algorithm for Data Compression. C Users J., 12(2):23–38.
Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015). On Using Very Large Target Vocabulary

for Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1–10, Beijing, China. Association for Computational
Linguistics.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. (2016). Character-aware neural language models.
In Proceedings of the AAAI conference on artificial intelligence, volume 30.

Luong, T., Sutskever, I., Le, Q., Vinyals, O., and Zaremba, W. (2015). Addressing the Rare
Word Problem in Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 11–19, Beijing, China. Association
for Computational Linguistics.

Provilkov, I., Emelianenko, D., and Voita, E. (2020). Bpe-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 1882–1892.

Salesky, E., Etter, D., and Post, M. (2021). Robust open-vocabulary translation from visual text
representations. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7235–7252, Online and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany.

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S., Kale, M., Roberts, A., and Raffel, C.
(2021). Byt5: Towards a token-free future with pre-trained byte-to-byte models.

5

