Flow control:
conditionals and loops

Look at conditionals and loops, called flow control
1. Concept of flow control

2. Logical variables

3. The 1if block

4. The for loop

5. Thewhile loop

Flow control
« Flow control allows you to

— Selectively execute a block of code:
the 1f - elif — else block

— Repeatedly execute a bock of code a fixed number of times:
the for loop

— Repeatedly execute a block of code until a criterion is reached:
the while loop

— Recover from errors:
the try - catch block (not covered in this course)

« These are the main programming constructs for specifying what your program does

* The constructs are similar in all computing languages

Logical expressions

 First, need a logical variable, that takes one of two values: True and False

= True
b = False

Q

« Can also set values using logical expressions, e.g. using comparison operators:

x = 10.0 # create a float
a=XxX>5.0 # logical test (comparison) is True - value of a is True
= X > 11.0 # logical test (comparison) is False - value of b is False

(o)

« Can also use logical (boolean) operators and, or, not. Often used with comparison
operators:

x = 10.0
c =X>5.0and X > 11.0 # one logical test is True, one 1is False - value of c 1s False
d=Xx>5.0or x> 11.0 # one logical test is True, one 1is False - value of d is True

The 11 block

« The simplest is the single 1f block

Xx = 10.0

1f x > 5.0: # Start of if block (note the :)
print("x greater than 5.0")
X += 3.0 # End of 1f block

Does NOT need to be blank
print("Value of x 1s " + str(x))

« Note the indentation - the code inside the 1 block MUST be indented.
This is part of the language syntax.

« The execution continues after the 1 block

The 1f-else block

« The next level of complexity is the 1f-else block

Xx = 10.0

1f x >= 5.0: # 1f block
print("x greater than or equal to 5.0")
X += 3.0

else: # else block
print("x less than 5.0")
X += 10.0

print("Value of x 1s " + str(x))

* Only one of the two blocks gets executed, then execution continues after the close
of the second block.

 Remember that the indentation is absolutely critical.

The 1f-el1f-else block

« The most general format is the 1f-elif-else block

x = 10.0

1f x > 5.0: # 1f block
print("x greater than 5.0")
X += 3

elif x > 7.0: # elif block
print("x greater than 7.0")
X += 4

else: # else block
print("x 1s small number™)
X += 10

print("Value of x 1s " + str(x))

« Note that the first True block is executed, then control jumps to the end of the 1f-el1f-else block.
So in this example the second block can never be executed.

-« Note also that we can have multiple el1f blocks: 1f —elif —elif-...-else

The for loop

» Loops allow execution of a block of code multiple times. The simplest is the for loop:
import math

for loops are useful when

delta = 0.04 you know how many times
you want to execute the
for i in range(100): block of code
t = 1*delta

print("t 1s " + str(t) + " cos(t) 1s " + str(math.cos(t)))

print("End of loop")

« Will go round the the loop executing the indented block with1 = 0,1,2,...,99
« All parameters must be of type 1nt and note that the loop stops “before” stop is reached

* Full syntax of range is:
range(start, stop, increment)

« Must specify value of stop. If start and increment are not given, default values are used:
start = 0, 1ncrement = 1

The while loop

« The while loop is a more flexible loop, that runs while a criterion is True

while loops are useful when you
know what the end point (stopping
condition) is, but don’t know how
X =0.0 many times the loop has to be
while x < 10.0: executed to reach this point
X += 1.0 + math.sgrt(x)

print("value of x 1s " + str(x))

import math

print("Final value of x 1s " + str(x))

« This will go round the loop until the logical statement evaluates to False

* Note that this statement is tested before the loop is executed

« The while loop is a powerful loop, but remember that you must update the loop variable
within the loop, or it will loop for ever - a very common bug!

