
Natural Language Understanding, Generation, and Machine
Translation (2023–24)
School of Informatics, University of Edinburgh
Alexandra Birch

Tutorial 2: Transformers (Week 6)
Questions on this worksheet that ask for an expression or calculation generally have one
correct answer, and are designed to concretely explore aspect of these models just beyond
what we discussed in lecture, by asking you about some implications of model design. These
questions are not intended to be difficult, but notice that they are not primarily about
recalling information—they require you to engage with the material and pay attention to
the details. You should expect that some of the easier exam questions may be of this form.

We also include some more open-ended questions that you will need to think about. It
is intended to help you see how modelling choices impact the number of parameters and
how this impacts your design decisions when applying the Transformer model to a task.
Most of these questions are answerable from combined understanding of Lectures 7 & 8
as well as your experience of Coursework 1. For a complete understanding, we advise
reviewing Attention is all you Need, the paper which proposed the Transformer model,
before beginning this tutorial.

1 Modelling a Transformer
A Transformer encoding layer consists of a multi-head self attention network and a feed-
forward network with additional normalisation and skip-connection features. A Trans-
former decoder layer includes an additional multi-head attention network to incorporate
information from the encoder during decoding.

In class, we learned about two possible implementations of the attention mechanism
with multiple heads. The first, referred to as ”narrow attention”, splits the token/input
vectors into h chunks (where h is the total number of heads). The attention in each head
is applied to a sub-part of that vector (and therefore, the weight matrices are of dimension
k/h × k/h, where k is the input dimension). ”Wide” attention, on the other hand, does
not split the input vectors into any chunks, but rather, each head applies to the whole
vector.

Question 1:
Consider a single Transformer encoder layer using narrow self-attention. The self-attention
projection size is 1024 (e.g. the size of W{q,k,v}), the feed-forward projection size is 4096
and each layer has 16 heads.

a. Calculate the number of weights in this single layer that will need to be learned?
You can ignore normalisation parameters.

Students may look at the slides of Lecture 8 (Transformers) and then count up all the
parameters in each sub-component of the Encoder model. This is obviously perfectly
valid and ideally they should get the right number if they include all components. I’m
showing here a roundabout way to calculate this using PyTorch that students may
also use.

>>> from torch.nn import TransformerEncoderLayer
>>> d_model = 1024

1

https://arxiv.org/pdf/1706.03762.pdf


>>> n_head = 16
>>> dim_ff = 4096
>>> dropout = 0.1
>>> encoder = TransformerEncoderLayer(d_model, n_head, dim_ff, dropout)
>>> for name, param in encoder.named_parameters():
... print(name, param.shape, param.numel())

self_attn.in_proj_weight torch.Size([3072, 1024]) 3145728
self_attn.in_proj_bias torch.Size([3072]) 3072
self_attn.out_proj.weight torch.Size([1024, 1024]) 1048576
self_attn.out_proj.bias torch.Size([1024]) 1024
linear1.weight torch.Size([4096, 1024]) 4194304
linear1.bias torch.Size([4096]) 4096
linear2.weight torch.Size([1024, 4096]) 4194304
linear2.bias torch.Size([1024]) 1024
norm1.weight torch.Size([1024]) 1024
norm1.bias torch.Size([1024]) 1024
norm2.weight torch.Size([1024]) 1024
norm2.bias torch.Size([1024]) 1024

To get the number of weights we then want to sum up all the parameters not
related to normalisation:

3145728 + 3072 + 1048576 + 1024 + 4194304 + 4096 + 4194304 + 1024 = 12, 592, 128

Note that if they did something akin to the following then this is wrong because
of the normalisation parameters.

>>> sum(param.numel() for _, param in encoder.named_parameters())
12,596,224

They might have missed out the bias values which should result in a smaller value.
If they missed out all bias terms then they should get 12,582,912. Strictly this is
not wrong as you could make this network without biases but they should know
they are there and usually a network will have bias terms they shouldn’t forget. The
multiplier of 3 (3072) vs expected value of 1024 everywhere is a convenient way to
learn projections of query, key and value in 1 matrix. If you have time, you could
consider that we don’t actually need to know the number of heads to solve this as this
value cancels out in narrow self-attention.

We now change the encoder to use wide self-attention with other parameters unchanged.

b. Calculate the number of weights in this new layer? Ignore normalisation parameters
again.

For the previous question, we didn’t need to really consider the number of heads as
for h heads, we had h × k

h as the total dimensionality and thus only k = 1024 was
relevant. We need to make two modifications for wide self attention. Firstly, each head
is now of size k so we need to multiply the output size of the input projection weight
and bias by h. Then, we also need to modify the input size of the output projection
for self attention again by h. This should just end up being modifications of ×16 to

2



the previous calculation. You might disagree on how wide self attention should be
implemented. So long as you can justify it, it probably is also a valid method.

3145728×16+ 3072×16+ 1048576×16

+ 1024 + 4194304 + 4096 + 4194304 + 1024 = 75, 552, 768

Now we consider an encoder-decoder Transformer model for English sentence compres-
sion. The encoder and decoder each have six layers, as described above, and we also define a
vocabulary of 64,000 words with corresponding embeddings. Assume the Transformer lay-
ers use narrow self-attention, the embedding dimensionality is equal to the self-attention
projection size and normalisation parameters can be similarly ignored.

c. Calculate the number of weights in this full model. You will need to consider the en-
coder and decoder layers as well as additional input and output parameters required
for this task.

We want them to consider the complete task here which might have 3 components:

a. Embedding matrices for source and target languages

b. A Transformer Encoder-Decoder model

c. Linear output projection from the decoder to vocabulary dimension.

For (1), we have two (64000, 1024) matrices.
For (2), we can modify the count we just worked out for the encoder:

EncoderLayerParams*6 + (2*SelfAttnParams + FeedForwardParams)*6
e.g. 12592128 * 6 +
(2*(3145728+3072+1048576+1024)+4194304+4096+4194304+1024)*6
= 176,295,936

For (3), we have a linear layer of size (1024, 64000) and a bias (64000,1).
The total count for everything should be around 372,967,936

The input and output vocabularies for this task are equal as we are encoding and
decoding English. Therefore, we can use the same embedding matrix for both the encoder
and decoder, referred to as tying the embedding matrices, and learn one embedding matrix
used for both encoder and decoder.

d. What advantage does tying these embedding matrices together have in terms of the
learned word representation?

e. What is the percentage change in the number of weights to be learned from this
change?

Students should notice that the embedding matrices dominate the number of weights
we learn but they aren’t doing any of the sequence modelling. On top of this, we can
learn word representations from both source and target contexts (and understanding
+ generation). This is why tying embeddings can be useful as we save on weights and
can learn from more contexts. Of course, you may have your own ideas and opinions

3



on this.

Tying the embeddings removes one (64000, 1024) size matrix to be learnt. Therefore
the total weights should be 307,431,936. This is a 17.6% saving of learnable weights
compared to before.

Question 2:
We now want to compare theoretical complexities between different models used in NLP
tasks. Inspect Table 1 in Attention is all you Need with a focus on the “Complexity per
Layer” column wherein n is the sequence length and d is the representation dimension,
the same parameter as the self-attention projection size from Q1.

a. Consider the complexity bounds and your own knowledge of how NLP tasks are
constructed – describe when a self-attention network has a lower complexity than
other networks.

b. Other than complexity – describe other constraining factors to be considered when
planning experiments using neural networks for NLP. There is no right answer here,
state your own ideas.

For (a), we want to consider a problem of scale for NLP tasks. According to this
paper, a self-attention network has approximate complexity of O(n2.d), so we are
quadratically proportional to sequence length and linearly proportional to dimension-
ality. The opposite is true for RNNs with O(n.d2)

As a case study, we can set d=1024 and compare between these models. For
most NLP tasks here we can approximate that n << d and therefore the Transformer
has lower complexity than the RNN. It might be helpful to name and discuss a few
tasks where this is true. Conversely, there might be some cases where the inverse
is true (document translation?). In terms of increasing n, the additional complexity
in a Transformer makes sense as we need an additional self attention computation
against all prior sequence elements. For the RNN, we only need to compute the RNN
cell with the new state and cumulative history. The intended insight for students is
to think in terms of practical values and make a measured decision concerning which
network is best and when.

However for (b), we now want to add in the practical other constraints that
exist when running experiments. You could discuss that really this complexity is
only a part of choosing models as well as performance and constraints such as GPU
Memory, data availability, tunable hyperparameters etc. A typical Transformer is
much larger than an RNN and space/speed constraints might arise before complexity
can even be considered. This is an opportunity for students to share their own ideas.

2 Considering Permutations
The Transformer self-attention routine operates on sets of inputs without respect for se-
quence ordering. This model will produce identical outputs with varying combinations of
inputs becayse the attention states between any two words will be the same regardless of

4

https://arxiv.org/pdf/1706.03762.pdf


word position. This gives the Transformer some interesting mathematical properties we
want you to think about here.

Question 3:

a. For a transformer encoder model without positional embeddings – explain why the
model is permutation equivariant but not invariant.

For encoder input, [A, B, C], into encoder f(X), producing [X, Y, Z] outputs - the
output of [B, C, A] into f(X), will be [Y, Z, X].

More generally, equivariance for some permutation function r −→ r(f(x)) = f(r(x)).

Note that this is slightly different to how the slides portray the problem and
they state “the input is position invariant” which may confuse some. The inputs
themselves have no sequence information without position embeddings (See Q3(d))
and the attention for a single output state is invariant to where the other words
in the sequence are. The full Transformer is equivariant for the reason above.

Consider this model with an additional max pooling layer on the output to combine the
outputs to produce one output vector.

c. Explain why the whole model is now permutation invariant and not equivariant.

Extending the previous result, the max-pooling of [X, Y, Z] will be the same as the
max-pooling of [Y, Z, X]. It doesn’t matter what order the inputs are in so the model
is invariant to permutations.

More generally, invariance for some permutation function r −→ f(x) = f(r(x)).

These properties are not desirable for sequence modelling in natural language process-
ing. For this reason, we augment the inputs with positional embeddings to provide
additional information to the input.

d. What additional information is provided with this addition and how does it help
sequence modelling? Explain your answer in relation to how the properties described
above are affected.

Positional embeddings provide exactly what their name states – they imbue the model
input with positional information so that each vector is unique representing both
semantic information and a token’s position in the sequence. Therefore, a sentence
such “I can can a can” won’t end up with three identical representations for “can” and
each representation is contextual on both adjacent words and word order.

5


	Modelling a Transformer
	Considering Permutations

