Lists

Lists

Look at lists and how to process multiple variables:
1. Basics of Lists

2. Creating Lists

3. Accessing Lists

4. Manipulating Lists

5. More on Lists

Basics of lists |

Up to now, we have being using variables that have a single value e.g. float, complex, int
Lists allow you to:

* Group a collection of items (elements) in an ordered way

« Access and process list elements in a simple way

« Pass list of data to functions

« Read and write bulk data to/from files

This is the basic way that you handle “bulk” data.

Basics of lists Il

Example: create a list of floats and access elements

vals = [1.0, 4.5, 7.0, 8.3, 9.3]
print("Fourth element is : " + str(vals[3]))

Creates a list of floats, with elements called vals[@], vals[1], vals[2], vals[3], vals[4]
Note that the numbering (list index) starts at O

Can use the elements of the list as variables e.g.

y = vals[@]*vals[4] # Use elements as variables
vals[1l] =y + 4.0 # Update the values of elements

Creating lists

Create a list using values * Create an empty (blank) list then
append values to it
vals = [1.0, 4.5, 7.0] — often done using a loop
x = 10.0

: : : y = 13.0
Create a list using variables - 16.0
x = 10.0 v = [] # A blank 11ist
y = 13.0 v.append(x)
z = 16.0 v.append(y)
v = [X,Y,Z] v.append(z)

Create a list where all the elements
have the same value in ‘bulk’

— often used to initialise list elements
v = [0.0]*25

« Creates 25 floats all setto 0.0, numbered 0 -> 24

Accessing lists

« Access list elements using [1] syntax, where 1 is an 1nt.
For example:

mydata = [1.0, 4.5, 7.0, 8.3, 9.3]
total = 0.0
for 1 in range(len(mydata)):

total = total + mydata[1]**2

print("Total sum squared " + str(total))

« This is the conventional way to access list elements, and is similar to
other languages (C, C++, Java)

Accessing lists: the python way

* As accessing list elements is very common. there is a faster Python way

mydata = [1.0, 4.5, 7.0, 8.3, 9.3]
total = 0.0
for x 1n mydata:

total += x**2

print("Total sum squared " + str(total))

 This loops through the list mydata with x taking the value of each element of the list
in turn

« This is much more efficient than using for 1 1n range, but it is less obvious
what the code is doing

Manipulating lists

Append element to the end
vals = [1.0, 4.5, 7.0]

a=6.0 . ST :
vals.append(a) (C)Bfeetl esrlrllceent(s)]; list (copy of subset

— slice returned as a new list

Extend vals by adding another w = vals[3:7]
list to the end
u=[7.5, -0.8, 10.0] Note that vals[start:end] contains

vals.extend(u)

vals[start] to vals[end-1]

* So in this example, list w contains 4
elements, vals[3] to vals[6]

Get length of list (the number
of elements)

1 = len(vals)

More on lists

« These examples used lists of floats, but lists are much more general.
Lists can be:

— list of Lnt, complex, boolean, str etc.
— list of lists

— list of objects (see optional section on objects and OOP at end of this course)

* A list can even contain different type of objects in the same list...

 ...but this is a really dangerous feature since it is up to YOU (the
programmer) to keep track of what type each element is. Just don’t do it!

* |n more advanced pro}gramming, it is better to use the NumPYy library to
deal with long lists of floats

— see e.g. Computer Simulation or Computer Modelling courses.

