Functions:
passing and returning lists




Look at how lists work with functions:

1. Returning lists from functions

2. Passing lists to functions

3. Passing lists to functions and changing them

4. Different types of object




Returning lists from functions |

« Example: create a list in a function and return it to main()

import math
import random

def randomPoint(d):
x = d*math.cos(random.uniform(0.0,math.p1))
y = d*math.sin(random.uniform(@.0,math.p1))

pt = [X,y] .
return pt # Return a list

def main(Q):
p = randomPoint(10.0) # Get a point
print("x 1s " + str(p[@]) + " y 1s " + str(p[1]))

main()

« Behaves as you would expect




Returning lists from functions ||

« Python tries to make things ‘easy’, so alternatively you can use this syntax

import math
import random

def randomPoint(d):
x = d*math.cos(random.uniform(0.0,math.p1))
y = d*math.sin(random.uniform(@.0,math.p1))
return x, y # automatically returns a list

def main():
a, b = randomPoint(10.0) # assigns values from the list
print("x 1s " + strCa) + " y 1s " + str(b))

main()

* Does exactly the same thing as previous example, but is perhaps easier to read?
* You may find this a useful structure for checkpoint 5




Passing lists to functions

« Passing a list to a function and accessing the list elements works as you would expect:

def sumSquares(vals):
total = 0.0
for 1 1n range(@,len(vals)):
total = total + vals[1]**2 # Access list elements
return total

def main():
v =[2.0, -4.6, 6.7, -3.4, 2.6] # Create a list
t = sumSquares(v)
print("Sum of squares is " + str(t))

main()




Passing lists to functions and changing them

« This is where things get tricky:

def add_const(vals):
c =5.0
for 1 1n range(len(vals)):
vals[1] = vals[i]+c # add constant to elements of vals

def main(Q):
xdata = [0.0]*10 # Create list of 10 zeros

add_const(xdata)
print(xdata)

main()

Result of print(xdata) is: [5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]
You have created a list in main(), passed it to a function and changed the values in that

function...
* but the values of the list elements in main() are changed!




Different types of object

* The full story here is rather complex

* There are two type of object in Python
— Mutable: which means objects can be altered

— Immutable: which means objects can't be altered, and
attempting to do so generates a new object

* Details are beyond this course, but will be covered in
— Computer Simulation (option in Semester 2)
— Computer Modelling (In Junior Honours for Physics students)




