\documentclass[aspectratio=169]{beamer} \usepackage[english]{babel} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{lmodern} \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{mathtools} \usepackage{sagetex} \usepackage{ulem} \usepackage{xcolor} \usepackage{tcolorbox} \usetheme{edmaths} \renewcommand\mathfamilydefault{\rmdefault} \title{Bridgeland Stabilities and Finding Walls} \subtitle{} \author{Luke Naylor} \institute{Hodge Club} \date{March 2023} \newcommand\RR{\mathbb{R}} \newcommand\CC{\mathbb{C}} \newcommand\ZZ{\mathbb{Z}} \newcommand\centralcharge{\mathcal{Z}} \newcommand\coh{\operatorname{Coh}} \newcommand\rank{\operatorname{rk}} \newcommand\degree{\operatorname{deg}} \newcommand\realpart{\mathfrak{Re}} \newcommand\imagpart{\mathfrak{Im}} \newcommand\bigO{\mathcal{O}} \newcommand\cohom{\mathcal{H}} \newcommand\chern{\mathrm{ch}} \newcommand\Torsion{\mathcal{T}} \newcommand\Free{\mathcal{F}} \newcommand\firsttilt[1]{\mathcal{B}^{#1}} \newcommand\derived{\mathcal{D}} \begin{document} \begin{sagesilent} from pseudowalls import * from sagetexscripts import * \end{sagesilent} \begin{frame} \titlepage \end{frame} \section{Transitioning to Stab on Triangulated Categories} \begin{frame}{Central Charge for Mumford Stability} \begin{align*} &\centralcharge \colon \coh(X) \to \CC \\ &\centralcharge (E) = - \degree(E) + i \rank(E) \end{align*} \vfill \resizebox{1\hsize}{!}{ \sageplot{fig1.plot()} } \begin{columns}[T] % align columns \begin{column}{.48\linewidth} \[ \centralcharge (E) = r(E) e^{i\pi \varphi(E)} \] \begin{center} \begin{large} $\varphi$ called "phase" \end{large} \end{center} \end{column}% %\hfill% \begin{column}{.48\linewidth} \[ \mu(E) = \frac{ - \realpart(\centralcharge(E)) }{ \imagpart(\centralcharge(E)) } \quad \] \begin{center} \begin{large} (allow for $+\infty$) \end{large} \end{center} \end{column}% \end{columns} \end{frame} \begin{frame}{Extending Central Charge to $D^b(X)$} \[ E^\bullet = [\cdots \to * \to * \to * \to \cdots] \in D^b(X) \] \begin{align*} \rank(E^\bullet) &= \sum (-1)^i \rank(\cohom^i(E)) \\ \degree(E^\bullet) &= \sum (-1)^i \degree(\cohom^i(E)) \end{align*} \vfill \begin{columns}[t,onlytextwidth] \begin{column}{.5\linewidth} In particular, for shifts: \begin{itemize} \item $\rank(E[1]) = - \rank(E)$ \item $\degree(E[1]) = - \degree(E)$ \end{itemize} \end{column} \begin{column}{.49\linewidth} For $\centralcharge$: \begin{itemize} \item $\centralcharge(E[1]) = - \centralcharge(E)$ \item $\centralcharge(E[2]) = \centralcharge(E)$ \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame}{Slicing - Phase $\phi$} \begin{columns}[t,onlytextwidth] % align columns \begin{column}{.33\linewidth}% \resizebox{1.1\hsize}{!}{ \sageplot{fig2.plot()} } \end{column}% %\hfill% \begin{column}{.33\linewidth}% \resizebox{1.1\hsize}{!}{ \sageplot{fig3.plot()} } \end{column}% %\hfill% \begin{column}{.33\linewidth}% \resizebox{1.1\hsize}{!}{ \sageplot{fig4.plot()} } \end{column}% \end{columns} \vfill \begin{itemize} \item $\centralcharge(E[2]) = \centralcharge(E)$ \item But $\phi(E[n]) = \phi(E) + n$ \item Stability decided among $E \in D^b(X) \colon \phi(E) \in (0, \pi] = \coh(X)$ \\ ($\phi$ only partial ``function'') \end{itemize} \end{frame} \begin{frame}{Benefits of this Generalization} \begin{itemize} \item Can take different slicings (and heart) \item Tweak $\centralcharge$ \quad $\to$ \quad m.b. tweak slicing \item No ``strong'' Bridgeland stabilities with $\coh(X)$ as heart for dim>1 \item Gieseker stability (a polynomial stability) can be constructed as a limit of Bridgeland stabilities \end{itemize} \end{frame} \section{Moving to Picard Rank 1 Surfaces} \begin{frame}{Moving to Surfaces} \begin{itemize} \item $\centralcharge(\bigO_x) = 0$ for Mumford stability \\ ignores extra term in Chern character: $(r, d \ell, \chi)$ \item Classically, Gieseker stability used \\ \qquad slope comparison $\to$ lexicographic comparison \end{itemize} \end{frame} \begin{frame}{New Central Charges for Surfaces} Explicitly constructed for K3 - Bridgeland (2003) \vfill \begin{tcolorbox}[title=Picard Rank 1 with polarization $L$] \begin{align*} \centralcharge_{\alpha, \beta}(E) &:= - \left< \exp( - \beta \ell - \alpha \ell i), E \right> &\text{where}\:\:\ell := c_1(L),\: \alpha\in\RR^{>0},\beta\in\RR \\ &= - \chern_{\mathrm{top}}(\exp( \alpha \ell + \beta \ell i)^{-1} \otimes E) &\text{($\leftarrow$ abuse)} \end{align*} \end{tcolorbox} \vfill $\exp(a) = \left(1, a, \frac12 a^2\right)$ defined formally, in particular: $\exp(n \ell) = L^{\otimes n}$ \vfill { \color{gray} For Mumford stability on Curves: \begin{align*} \centralcharge(E) &= -\chern_1(E) + \chern_0(E) i \\ &= - \left<\exp(-i), E\right> \end{align*} } \end{frame} \begin{sagesilent} v = generic_chern_char(2, "v") Z = stability.Tilt().central_charge(v).expand() nu = stability.Tilt().slope(v) \end{sagesilent} \begin{frame}{Explicit Formulae for New Central Charge} \begin{align*} \centralcharge_{\alpha, \beta}\left(v_0, v_1 \ell, v_2 \ell^2\right) &= \sage{Z} \\ \nu_{\alpha, \beta}\left(v_0, v_1 \ell, v_2 \ell^2\right) &= \sage{nu} \\ \end{align*} \vfill \begin{center} Denominator / $\imagpart(\centralcharge_{\alpha, \beta}) > 0 \iff \beta < \frac{v_1}{v_0} = \mu$ \\ $\to$ other $E\in\coh(X)$ cannot be in heart \end{center} \end{frame} \begin{frame}{New Heart - Tilting} Role of $\coh(X)$ as heart of $\derived^b(X)$ replaced: \vfill \begin{tcolorbox}[title=First Tilt of $\coh(X)$] \begin{align*} \firsttilt\beta := \left\{ E \in \derived^b(X) \colon \quad \cohom^{0}(E) \in \Torsion_\beta, \quad \cohom^{-1}(E) \in \Free_\beta, \quad \cohom^i(E) = 0 \:\: \text{o.w.} \right\} \end{align*} where $\beta \in \RR$ and: \begin{align*} \Tor \deribeta &:= \left\{\: E \in \coh(X) \colon \qquad \mu(G) > \beta \quad \text{whenever} \: E \twoheadrightarrow G \not=0,E \:\right\}&& {\color{gray} \: \ni \cohom^0 } \\ \Free_\beta &:= \left\{\: E \in \coh(X) \colon \qquad \mu(G) \leq \beta \quad \text{whenever} \: 0 \not= G \hookrightarrow E \:\right\}&& {\color{gray} \: \ni \cohom^{-1} } \end{align*} \end{tcolorbox} \vfill \begin{itemize} \item $\Torsion_\beta \subset \firsttilt\beta$ includes Mumford semistable $E \in Coh(X)$ s.t. $\mu(E) \geq \beta$ \item As $\beta \to - \infty$, \: $\firsttilt\beta \rightsquigarrow \coh(X)$ \begin{itemize} \item $\Torsion_\beta \rightsquigarrow \coh(X)$ \item $\Free_\beta \rightsquigarrow 0$ \end{itemize} {\color{gray} \item $\hom(T, F) = 0$ for $T \in \Torsion_\beta, F \in \Free_\beta$ makes this a torsion theory \item As $\beta \to +\infty$, \: $\Torsion_\beta \rightsquigarrow$ torsion sheaves (includes skyscrapers) } \end{itemize} \end{frame} \begin{frame}{Tilts $\firsttilt\beta$ on $\alpha,\beta$-Plane} When $E \in \coh(X)$ is Gieseker semistable (hence Mumford semistable): \resizebox{1\hsize}{!}{ \sageplot{fig5.plot()} } \end{frame} \begin{frame}{Notable Stability Conditions on Plane} \begin{columns}[t,onlytextwidth] % align columns \begin{column}{.49\linewidth} $\beta \to -\infty$, Fixed $\alpha$ \hline \vspace{1em} $n \in \ZZ$ \begin{equation*} \nu_{\alpha, -n}(E) = \frac{ \chern_2(E\otimes L^n) {\color{gray} - \frac{\alpha^2}{2} \rank(E) } }{ {\color{gray} (\chern_1(E) + } n \rank(E) {\color{gray} ) } } %n \in \ZZ \end{equation*} $\rightsquigarrow$ Tends to Gieseker Stability \vfill \begin{tcolorbox}[title=Gieseker Stability] E stable when red. Hilb. poly. \[ p_E(n) = \frac{\chern_2(E\otimes L^n)}{\rank(E)} \] not overtaken by $p_F(n)$ of any \\ $0 \not= F \hookrightarrow E$, for large $n$. \\ {\color{gray} (equiv. to lexic. comparison between poly. coeffs) } \end{tcolorbox} \end{column}% \hfill% \begin{column}{.49\linewidth} $\beta = \mu(E)$ \hline \vspace{1em} $\nu_{\alpha, \beta}(E) = + \infty$ \\ so can only be destabilized by $F \hookrightarrow E$ with $\nu_{\alpha, \beta}(F) = + \infty$ too ($\beta = \mu(F)$) \\ $\rightsquigarrow$ Destabilized w.r.t. Mumford slope \end{column}% \end{columns} \end{frame} \section{Walls} % walls, make the explanation about fixing a Chern character \begin{frame}{Walls} Fix a Chern character $v$ \begin{tcolorbox}[title=Wall point for $v$] Stability condition $\sigma$ where there's a strictly semistable object of Chern character $v$ \end{tcolorbox} \vfill $\sigma_{\alpha, \beta}$ wall point for $v$: \hline \vspace{0.5em} $F \hookrightarrow E$, destabilizing in $\firsttilt\beta$, with $\chern(E) = v$: \begin{equation*} \nu_{\alpha, \beta}(E) = \nu_{\alpha, \beta}(F) \end{equation*} \begin{equation*} \text{equiv.:}\quad \realpart(\centralcharge_{\alpha,\beta}(E)) \imagpart(\centralcharge_{\alpha,\beta}(F)) - \imagpart(\centralcharge_{\alpha,\beta}(E)) \realpart(\centralcharge_{\alpha,\beta}(F)) = 0 \end{equation*} \vfill \begin{itemize} \item $E$ strictly semistable \item $F$ necessarily semistable \item Polynomial condition on $\alpha, \beta$ \item $E$ switches between stable and unstable crossing wall \end{itemize} \end{frame} \end{document}