
Lists

Lists
Look at lists and how to process multiple variables:

1. Basics of Lists

2. Creating Lists

3. Accessing Lists

4. Manipulating Lists

5. More on Lists

2

Basics of lists I
Up to now, we have being using variables that have a single value e.g. float, complex, int

Lists allow you to:

• Group a collection of items (elements) in an ordered way

• Access and process list elements in a simple way

• Pass list of data to functions

• Read and write bulk data to/from files

This is the basic way that you handle “bulk” data.

3

Basics of lists II
• Example: create a list of floats and access elements

• Creates a list of floats, with elements called vals[0], vals[1], vals[2], vals[3], vals[4]

• Note that the numbering (list index) starts at 0

• Can use the elements of the list as variables e.g.

4

vals = [1.0, 4.5, 7.0, 8.3, 9.3]
print("Fourth element is : " + str(vals[3]))

y = vals[0]*vals[4] # Use elements as variables
vals[1] = y + 4.0 # Update the values of elements

Creating lists

5

• Create a list using variables
x = 10.0
y = 13.0
z = 16.0
v = [x,y,z]

x = 10.0
y = 13.0
z = 16.0
v = [] # A blank list
v.append(x)
v.append(y)
v.append(z)

v = [0.0]*25

• Create a list where all the elements
have the same value in ‘bulk’
– often used to initialise list elements

• Create an empty (blank) list then
append values to it
– often done using a loop vals = [1.0, 4.5, 7.0]

• Create a list using values

• Creates 25 floats all set to 0.0, numbered 0 -> 24

Accessing lists

• Access list elements using [i] syntax, where i is an int.
For example:

• This is the conventional way to access list elements, and is similar to
other languages (C, C++, Java)

6

mydata = [1.0, 4.5, 7.0, 8.3, 9.3]
total = 0.0
for i in range(len(mydata)):

total = total + mydata[i]**2

print("Total sum squared " + str(total))

Accessing lists: the python way

• As accessing list elements is very common. there is a faster Python way

• This loops through the list mydata with x taking the value of each element of the list
in turn

• This is much more efficient than using for i in range, but it is less obvious
what the code is doing

7

mydata = [1.0, 4.5, 7.0, 8.3, 9.3]
total = 0.0
for x in mydata:

total += x**2

print("Total sum squared " + str(total))

Manipulating lists

• Extend vals by adding another
list to the end

8

u = [7.5, -0.8, 10.0]
vals.extend(u)

l = len(vals)

w = vals[3:7]

• Get ‘slice’ of list (copy of subset
of elements)
– slice returned as a new list

• Get length of list (the number
of elements)

vals = [1.0, 4.5, 7.0]
a = 6.0
vals.append(a)

• Append element to the end

• Note that vals[start:end] contains
vals[start] to vals[end-1]

• So in this example, list w contains 4
elements, vals[3] to vals[6]

More on lists
• These examples used lists of floats, but lists are much more general.

Lists can be:
– list of int, complex, boolean, str etc.
– list of lists
– list of objects (see optional section on objects and OOP at end of this course)

• A list can even contain different type of objects in the same list…
• …but this is a really dangerous feature since it is up to YOU (the

programmer) to keep track of what type each element is. Just don’t do it!

• In more advanced programming, it is better to use the NumPy library to
deal with long lists of floats
– see e.g. Computer Simulation or Computer Modelling courses.

9

