
Flow control:
conditionals and loops

Look at conditionals and loops, called flow control

1. Concept of flow control

2. Logical variables

3. The if block

4. The for loop

5. The while loop

2

Flow control
• Flow control allows you to

– Selectively execute a block of code:
the if - elif – else block

– Repeatedly execute a bock of code a fixed number of times:
the for loop

– Repeatedly execute a block of code until a criterion is reached:
the while loop

– Recover from errors:
the try - catch block (not covered in this course)

• These are the main programming constructs for specifying what your program does

• The constructs are similar in all computing languages

3

Logical expressions
• First, need a logical variable, that takes one of two values: True and False

• Can also set values using logical expressions, e.g. using comparison operators:

• Can also use logical (boolean) operators and, or, not. Often used with comparison
operators:

4

a = True
b = False

x = 10.0 # create a float
a = x > 5.0 # logical test (comparison) is True - value of a is True
b = x > 11.0 # logical test (comparison) is False - value of b is False

x = 10.0
c = x > 5.0 and x > 11.0 # one logical test is True, one is False - value of c is False
d = x > 5.0 or x > 11.0 # one logical test is True, one is False - value of d is True

The if block

• The simplest is the single if block

• Note the indentation - the code inside the if block MUST be indented.
This is part of the language syntax.

• The execution continues after the if block

5

x = 10.0

if x > 5.0: # Start of if block (note the :)
print("x greater than 5.0")
x += 3.0 # End of if block

Does NOT need to be blank
print("Value of x is " + str(x))

The if-else block

• The next level of complexity is the if-else block

• Only one of the two blocks gets executed, then execution continues after the close
of the second block.

• Remember that the indentation is absolutely critical.

6

x = 10.0

if x >= 5.0: # if block
print("x greater than or equal to 5.0")
x += 3.0

else: # else block
print("x less than 5.0")
x += 10.0

print("Value of x is " + str(x))

The if-elif-else block
• The most general format is the if-elif-else block

• Note that the first True block is executed, then control jumps to the end of the if-elif-else block.
So in this example the second block can never be executed.

• Note also that we can have multiple elif blocks: if – elif – elif - … - else
7

x = 10.0

if x > 5.0: # if block
print("x greater than 5.0")
x += 3

elif x > 7.0: # elif block
print("x greater than 7.0")
x += 4

else: # else block
print("x is small number")
x += 10

print("Value of x is " + str(x))

The for loop
• Loops allow execution of a block of code multiple times. The simplest is the for loop:

• Will go round the the loop executing the indented block with i = 0,1,2,...,99
• All parameters must be of type int and note that the loop stops “before” stop is reached

• Full syntax of range is:
range(start, stop, increment)

• Must specify value of stop. If start and increment are not given, default values are used:
start = 0, increment = 1

8

import math

delta = 0.04

for i in range(100):
t = i*delta
print("t is " + str(t) + " cos(t) is " + str(math.cos(t)))

print("End of loop")

for loops are useful when
you know how many times

you want to execute the
block of code

The while loop
• The while loop is a more flexible loop, that runs while a criterion is True

• This will go round the loop until the logical statement evaluates to False

• Note that this statement is tested before the loop is executed

• The while loop is a powerful loop, but remember that you must update the loop variable
within the loop, or it will loop for ever - a very common bug!

9

import math

x = 0.0
while x < 10.0:

x += 1.0 + math.sqrt(x)
print("value of x is " + str(x))

print("Final value of x is " + str(x))

while loops are useful when you
know what the end point (stopping
condition) is, but don’t know how
many times the loop has to be
executed to reach this point

