
Natural Language Understanding, Generation,

and Machine Translation

Lecture 9: Word Embeddings

Shay Cohen

based on slides by Frank Keller

2 February 2024 (week 3)

School of Informatics

University of Edinburgh

scohen@inf.ed.ac.uk

1

scohen@inf.ed.ac.uk

The Story so Far

Pre-training and Finetuning

Word Embeddings

Static Word Embeddings

Reading: [Mikolov et al.2013], [Smith2019].

2

The Story so Far

Neural Language Models

We have seen how feed-forward networks can be used to estimate

n-gram probabilities:

P(wi |wi−3,wi−2,wi−1) = softmax(Vh2 + b2)

h2 = tanh(Wh1 + b1)

h1 = Cwi−3;Cwi−2;Cwi−1

wi = onehot(wi) 3

Neural Language Models

In recurrent neural networks, we drop the Markov assumption:

x1 x2 . . . xi−1 xi

σ

softmax

yi

V

W

σσ σ . . .

V V V

U U

softmax

yi−1

W

softmax

y1

W

softmax

y2

W

P(xi+1|x1, . . . , xi−1) = yi

yi = softmax(Whi + b2)

hi = σ(Vxi +Uhi−1 + b1)

xi = onehot(xi) 4

Word Embeddings

• Each hidden layer of a neural language model is a

representation of its input.

• Multiplying the one-hot vector wi of word wi by the weight

matrix C selects a row of C (a vector).

• We call this vector the word embedding of wi .

• Learned word embeddings have replace hand-engineered

features word features in most NLP tasks.

This lecture: Where do word embeddings come from, and how are

they used? How do they relate to transfer learning?

First up: Once upon a time in computer vision . . .

5

Pre-training and Finetuning

VGG-16: A Typical Object Detection Model

[Simonyan and Zisserman2015]

6

Feature Extraction

• A model like VGG-16 has a lot of layers.

• VGG-16 is already pretty dated; current object detection

models can have hundreds of layers.

• They take forever to train and require very large training sets.

• However, computer vision people found that you can take the

output of the last layer as a feature vector. (In this example,

you would use fc7, and fc8 is just the softmax.)

• For a new task, use VGG-16 to turn an image into features,

and then train a classifier for a new task on these features.

Transfer learning by feature extraction.

7

Feature Extraction

C
la

ssifie
r

Predicted

Class

AlexNet

Features

extracted from

certain layer

8

Pre-training and Finetuning

Instead of just extracting features, we can retrain the model for a

new task using new data:

• Pre-training: train a generic source model (e.g., VGG-16) on

a standard, large dataset (e.g., ImageNet).

• Finetuning: then take the resulting model, keep its

parameters, and replace the output layer to suit the new task.

Now train this target model on the dataset for the new task.

Transfer learning by finetuning.

You can think of pre-training as a way of initializing the

parameters of your target model to good values.

9

Pre-training and Finetuning

10

Pre-training and Finetuning

Things to bear in mind when finetuning:

• Often, you truncate the last layer when you replace it (you

typically have fewer output classes).

• It’s often a good idea to use a smaller learning rate when

fine-tuning (you have already initialized to good values!).

• Typically, you only finetune a handful of final layers, you keep

the other ones fixed: weight freezing.

• Finetuning without weight freezing is normally too slow.

11

Pre-training and Finetuning in NLP

What does this have to do with NLP?

• When we use word embeddings as the input representations

for a new task, then we’re doing feature extraction.

• Our source model is the neural language model that the

embeddings come from.

• The target model is often very different from the NLM, as

our target task rarely is next word prediction.

• However, we can allow the weights of the embedding layer of

the target model to be trained.

• This is a limited form of finetuning.

However, can we do full-scale finetuning for NLP? This became

possible with contextualized word embeddings.

12

Word Embeddings

Overview of Word Embeddings

https://towardsdatascience.com/from-pre-trained-word-embeddings-to-pre-trained-language-models-focus-on-bert-343815627598

13

https://towardsdatascience.com/from-pre-trained-word-embeddings-to-pre-trained-language-models-focus-on-bert-343815627598

Static Word Embeddings

• They assign a fixed vector to each word, independent of its

context.

• They are used for feature extraction, i.e., to initialize the

embedding layer of a target model.

• They are not designed to be used for finetuning.

• They are often very efficient, so that training from scratch is

possible.

• Word2Vec, Glove, FastText are typical examples.

• Embeddings are available to download for many languages.

In this lecture: We will introduce Word2Vec as an example of

static word embeddings.

14

Contextualized (or Dynamic) Word Embeddings

Often called pretrained language models or large language models.

• Assign a vector to a word that depends on its context, i.e., on

the preceding and following words.

• Can be used in a target model just like static embeddings.

• However, they can also be finetuned: we re-train some of the

weights of the embedding model for the target task.

• Contextualized embeddings take a lot of memory and

compute to train from scratch.

• But finetuning is an efficient way of using them.

• Bert, GPT are typical examples. Pre-trained models available

for many languages and applications.

In the next lecture: We introduce Bert as an example of

contextualized word embeddings.

15

Static Word Embeddings

Word2Vec: Continuous bag-of-words model (CBOW)

https://towardsdatascience.com/

introduction-to-word-embedding-and-word2vec-652d0c2060fa

16

https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa

Word2Vec: Continuous bag-of-words model (CBOW)

• CBOW [Mikolov et al.2013] uses the words within small

window to predict the current word.

• Has only a single, linear hidden layer.

• The weights for different positions are shared.

• Window size is five in the original paper (two context words

each to the left and right of the target words).

• Computationally very efficient.

17

Word2Vec: Skipgram

https://towardsdatascience.com/

introduction-to-word-embedding-and-word2vec-652d0c2060fa

18

https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa

Word2Vec: Skipgram

• Skipgram [Mikolov et al.2013] turns CBOW on its head: uses

the current word to predict the context words.

• This finds word representations that are useful for predicting

surrounding words in a sentence or document.

• Same overall architecture as CBOW.

Let’s look at Skipgram in more detail. We follow

[Levy and Goldberg2014].

19

Skipgram Details

• Each word w ∈ W is associated with vector vw ∈ Rd .

• Each context c ∈ C is associated with vector vc ∈ Rd .

• W word vocabulary, C context vocabulary; d embedding

dimensionality.

• Vector components are latent (parameters to be learned).

• Objective function maximizes the probability of corpus D (set

of all word and context pairs extracted from text):

argmax
θ

∏
(w ,c)∈D

p(c |w ; θ)

20

Skipgram Details

The basic skipgram formulation defines p(c |w ; θ) using the

softmax function:

p(c |w ; θ) =
exp(vc · vw)∑

c ′∈C
exp(vc ′ · vw)

where vc and vw are vector representations for c and w and C is

the set of all available contexts.

• We seek parameter values (i.e., vector representations for both

words and contexts) such that the dot product vw · vc
associated with “good” word-context pairs is maximized.

• The formulation is impractical due to the summation term∑
c ′∈C exp(vc ′ · vw) over all contexts c ′.

21

Training

• Stochastic gradient descent and backpropagation.

• It is useful to sub-sample frequent words (e.g., the, is, a).

• Words are thrown out proportional to their frequency (makes

things faster, reduces importance of frequent words).

• Non-linearity does not improve performance of these models,

thus the hidden layer does not use an activation function.

• Problem: large output layer; the number of context words can

be in the millions, so the softmax is too expensive to compute.

• Solution: negative sampling.

22

Negative Sampling

• Instead of computing the full output layer based on the hidden

layer, evaluate only only the output neuron that represents the

positive class and a few randomly sampled neurons.

• The output neurons are treated as independent logistic

regression classifiers.

• This makes the training speed independent of the vocabulary

size (can be easily parallelized).

23

Negative Sampling Objective

Let D denote the dataset of observed (w , c) pairs. Let

p(D = 1|w , c) denote the probability that (w , c) came from D,

p(D = 0|w , c) = 1− p(D = 1|w , c) that it didn’t:

argmax
θ

∏
(w ,c)∈D

p(D = 1|w , c; θ)
∏

(w ,c)∈D′

p(D = 0|w , c; θ)

= argmax
θ

∑
(w ,c)∈D

log p(D = 1|w , c ; θ) +
∑

(w ,c)∈D′

log(1− p(D = 1|w , c ; θ))

= argmax
θ

∑
(w ,c)∈D

log
1

1 + exp(−vc · vw)
+

∑
(w ,c)∈D′

log
1

1 + exp(vc · vw)

D ′ is a set of negative samples, randomly generated (w , c) pairs.

See [Levy and Goldberg2014] for full derivation.

24

Model Evaluation: Question Answering

• 20k questions, 6G words, 1M words vocabulary

• Find word closest to question word (e.g., Greece), consider it

correct if it matches the answer.

Type of relationship Word Pair 1 Word Pair 2

Common capital city Athens Greece Oslo Norway

All capital cities Astana Kazakhstan Harare Zimbabwe

Currency Angola kwanza Iran rial

City-in-state Chicago Illinois Stockton California

Man-Woman brother sister grandson granddaughter

Adjective to adverb apparent apparently rapid rapidly

Opposite possibly impossibly ethical unethical

Comparative great greater tough tougher

Superlative easy easiest lucky luckiest

Present Participle think thinking read reading

Nationality adjective Switzerland Swiss Cambodia Cambodian

Past tense walking walked swimming swam

Plural nouns mouse mice dollar dollars

Plural verbs work works speak speaks

25

Model Evaluation

Models trained on the same data (640-dimensional word vectors).

Model Semantic-Syntactic Word Relationship test set

Architecture Semantic Accuracy [%] Syntactic Accuracy [%]

RNNLM 9 36

NNLM 23 53

CBOW 24 64

Skip-gram 55 59

26

Model Evaluation

Subtracting two word vectors, and add the result to another word.

Check out more examples at:

http://rare-technologies.com/word2vec-tutorial/

27

http://rare-technologies.com/word2vec-tutorial/

Summary

• Pre-training and finetuning is a form of transfer learning.

• Word embedding are feature vectors extracted from a

pre-trained language model.

• Static embeddings assign the same word the same vector,

independent of context.

• Contextualized embeddings take context into account. They

can be used for finetuning.

• Word2Vec is an example of a static word embedding model.

• Negative sampling is important to make it efficient.

28

References

Omer Levy and Yoav Goldberg.

2014.

Neural word embedding as implicit matrix factorization.

In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

27, pages 2177–2185, Red Hook, NY. Curran Associates.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.

2013.

Efficient estimation of word representations in vector space.

In Proceedings of the International Conference on Learning Representations: Workshop Papers, Scottsdale, AZ.

Karen Simonyan and Andrew Zisserman.

2015.

Very deep convolutional networks for large-scale image recognition.

In Proceedings of the International Conference on Learning Representations, San Diego, CA.

Noah A. Smith.

2019.

Contextual word representations: A contextual introduction.

arXiv:1902.06006.

29

	The Story so Far
	Pre-training and Finetuning
	Word Embeddings
	Static Word Embeddings

