Natural Language Understanding, Generation, and
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Coursework 2: Neural Machine Translation

’ This assignment is due on Monday, 27th March 2023, at 12:00 noon, GMT.

Prerequisites You should finish Lab 3: Tensor Computation in PyTorch BEFORE
starting this coursework. Lab 3 will teach you tensor computation which is heavily used
in this coursework. You can find Lab 3 materials on LEARN.

Executive Summary Your task will be to work with a simple baseline NMT model for
German to English, analysing its code and evaluating its performance. To improve over
the baseline NMT model, you will implement the lexical attention model as described
in Nguyen and Chiang (2017). Finally, you will analyse a basic implementation of the
Transformer architecture and implement the multi-head attention mechanism according
to Vaswani et al.| (2017) to complete the model.

IMPORTANT: While modifying the baseline code may only take you a few minutes
or hours, training the extended models will take you A LOT OF TIME. You might
implement something in thirty minutes and leave it to train overnight. Imagine that you
return the next morning to find it has a bug! If the next morning is the due date, then
you’ll be in a pickle, but if it’s a week before the due date, you have time to recover. So,
if you want to complete this coursework on time, start early.

Using ChatGPT School policy requires you to complete coursework yourself, using
your own words, code, figures, etc. and to acknowledge any sources of text, code, fig-
ures etc. that are not your own. This policy does not prevent you from using ChatGPT,
but regularizes your usage of ChatGPT. Using such an assistant without acknowledge-
ment is a form of academic misconduct.

Overview of the assignment There are six questions in total, divided into four areas
of interest. Part 1 asks you to analyse the code and train an improvement to the baseline



without modifying the code. This part should not be too time consuming. However, (re-
)training the model can take up to 10 hours, so make sure to plan accordingly. Part 2 asks
you to consider extensions to the baseline already supported in the code. Part 3 considers
the lexical attention model and you will have to implement this in code, train a new
model and discuss your results. Part 4 asks you to consider the Transformer model and
requires you to add the Multi-Head attention code to complete the model. Make sure to
allocate sufficient time to implement, train, and evaluate your model extensions.

Submission You will submit two items for assessment for this coursework. You will
deliver a document detailing your answers to all questions, including code sections
where appropriate, and also a ZIP archive containing the files specified below. Your
solution should be delivered in two parts and uploaded to Blackboard Learn. Do not
include any names in either the code or the write-up. The coursework will be marked
anonymously since this has been empirically shown to reduce bias. For your writeup
you must do the following:

* Write your answers to all the questions in a single file titled <UUN> . pd£. For
example, if your UUN is S1234567, your corresponding PDF should be named
$1234567.pdf.

* The answers should be clearly numbered and can contain text, diagrams, graphs,
formulas, code snippets, where appropriate. Do not repeat the question text. If
you are not comfortable with writing maths on IXIEX/Word you are allowed to
include scanned handwritten answers in your submitted PDF. You will lose marks
if your handwritten answers are illegible.

* On Blackboard Learn, select the Turnitin Assignment “Coursework 2 REPORT”.
Upload your <UUN>.pdf to this assignment, and use the submission title <UUN>.
So, for above example, you should enter the submission title S123456.

* Please make sure you have submitted the right file. We cannot make concessions
for students who turn in incomplete or incorrect files by accident.

For your code and parameter files:

* Compress your code for 1stm.py, train.py, transformer.py and
transformer_helper.py into a ZIP file named <UUN>. zip. For example, if your
UUN is 51234567, your corresponding ZIP should be named 51234567.z1ip.

* On Blackboard Learn, select the Turnitin Assignment “Coursework 2 CODE”.
Upload your <UUN>.zip to this assignment, and use the submission title <UUN>.
So, for above example, you should enter the submission title S123456.



Good Scholarly Practice Please remember the University requirement as regards all
assessed work for credit. Details and advice about this can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

and links from there. Note that you are required to take reasonable measures to protect
your assessed work from unauthorised access. For example, if you put your work in a
public repository then you must restrict access only to yourself and your partner. You
are not permitted to publish your code solution online.

For your write-up, and particularly on the final questions, you should pay close attention
to the guidance on plagiarism. Your instructors are very good at detecting plagiarism
that even Turnitin can’t spot. In short: the litmus test for plagiarism is not the Turnitin
check—that is simply an automated assistant. If you have borrowed or lightly edited
someone else’s words, you have plagiarised. We are fully aware of what code examples
and tutorials are on the Internet. Write your report in your own words. Your score does
not reply on your writing skill. As long as you can express clearly, that is fine.


http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

Part 0: Setting up Environment

Python Virtual Environment For this assignment you will be using Python 3.8 along
with a few open-source packages, with PyTorch being the key library.

The instructions below are for DICE and is for the CPU version of PyTorch. You are
free to use your own machine. We have tested the instruction on DICE and MacOS. If
you are working on the Windows system there might be differences (but should not be
very difficult to adjust). The key point here is to install PyTorch. You can also use lab
sessions and TA office hours asking for help for setting up the environment.

Now we assume you have opened a terminal on a DICE machine. Run the following
commands one-by-one (not all at once). Waiting for each command to complete will
help catch any unexpected warnings and errors. The total installation is about 4.33GB,
please ensure you have sufficient space using the freespace command on DICE.

First install Miniconda from the home directory of your DICE user space (respond yes
to all prompts). You can skip this stage if you already have Miniconda installed.

$> wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
$> bash ./Miniconda3-latest-Linux-x86_64.sh

$> rm ./Miniconda3-latest-Linux-x86_64.sh

$> source ~/.bashrc

Now, your default Python version should be Python 3.8 to 3.10. Confirm with python3
--version. Then create a new environment called nlu.

1. Clone the GitHub repository to an appropriate location in your workspace
You must do this even if you have the environment set up:
$> git clone https://github.com/FranxYao/nlu-cw2
$> cd nlu-cw2

2. Create an environment:
conda create -n nlu python=3.10

3. Activate the nlu virtual environment:
$> conda activate nlu

4. Install Pytorch and others: $> pip install torch==1.13.1 tqgdm

5. Optional Clean your workspace to free up space:
$> conda clean --all

You should now have all the required packages installed. You only need to create the vir-
tual environment and perform the package installations (step 1-5) once. However, make
sure you activate your virtual environment (step 3) every time you open a new terminal



to work on your assignment. Remember to use the conda deactivate command to
disable the virtual environment when you don’t need it.

1. Activate the environment:
$> conda activate nlu # Ready for working

2. Deactivate the environment (if you want to work on something else):
$> conda deactivate nlu

Additionally, learning to use UNIX tools such as screen and DICE tools like 1ongjob
will make running code for this assignment much easier. Run man screen or man
longjob for guidance with this.

Baseline NMT model The baseline code is already in nlu-cw2 directory which you
have just cloned.

You’ll find several directories inside the downloaded nlu-cw2 folder, including europarl_raw
containing raw English and German parallel data, europarl _prepared containing the
pre-processed data your models will be trained on, and seg2seq containing the code

you will be asked to extend. Moreover, you will find several python files of importance

to the assignment (DO NOT MODIFY FILES MARKED WITH *):

* train.py* is used to train the translation models.

* translate.py* translates the test-set greedily using model parameters restored
from the best checkpoint file and saves the output to model_translations.txt.

* example.sh. This is a suggested outline of a single experiment run to train a
model, generate translations and then find the test-set BLEU score.

To train a baseline model, follow example. sh without modifying any lines. This script
includes training and inference and is designed to help you get started, but you can
modify it for later parts of the coursework. Additionally, instead of directly modifying
example.sh, we recommend you to modify a duplicate:

$> cp example.sh example_dev.sh

You can specify the hyper-parameters for the training using the appropriate argument
flags, but we strongly recommend training with the default settings. Run this script
directly by running bash example. sh in the directory downloaded from GitHub. You
can also just train a model by running: python train.py.

After calling the training script, you should see a progress bar denoting the training
progress for the current epoch. Training will continue until no improvement can be
observed on the development set for 10 consecutive epochs. After each epoch, the latest



model file is saved to disk as checkpoint_last.pt. If the model achieved a lower dev-
set perplexity in the concluded epoch than in the previous epochs, a ‘best’ model file is
saved to disk, as well, as checkpoint best.pt. You can find the checkpoint files in the
checkpoints directory or the location you specify using the --save-dir argument to
the training script. After your model has finished training, use it to translate the test set
by running: python translate.py.

The translations will be output to the file model translations.txt. Next, use the
multi-bleu.perl script to calculate the test-BLEU score of the baseline model:

perl multi-bleu.perl -lc europarl_raw/test.en < model_translations.txt

Report: (1). the BLEU score, (2). the validation-set perplexity and, (3). training loss
from the final epoch. Then back up the checkpoints directory (e.g. by renaming it to
checkpoints baseline but example.sh does this automatically). This model is still
quite basic and trained on a small dataset, so the quality of translations will be (very)
poor. Your goal will be to see if you can improve it.

The current translation model implementation in seg2seq/models/lstm.py encodes
the sentence using a bidirectional LSTM: one LSTM passing over the input sentence
from left-to-right, the other from right-to-left. The final states of these LSTMs are
concatenated and attended over by the decoder, using global attention with the gen-
eral scoring function as described in |Luong et al.| (2015). While the encoder is im-
plemented as a single-layer bidirectional RNN equipped with the LSTM cell, the de-
coder is a single-layer unidirectional RNN, also equipped with the LSTM cell. The file
seg2seq/models/transformer.py defines an implementation of the Transformer ar-
chitecture from |Vaswani et al.| (2017)). The layers, positional embeddings and attention
mechanism (that you must complete) are contained in
seq2seqg/models/transformer_helper.py.

Part 1: Getting Started

Question 1: Understanding the Baseline Model [10 marks]

Before we go deeply into modifications to the translation model, it is important to un-
derstand the baseline implementation, the data we run it on, and some of the techniques
that are used to make the model run on this data.

The file seg2seq/models/lstm. py contains explanatory comments to step you through
the code. Five of these comments (A-D) are missing, but they are easy to find: search
for the string __QUESTION in the file. A fifth comment (E) is missing from train.py.
There are also questions listed these comments for you to answer. For each of these
cases:



1. Add comments in the code to answer the associated questions

2. Copy your comments to your report (we will mark the comments in your report,
not the code, so it is vital that they appear there)

If you aren’t certain what a particular function does, refer to the PyTorch documentation:
https://pytorch.org/docs/stable/index.html. (However, explain the code in
terms of its effect on the MT model; don’t simply copy and paste function descriptions
from the documentation. If you use ChatGPT to help you understand a Pytorch function,
it may not always give you reliable answers.).

Before you continue to improve the model, validate that you can train the baseline
model by training the LSTM with default arguments (given in 1stm.py). The script
example.sh shows you how to do this. Confirm that you can train this model and your
results look similar to these metrics (your baseline performance may vary slightly due
to the random nature of model parameter initialisation):

* training loss during last epoch: 2.145

Your own training loss should be around 2.1 £ 0.3 depending on your random
seeds. Since learning neural network is highly stochastic, everytime you run it
with a different random seed, you should expect different (but close) numbers.

* validation set perplexity during last epoch: 26.8
Your own perplexity should be around 26.8 £ 3.0

* test set BLEU: 11.03
Your own BLEU should be around 11.03 £ 1.50

If your model performs similarly to the baseline, proceed with the rest of the assignment.
If not then discuss with your partner, lab demonstrator or TA. Training the model may
take between 4-6 hours depending on your CPU capability.

Question 2: Understanding the Data [10 marks]

The dataset we provide is a small sample of the Europarl Corpus (Koehn, 2005)), which
is a transcription of proceedings from the European Parliament. We will focus on par-
allel German and English data, providing 10,000 sentence pairs for training, and 500
pairs for validation and testing. In preparing the training data, word types that appear
only once are replaced by a special token, <UNK>. This prevents the vocabulary from
growing out of hand, and enables the model to handle unknown words in new test sen-
tences (which may be addressed by post-processing). Note that the data has already
been tokenised for you, so you do not need to use further tokenisation software.
“Tokenize” means splitting sentences into words/ subwords.
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Examine the parallel training data located in the europarl_raw directory (train.en
and train.de) and answer the following questions in your report.

1.

How many word tokens are in the English data? In the German data? Give both
the total count and the number of word types in each language.

How many word tokens will be replaced by <UNK> in English? In German? Sub-
sequently, what will the total vocabulary size be before and after <UNK>?

. Inspect the words which will be replaced by <UNK>. To do so, firstly extract the

replaced words, then sort them into alphabetic order, then write them into a file,
then open this file and look at these sorted words with your bare eyes. Is there
any linguistic phenomenon associated with the replaced words? Are these words
common or rare (for example, “parameters” is a common word and “reparameter-
ization” is a rare word)? Based on the linguistic phenomenon you observed, how
would you suggest to improve the tokenization process?

How many unique vocabulary tokens are the same between both languages? How
could we exploit this similarity in our model? You don’t have to consider false
friends such as the English verb ‘die’ and German article ‘die’, just treat them as
the same.

. Given the observations above, how do you think the NMT system will be influ-

enced by sentence length, tokenization process, and unknown words of the two
languages?

Part 2: Exploring the Model

Let’s explore the decoder. It makes predictions one word at a time from left-to-right,
as you can see by examining the decoder module in the file seg2seq/models/1lstm.py
and the greedy decoding scriptin translate.py. Prediction works by first computing a
distribution over all possible tokens conditioned on the input sentence. We then choose
the most probable token, output it, add it to the conditioning context, and repeat until
the end-of-sentence token (<E0S>) is predicted.

Question 3: Adding Layers [S marks]

1.

Change the number of layers in the encoder = 2, decoder = 3. You don’t need
to modify the codebase to train a deeper model - this is already supported by the
provided code. Inspect the source code to find out how you can control the number
of encoder and decoder layers via command line arguments. Train a system with
this deeper architecture, and report the command that you used in your write up.



2. What effect does this change have on dev-set perplexity, test BLEU score and
the training loss (all in comparison to the baseline metrics given in Q1)? Can
you explain why it does worse/better on the training, dev, and test sets than the
baseline single layer model? Is there a difference between the training set, dev
set, and test set performance? Why is this the case?

Part 3: Lexical Attention

Question 4: Implementing the Lexical Model [25 marks]

In this part of the assignment, we ask you to augment the encoder-decoder with the lexi-
cal model defined in Section 4 of Nguyen and Chiang|(2017). For this task, your primary
guidance should be the descriptions provided in the paper. Moreover, we have marked
the different points in the encoder-decoder implementation where you are strongly en-
couraged to insert your code (marked as __QUESTION-4).

Implementing the lexical model can be roughly subdivided into three steps:

1. Compute the weighted sum of source embeddings using weights extracted from
the decoder-to-encoder attention mechanism.

2. Define the feed-forward layers used to project the weighted sum of source lan-
guage embeddings.

3. Incorporate the lexical context tensor into the calculation of the predictive distri-
bution over output words.

To accomplish this, you only need to modify 1stm.py and nothing else. Implementing
the modifications should not take you very long, but retraining the model will. Paste
your code snippet for this question into the writeup.

NOTE: We recommend that test your modifications by retraining on a small subset of
the data (e.g. a thousand sentences). To do that, you should add the flag --train-on-tiny
to the set of arguments when executing train.py, i.e.:

python train.py --train-on-tiny

The results will not be very good; your goal is simply to confirm that the change does
not break the code and that it appears to behave sensibly. This is simply a sanity check,
and a useful time-saving engineering test when you’re working with computationally
expensive models like neural MT. For your final models, you should train on the entire
training set.

Implement lexical model as described above, all changes to the baseline implementa-
tion must be done in the decoder. You should be able to easily access both source
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embeddings (assigned to the src_embeddings variable) as well as attention weights
specific to each decoding step (assigned to the step_attn_weights variable). Adding
your code to the specified positions within the decoder architecture will help ensure that
everything works correctly.

When you have completed your implementation and you are sure that it doesn’t break
your model: retrain your translation model after augmenting it with the lexical model
by running the following command:

python train.py --decoder-use-lexical-model True

Again, explain how the change affects results compared to the baseline in terms training
set loss, dev perplexity, and test BLEU scores. Consider whether the addition of lexical
translation is beneficial or detrimental to performance on these automatic metrics.

Optionally, you can also examine the output translations — using translations that differ
between models as motivating examples in your explanation of the effects of lexical
attention. You do not need to exhaustively examine every output — but consider if you
can find any trends in improvement between models (there may be none). In your report,
you can discuss a trend you identify with a maximum of five example output pairs. Do
not include all your model outputs in the report.

Part 4: Transformers

Modern NMT systems rely heavily on the Transformer architecture (Vaswani et al.l
2017), which has emerged in recent years as a viable competitor to the more established
LSTM-based approach to sequence transduction. Transformers are a non-recurrent ar-
chitecture which has set state-of-the-art performance in many areas of MT. We rec-
ommend you start this section by reading Vaswani et al.| (2017) and the blog post
http://peterbloem.nl/blog/transformersl

Question 5: Understanding the Transformer Model [10 marks]

This question asks you to similarly complete five explanatory comments (5A-5E) in
seg2seq/models/transformer.py (5A-5C) and seg2seq/models/transformer_helper.py
(5D, 5E). Find these again by searching for the string __QUESTION-5 in the file.

1. Add comments in the code to answer the associated questions

2. Copy your comments to your report (we will mark the comments in your report,
not the code, so it is vital that they appear there).
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Again, you can use the PyTorch documentation if you don’t understand a function. You
must still explain each function in the model in your own words.

Question 6: Implementing Multi-Head Attention [40 marks]

In the final section of the coursework, we ask you to implement Multi-Head attention
from Section 3.2 of Vaswani et al. (2017). As before, your main guidance should be the
equations in the paper itself. If you use external resources, you must cite these.

Implementing multi-head attention can be roughly subdivided into three steps:
1. Linear projection of Query, Key and Value.
2. Computing scaled dot-product attention for 4 attention heads.
3. Concatenation of heads and output projection.

To accomplish this, you need to modify the forward method in the Mult iHeadAttention
class in transformer_helper.py and nothing else (marked as __QUESTION-6). This is

a larger task than the lexical model and may take you some time to develop and test this
function. There are some comments and checks to guide you about the required shape
of the output tensors. When writing down your implementation, instead of compressing
every tensor operations into one single line, like

7= (xxy.mean(—1) 4+ x*xmask.expand(—1)).sum(—1).mean() # DO NOT DO THIS
You should do it step-by-step and explain the shape of every output tensor, like:

prod = xxy.mean(—1) # prod.size = [...]
x_masked = x * mask.expand(—1) # x_masked.size = [...]
z_elementwise = prod +x_masked # z_elementwise.size = [...]

z_average = 7_elementwise.sum(—1).mean() # z_average.size = [...]

Copy only your forward function from the MultiHeadAttention into your report, as
we will mark this first.

As before, we recommend that you test the modifications by retraining on a small subset
of the data. To do this for the Transformer, add the following arguments to train.py,
Le.:

python train.py --train-on-tiny --arch transformer

When you have completed multi-head attention, train a transformer model with the de-
fault arguments on the full dataset. Report your test-set BLEU and the final epoch
training loss and validation-set perplexity as you did for the baseline models. Similar to
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before, this might take a long time (5 hours). Can you explain why it does worse/better
on the development and test sets than the previous LSTM-based models? Is there a dif-
ference between the training set, dev set, and test set performance? You should compare
to the previous models you have trained.

You might notice that the quality of outputs is poor and the model converges quickly.
Considering the dataset and the model size, give two reasons why this may be the case?
How could we possibly improve performance? Note you do not have to retrain this
model. You can answer without having a functioning model if you compare between
the literature and the provided code.

Acknowledgements
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