Explicit Formulae for Bounds on the Ranks of
Tilt Destabilizers and Practical Methods for
Finding Pseudowalls

Luke Naylor
May 29, 2023

1 Introduction

[ref] shows that for any rational fy, the vertical line {o,5,: @ € R} only
intersects finitely many walls. A consequence of this is that if 5_ is rational,
then there can only be finitely many circular walls to the left of the vertical
wall 5 = p. On the other hand, when /_ is not rational, [ref] showed that
there are infinitely many walls.

This dichotomy does not only hold for real walls, realised by actual ob-
jects in D°(X), but also for pseudowalls. Here pseudowalls are defined as
‘potential’ walls, induced by hypothetical Chern characters of destabilizers
which satisfy certain numerical conditions which would be satisfied by any
real destabilizer, regardless of whether they are realised by actual semistabi-
lizers in D*(X).

Since real walls are a subset of pseudowalls, the irrational g_ case follows
immediately from the corresponding case for real walls. However, the rational
[B_ case involves showing that the following conditions only admit finitely
many solutions (despite the fact that the same conditions admit infinitely
many solutions when [_ is irrational).

For a destabilizing sequence £ < F —» G in B? we have the fol-
lowing conditions. There are some Bogomolov-Gieseker type inequalities:
0 < A(E),A(G) and A(F)+ A(G) < A(F). We also have a condition relat-
ing to the tilt category B?: 0 < Ch’f (B) < chf (F). Finally, there’s a condition
ensuring that the radius of the circular wall is strictly positive: ch'g “(E) > 0.

AN

1.44 -(3,2¢, —402/2)
: _(15050)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Figure 1

For any fixed chy(E), the inequality 0 < ch?(E) < ch?(F), allows us
to bound chy(E). Then, the other inequalities allow us to bound chy(E).
The final part to showing the finiteness of pseudowalls would be bounding
cho(F). This has been hinted at in [ref] and done explicitly by Benjamin
Schmidt within a computer program which computes pseudowalls. Here we
discuss these bounds in more detail, along with the methods used, followed
by refinements on them which give explicit formulae for tighter bounds on
cho(F) of potential destabilizers E of F.

2 Characteristic Curves of Stability Condi-
tions Associated to Chern Characters

Topo.
usg Fig | (a
to show U,m,tj;vm obhey (mtdi&im’lﬁl Cl'lz (w) >0 =1 (M&)(G 20

Talk about figure 1.

3 Loose Bounds on chy(£) for Semistabilizers
Along Fixed 5 € Q

Definition 3.1 (Twisted Chern Character). For a given 3, define the twisted
Chern character as follows.

ch?(E) = ch(E) - exp(—pB¢)
Component-wise, this is:

chl (E) = chy(E)
ch?(E) = chy(E) — Bcho(E)

chi (E) = chy(E) — Bchy(E) + %2 cho(E)

ch}(E) is the imaginary component of the central charge Z, 3(E) and
any element of B? satisfies chf > 0. This, along with additivity gives us, for
any destabilizing sequence [ref]:

0 < ch?(F) < chf(F) (1)

When finding Chern characters of potential destabilizers E for some fixed
Chern character ch(F'), this bounds ch; (£).

The Bogomolov form applied to the twisted Chern character is the same
as the normal one. So 0 < A(E) yields:

2¢chf(E) chl(E) < chf (E)? (2)

Theorem 3.1 (Bound on r - Benjamin Schmidt). Given a Chern character
v such that f_(v) € Q, the rank r of any semistabilizer E of some F € BP
with ch(F) = v is bounded above by:

. mn? ch? (v)?
— ged(m, 2n?)

Proof. The restrictions on ch (E) and chj (E) is best seen with the following
graph:
/——“ﬂé is where the rationality of 3_ comes in. If _ = > for some *,n € Z.
Then chi(E) € WZ where m is the integer which guarantees chy(E) €
(- 3
/\ (A (w)v
J 4 144y)¢ Alwr)

.

.
, // : - c40
/I 'ZZ] (M(Afillﬁlo

poans gl

befwegm

Clyyifred

—_

L7 (determined by the variety). In particular, since chy(E) > 0 we must
also have chg (E) > %, which then in turn gives a bound for the rank

lem(m,2n?
of E:
cho(E) = chf(E) 3)
2 B 2

< lem(m, 2n2) chy (E) (4)
mn?2 chf (F)? 5)

— ged(m, 2n?)
O

4 B.Schmidt’s Method
5 Limitations | B Schmidt ‘MC

COM()M& r)b{wm‘ nec -’-411 205 nstaml
6 Refinement 3,y .
2’ ,\sz v %Y‘) ,'v.s['anl

To get tighter bounds on the rank of destabillzers FE of some F' with some
fixed Chern character, we will need to consider each of the values which
ch(E) can take. Doing this will allow us to eliminate possible values of
cho(E) for which each ch?(E) leads to the failure of at least one of the
inequalities. As opposed to only eliminating possible values of chy(F) for
which all corresponding ch?(E) fail one of the inequalities (which is what
was implicitly happening before).

First, let us fix a Chern character for F', ch(F') = (R, C, D), and consider
the possible Chern characters ch(E) = (r, ¢, d) of some semistabilizer E.

Recall [ref] that ch? has fixed bounds in terms of ch(F), and so we can
write:

c=ch(E)=pr+q 0<q<chi(F) (6)

Furthermore, ch; € Z so we only need to consider ¢ € +Z N [0, ch? (F)].
For the next subsections, we consider ¢ to be fixed with one of these values,
and we shall be varying chyg(E) = r to see when certain inequalities fail.

Yeasomns -

call (0c) with
v £ Vwa,‘

Lhe(Ked despilt

mos € have ro sofs

6 Nawerical ine?;,m}i[iva
/%/ A(E) + A(G) < A(F)

This condition expressed in terms of R,C, D, r, ¢, d looks as follows:

0<2Cc—2c*—2Rd—2Dr+4dr (7)

Expressing ¢ in terms of ¢ as defined in (eqn 6) we get the following:

0<—2(8r+q)*+2(Br+q)C —2Rd—2Dr +4dr (8)
This can be rearranged to express a bound on d as follows:
1 R2p3? 1 1 CRpS
d>-R3*— —"——+-pr—-C —_—
R Yy v I LA S Yy s v (9)
RfBq 1 DR Cyq q*
_ -D— _
Rear P3P S m=e) TR=2r R—2r

Viewing equation 9 as a lower bound for d given as a function of r, the terms
can be rewritten as follows. The constant term in r is ch)(F)/2 4+ 8¢. The
linear term in r is % $%r. Finally, there’s an hyperbolic term in r which tends

Rchj (F)/2+RBq—Cq+q? _
T . In the case g = [_

(or ;) we have chj (F) = 0, so some of these expressions simplify.

642 AE)>0

This condition expressed in terms of R, C, D, r, c,d looks as follows:

to 0 as r — 00, and can be written:

0<c*—2dr (10)

Expressing ¢ in terms of ¢ as defined in (eqn 6) we get the following:

0< (Br+q)°—2dr (11)
This can be rearranged to express a bound on d as follows:

d<152 + 3 +q2 (12)
— /r’ [E—
=9 oy
Viewing equation 12 as a lower bound for d in term of r again, there’s a

constant term fq, a linear term % B3%r, and a hyperbolic term 2. Notice that

for 8 = S_ (or B.), that is when chf(F) = 0, the constant and linear terms
match up with the ones for the bound found for d in subsection 6.1.

5

64 AG) >0

This condition expressed in terms of R,C, D, r, ¢, d looks as follows:

0<C?*-2DR—-2Cc+c®+2Rd+2Dr —2dr (13)

Expressing ¢ in terms of ¢ as defined in (eqn 6) we get the following;:

0< (Br+q)°—2(Br+q)C+C*~2DR+2Rd+2Dr —2dr (14)

This can be rearranged to express a bound on d as follows:

R 1, CRB Rfq

SR—r) 2P TPt R T Roy (15)
C? Cq q*

T Ry T R @& =)

1
d< — 2 _
<5 hp

Viewing equation 15 as an upper bound for d give: as a function of r, the
terms can be rewritten as follows. The constant term in r is ch (F)+S¢. The
linear term in r is % B%r. Finally, there’s an hyperbolic term in r which tends
Rch (F)+(C—q)?/2+RBq—DR
r—R
B = p_ (or 5;) we have Chg (F') = 0, so some of these expressions simplify,
and in particular, the constant and linear terms match those of the other
bounds in the previous subsections.

W Bounds on r

Now, the inequalities from the last three subsections will be used to find, for
each given ¢ = chf (E), how large r needs to be in order to leave no possible
solutions for d. At that point, there are no Chern characters (r,c,d) that
satisfy all inequalities to give a pseudowall.

6,Z W All circular pseudowalls left of vertical wall (P :ﬁ.)

Suppose we take f = [_ (so that ch’g(F) = 0) in the previous subsections,
to find all circular walls to the left of the vertical wall (TODO as discussed
in ref).

. In the case

to 0 as r — o0, and can be written:

ound: A(G) >0

ound: A(E) >0

und: ch}(E) >0

ound: A(E) + A(G) < A(F)

oo
Soo

)
5 10 15 20 5 ‘/1}/ 15 20
- i 0 - —
lower bound: ¢} (£)>0 ///
.l lower bound: A(E) + A(G) < A(F) i _—
(a) ¢ = 0 (all bounds other than (b) ¢ = ch® (F) (all bounds other
green coincide on line) than blue coincide on line)

Figure 2: Bounds on d := chy(E) in terms of r := chg(E) for fixed, extreme,
values of ¢ := ch}™ (E). Where ch(F) = (3,2, —2).

1 RB_q—Cq+ ¢* R
> — 3.2 — ke
d > zﬁ_r—l—ﬁ_q+ 73, , Whenr>2 (16)
[P q2
d < §B,T+ﬁ,q+ 2_7” whenr > 0 (17)
1 2RB_q+ (C —q)?—2DR
d< =p5.2 _ - h R (18
< SO+ gk S whewr> R (19

Furthermore, we get an extra bound for d resulting from the condition
that the radius of the circular wall must be positive. As discussed in (TODO
ref), this is equivalent to ch~ (E) > 0, which yields:

d > %ﬁ_QT + B_q (19)

Recalling that ¢ := ch?~ (E) € [0, ch? (F)], it’s worth noting that the ex-
treme values of ¢ in this range lead to the tightest bounds on d, as illustrated
in figure (2). In fact, in each case, one of the weak upper bounds coincides
with one of the weak lower bounds, (implying no possible destabilizers E
with cho(E) =: r > R := chy(F) for these g-values). This indeed happens
in general since the right hand sides of (eqn 17) and (eqn 19) match when

1 1

I'. l', - upper bound: A(G) >0

i ! - upper bound: A(E) >0

! i lower bound: ch} (E) >0

! ! ~lower bound: A(E) 4+ A(G) < A(F)
\ \

1
\

-

o
-
s e

o

"’"

H N W A U1 O

s

Figure 3: Bounds on d := chy(E) in terms of 7 := chy(E) for a fixed value
ch'f’(F)/Z of ¢ := chf’(E). Where ch(F) = (3,2, -2).

g = 0. In the other case, ¢ = ch'f’(F), it’s the right hand sides of (eqn 18)
and (eqn 19) which match.

The more generic case, when 0 < ¢ := ch’~ (F) < chf- (F) for the bounds
on d in terms of r is illustrated in figure (3). The question of whether there
are pseudo-destabilizers of arbitrarily large rank, in the context of the graph,
comes down to whether there are points (r,d) € Z & +Z (with large r) that
fit above the yellow line (ensuring positive radius of wall) but below the blue
and green (ensuring A(E), A(G) > 0). These lines have the same assymptote
at r — oo (eqns 17, 18, 19). As mentioned in the introduction (sec 1), the
finiteness of these solutions is entirely determined by whether S_ is rational

or irrational. Some of the details around the associated numerics are explored
next.

61 .XRational 3_ #0

The strategy here is similar to what was shown in (sect 3.1),
Suppose - = & for some coprime n € N, ar € Z. Then fix a value of ¢:

q:=chi(E) = % S %Z N[0, chy(F)] (20)

as noted at the beginning of this section (6).

Substituting the current values of ¢ and S_ into the condition for the
radius of the pseudo-wall being positive (eqn 19) we get:

1 (apr +2by)ar 1

—7 —7 21

m > d> 2n? < 2n? (21)
Theorem 6.1 (Bound on r #1). Let v = (R,C, D) be a fired Chern char-
acter. Then the ranks of the pseudo-semistabilizers for v are bounded above

by the following expression.

lem(m, 2n?)

max
2

g€[0,ch} ™ (v)]
. 2 2 2 R
min | ¢°,2R6_qg+ C* —2DR —2Cq+q¢° + ————
lem(m, 2n?)

Proof. Both d and the lower bound in (eqn 21) are elements of WZ.
So, if any of the two upper bounds on d come to within m of this
lower bound, then there are no solutions for d.

Considering equations 17, 18, 19, this happens when:

2 2

. [2RB_q+(C—q)"—2DR 1
29 = 22
min (27,,7 2 (R — 7") < €r lcm(m7 2n2) ()

This is equivalent to: (_\ ne @/ {: 0
/—\ —
‘ ¢ 2RB_q+C*—2DR+2Rep —2Cq+ ¢? facfor }97
r > min , (23)
26F 26F

(g-c/

If this condition holds for all ¢, then there are no solutions for d, and
therefore r cannot satisfy this condition for all g. Taking the maximum of all
these expressions over ¢, and substituting the value for er gives the result.

]

This bound can be refined a bit more by considering restrictions from the
possible values that r take. Furthermore, the proof of theorem 6.1 uses the
fact that, given an element of #Z, the closest non-equal element of %Z is
at least m away. However this a conservative estimate, and a larger
gap can sometimes be guaranteed if we know this value of #Z explicitly.

The expressions that will follow will be a bit more complicated and have

more parts which depend on the values of ¢ and 5_, even their numerators

9

ar, b, specifically. The upcoming theorem (TODO ref) is less useful as a
‘clean’ formula for a bound on the ranks of the pseudo-semistabilizers, but
has a purpose in the context of writing a computer program to find pseudo-
semistabilizers. Such a program would iterate through possible values of ¢,
then iterate through values of r within the bounds (dependent on ¢), which
would then determine ¢, and then find the corresponding possible values for
d.

Firstly, we only need to consider r-values for which ¢ := ch; (F) is integral:

apr b
c=—1l¢ez (24)
n n
That is, r = —ap b, mod n (ar is coprime to n, and so invertible mod n).

Let ap’ be an integer representative of ap~' in Z/nZ.
Next, we seek to find a larger € to use in place of er in the proof of
theorem 6.1:

Lemma/Definition 6.1 (Finding better alternatives to ep: €, and €,).
Suppose d € %Z satisfies the condition in eqn 21. That is:

(apr 4+ 2by)ap
2n2

d>
Then we have:

g (apr + 2by)ar
2n?

Where €1 and €, are defined as follows:

> €g2 2 €41 >0

1 2
€g1 - — kq €g2 ‘= kq
’ 2mn? ’ 2mn?
where k; is the least k € Z~g s.t.: k= —apbym mod n

2

kf] is the least k € Zwg s.t.: k= apqu(aFaF/ —2) mod nged(2n,arpm)

It is worth noting that €, is potentially larger than ¢, but calculating
it involves a gecd, a modulo reduction, and a modulo n inverse, for each ¢
considered.

10

Proof. Consider the followingm:

% _ (apr ;_nzquF = 275712 for some z € Z (25)
= —(apr + 2by)arpm =k mod 2n? (26)
= —ap®mr — 2apbym = k mod 2n? (27)
— ap’ap bym — 2apbym = k mod ged(2n? ap®mn) (28)
— —apbym =k mod n (29)

In our situation, we want to find the least k satisfying eqn 25. Since such
a k must also satisfy eqn 29, we can pick the smallest k; € Z~o which satisfies
this new condition (a computation only depending on ¢ and _, but not r).
We are then guaranteed that the gap 3 W’fn2 is at least €,;. Furthermore, k

also satisfies eqn 28 so we can also pick the smallest k‘g € Z~ satistying this
condition, which also guarantees that the gap ﬁ is at least €,0.

[l
Theorem 6.2 (Bound on r #3). Let v = (R,C, D) be a fired Chern char-

acter. Then the ranks of the pseudo-semistabilizers for v with chf’ =q= %

are bounded above by the following expression (with i =1 or 2).

R
in (¢%, 2RA_ 2_9DR -2 ST ;
5 min (q, RB_q+C R—-2Cq+gq +lcm(m72n2)+36q,

q72

Where €,; is defined as in definition/lemma 6.1.

6,1* Irrational (5_
o inb selutiows

ﬂ%@tﬁy)ﬁ(a]e/rcm{; with Pell - 1idg, me ol

e link (o 705”’ yama 7

677 ()ip, \A/all{f wilh vadid(s ﬁveate{ Chan cevtain size

11

8 Appendix - SageMath code

Requires extra package:
#! sage -pip install "pseudowalls==0.0.3" --extra-index-url
— https://gitlab.com/api/v4/projects/4396237,/packages/pypi/simple

from pseudowalls import *

A = lambda v: v.Q_tilt(Q)

mu = stability.Mumford().slope
HH HBHBHBHE BABABABHBRHAE #H

SECTION Introduction

HARBAHE BRABARAABRRE #H

Chern_Char(3, 2, -2)
Chern_Char(1, 0, 0)

e <
non

alpha = stability.Tilt().alpha
beta = stability.Tilt() .beta

coords_range = (beta, -5, 5), (alpha, 0, 5)

charact_curve_plot = (
implicit_plot(stability.Tilt() .degree(u), *coords_range , rgbcolor =
o "red")
+ implicit_plot(stability.Tilt().degree(v), *coords_range)
+ line([(mu(v),0), (mu(v),5)], linestyle = "dashed", legend_label =
r"$(3,2\ell,-4\ell"2/2)$")
+ line([(mu(w),0), (mu(u),5)], rgbcolor = "red", linestyle =
"dashed", legend_label = r"$(1,0,0)$")
+ implicit_plot(stability.Tilt().wall_eqn(u,v)/alpha,
*coords_range , rgbcolor = "black")

)

charact_curve_plot.xmax(1)

charact_curve_plot.xmin(-2)

charact_curve_plot.ymax(1.5)

charact_curve_plot.axes_labels([r"β", r"α"])

var("m") # Initialize symbol for variety parameter

HH HBHABHBHE HARABHABHRHR BRARHE #H

SECTION B.Schmidt's Method

HH AHARARE BRABARARARAR BRARAR #H

#H# HARBHAHR BARBBHARRHE HH

SECTION Limitations
HHt HARBHAH BHABBHAR R 1

12

HARARRR AABHAHARRR #H
SECTION Refinement
#H#t HRAAHRHR HRBRRAARGRR

Requires extra package:
#! sage -pip install "pseudowalls==0.0.3" --extra-index-url

— https://gitlab.com/api/vi/projects/4396237,/packages/pypi/simple

from pseudowalls import =*

v = Chern_Char (*var("R C D", domain="real"))
u = Chern_Char(*var("r c 4", domain="real"))
A = lambda v: v.Q_tilt()

ts = stability.Tilt
var("beta", domain="real')

c_lower_bound = -(
ts(beta=beta) .rank(u)
/ts() .alpha

) .expand() + ¢

var("q", domain="real")
c_in_terms_of_q = c_lower_bound + q
RENDERED TO LATEX: c_in_terms_of_q
First Bogomolov-Gieseker form expression that must be non-negative:
bgmlvl = A(v) - A(uw) - A(v-uw)
RENDERED TO LATEX: 0 <= bgmlvl.ezpand()
bgmlvl_with_q = (
bgmlvi
.expand ()
.subs(c == c_in_terms_of_q)
)
RENDERED TO LATEX: 0 <= bgmlvl_with_q
var("r_alt",domain="real") # r_alt = r - R/2 temporary substitution

bgmlvl_with_q_reparam = (bgmlvl_with_q.subs(r == r_alt +
— R/2)/r_alt) .expand()

bgmlvl_d_ineq = (
((0 >= -bgmlvl_with_q_reparam)/4 + d) # Rearrange for d
.subs(r_alt == r - R/2) # Resubstitute r back in
.expand ()

)

13

bgmlvl_d_lowerbound = bgmlvl_d_ineq.rhs() # Keep hold of lower bound for d
RENDERED TO LATEX: bgmlvi_d_tneq

Separate out the terms of the lower bound for d
bgmlvi_d_lowerbound_without_hyp = bgmlvl_d_lowerbound.subs(1/(R-2*r) == 0)

bgmlvl_d_lowerbound_exp_term = (
bgmlvl_d_lowerbound
- bgmlvl_d_lowerbound_without_hyp
) .expand ()

bgmlvl_d_lowerbound_const_term =
< bgmlvl_d_lowerbound_without_hyp.subs(r==0)

bgmlvl_d_lowerbound_linear_term = (
bgmlvl_d_lowerbound_without_hyp
- bgmlvl_d_lowerbound_const_term
) .expand ()

Vertfy the simplified forms of the terms that will be mentioned in text
var("chbv",domain="real") # symbol to represent ch_1 \beta(v)

assert bgmlvl_d_lowerbound_const_term ==
(
Keep hold of this alternative expression:
bgmlvl_d_lowerbound_const_term_alt :=
(
chbv/2
+ beta*q
)
)
.subs(chbv == v.twist(beta).ch[2])
.expand ()
)

assert bgmlvl_d_lowerbound_exp_term ==
(
Keep hold of this alternative expression:
bgmlvl_d_lowerbound_exp_term_alt :=
(
- R*chbv/2
- Rxbetax*q
+ Cxq
- q2
)/ (R-2%r)

14

)
.subs(chbv == v.twist(beta).ch[2])
.expand ()
)
RENDERED TO LATEX: bgmlvi_d_lowerbound_linear_term
First Bogomolov-Gieseker form expression that must be non-negative:
bgmlv2 = A(u)
RENDERED TO LATEX: 0 <= bgmluv2.ezpand()
bgmlv2_with_q = (
bgmlv2
.expand ()
.subs(c == c_in_terms_of_q)
)
RENDERED TO LATEX: 0 <= bgmlv2_with_q
bgmlv2_d_ineq = (
(0 <= bgmlv2_with_q)/2/r # rescale assuming v > 0
+ d # Rearrange for d
) .expand ()

Keep hold of lower bound for d
bgmlv2_d_upperbound = bgmlv2_d_ineq.rhs()

RENDERED TO LATEX: bgmlv2_d_ineq

Seperate out the terms of the lower bound for d

bgmlv2_d_upperbound_without_hyp = (
bgmlv2_d_upperbound
.subs(1/r == 0)

bgmlv2_d_upperbound_const_term = (
bgmlv2_d_upperbound_without_hyp
.subs (r==0)

bgmlv2_d_upperbound_linear_term = (
bgmlv2_d_upperbound_without_hyp
- bgmlv2_d_upperbound_const_term
) .expand ()

bgmlv2_d_upperbound_exp_term = (
bgmlv2_d_upperbound
- bgmlv2_d_upperbound_without_hyp
) .expand ()
RENDERED TO LATEX: bgmlvZ2_d_upperbound_const_term
RENDERED TO LATEX: bgmlvZ2_d_upperbound_linear_term

15

RENDERED TO LATEX: bgmlv2_d_upperbound_exp_term
Third Bogomolov-Gieseker form expression that must be non-negative:
bgmlv3 = A(v-u)
RENDERED TO LATEX: O <= bgmlv3.ezpand()
bgmlv3_with_q = (
bgmlv3
.expand ()
.subs(c == c_in_terms_of_q)
)
RENDERED TO LATEX: 0 <= bgmlv3_with_q
var("r_alt",domain="real") # r alt = r - R temporary substitution

bgmlv3_with_q_reparam = (

bgmlv3_with_q

.subs(r == r_alt + R)

/r_alt # This operation assumes r_alt > O
) .expand ()

bgmlv3_d_ineq = (
((0 <= bgmlv3_with_q_reparam)/2 + d) # Rearrange for d
.subs(r_alt == r - R) # Resubstitute r back in
.expand ()

)

Check that this equation represents a bound for d
assert bgmlv3_d_ineq.lhs() ==

bgmlv3_d_upperbound = bgmlv3_d_ineq.rhs() # Keep hold of lower bound for d
RENDERED TO LATEX: bgmlv3_d_ineq
Seperate out the terms of the lower bound for d

bgmlv3_d_upperbound_without_hyp = (
bgmlv3_d_upperbound
.subs (1/(R-r) == 0)

bgmlv3_d_upperbound_const_term = (
bgmlv3_d_upperbound_without_hyp
.subs (r==0)

bgmlv3_d_upperbound_linear_term = (
bgmlv3_d_upperbound_without_hyp
- bgmlv3_d_upperbound_const_term
) .expand ()

16

bgmlv3_d_upperbound_exp_term = (
bgmlv3_d_upperbound
- bgmlv3_d_upperbound_without_hyp
) .expand ()

Verify the simplified forms of the terms that will be mentioned in text
var("chbv",domain="real") # symbol to represent ch_1"\beta(v)

assert bgmlv3_d_upperbound_const_term ==
(
keep hold of this alternative expression:
bgmlv3_d_upperbound_const_term_alt := (
chbv
+ betax*q
)
)
.subs(chbv == v.twist(beta).ch[2]) # subs real wal of ch_1"\beta(v)
.expand ()
)

assert bgmlv3_d_upperbound_exp_term ==
(
Keep hold of this alternative expression:
bgmlv3_d_upperbound_exp_term_alt :=
(
R*chbv
+ (C - q)72/2
+ Rxbetax*q
- D*R
)/ (x-R)
)
.subs(chbv == v.twist(beta).ch[2]) # subs real wal of ch_1"\beta(v)
.expand ()

RENDERED TO LATEX: bgmlv3_d_upperbound_linear_term
SUB SECTION Bounds on \tezorpdfstring{ri{r} #
R HELHHAH HRRBHE B BRRRBHHRRRR AR AR AR R R #

®*H R RV

RENDERED TO LATEX: bgmlvl_d_lowerbound_linear_term

RENDERED TO LATEX: bgmlvl_d_lowerbound_const_term_alt.subs(chbv == 0)
RENDERED TO LATEX: bgmlvil_d_lowerbound_exzp_term_alt.subs(chbv == 0)
RENDERED TO LATEX: bgmlv2_d_upperbound_linear_term

RENDERED TO LATEX: bgmlv2_d_upperbound_const_term

H R R R R

17

RENDERED TO LATEX: bgmlv2_d_upperbound_exp_term
RENDERED TO LATEX: bgmlv3_d_upperbound_linear_term
RENDERED TO LATEX: bgmlv3_d_upperbound_const_term_alt.subs(chbv == 0)
RENDERED TO LATEX: bgmlv3_d_upperbound_exp_term_alt.subs(chbv == 0)
positive_radius_condition = (
(
(0 > - u.twist(beta).ch[2])
+ d # rearrange for d
)
.subs(solve(q == u.twist(beta).ch[1], c)[0]) # ezpress c in term of g
.expand ()
)
RENDERED TO LATEX: positive_radius_condition
def beta_min(chern):
ts = stability.Tilt()
return min(

map (
lambda soln: soln.rhs(),
solve(

(ts.degree(chern))
.expand ()
.subs(ts.alpha == 0),

beta

)
)

Chern_Char(3,2,-2)
7/3

v_example
q_example

def plot_d_bound(
v_example,
q_example,
ymax=5,
ymin=-2,
xmax=20,
aspect_ratio=None

Equations to plot imminently representing the bounds on d:
eql = (

bgmlvl_d_lowerbound

.subs(R == v_example.ch[0])

.subs(C == v_example.ch[1])

.subs(D == v_example.ch[2])

18

.subs(beta = beta_min(v_example))
.subs(q == q_example)

)

eq2 = (
bgmlv2_d_upperbound
.subs(R == v_example.ch[0])
.subs(C == v_example.ch[1])
.subs(D == v_example.ch[2])
.subs(beta = beta_min(v_example))
.subs(q == q_example)

)

eq3 = (

bgmlv3_d_upperbound

.subs(R == v_example.ch[0])
.subs(C == v_example.ch[1])
.subs(D == v_example.ch[2])
.subs(beta = beta_min(v_example))
.subs(q == q_example)

eqd = (
positive_radius_condition.rhs()
.subs(q == q_example)
.subs(beta = beta_min(v_example))

example_bounds_on_d_plot = (
plot(
eq3,
(r,v_example.ch[0],xmax),
color='green',
linestyle = "dashed",
legend_label=r"upper bound: $\Delta(G) \geq 0$",

)
+ plot(
eq2,
(r,0,xmax),
color='blue',
linestyle = "dashed",
legend_label=r"upper bound: $\Delta(E) \geq 0$"
)
+ plot(

eq4,

19

(r,0,xmax),

color='orange',

linestyle = "dotted",

legend_label=r"lower bound: $\mathrm{ch}_27{\beta_{-}}(E)>0$"

)
+ plot(

eql,

(r,v_example.ch[0]/2,xmax),

color='red',

linestyle = "dotted",

legend_label=r"lower bound: $\Delta(E) + \Delta(G) \leq \Delta(F)$"
)

)

example_bounds_on_d_plot.ymin(ymin)

example_bounds_on_d_plot.ymax (ymax)

example_bounds_on_d_plot.axes_labels(['r', 'd'1)

if aspect_ratio:
example_bounds_on_d_plot.set_aspect_ratio(aspect_ratio)

return example_bounds_on_d_plot

var("a_F b_q n") # Define symbols introduce for values of beta and g
beta_value_expr = (beta == a_F/n)

g_value_expr = (q == b_qg/n)

RENDERED TO LATEX: positive_radius_condition

— .subs([q_value_expr,beta_value_expr]). factor()

var("epsilon")

Tightness conditions:

bounds_too_tight_conditionl = (
bgmlv2_d_upperbound_exp_term
< epsilon

)

bounds_too_tight_condition2 = (
bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0)
< epsilon
)
RENDERED TO LATEX: bgmlv2_d_upperbound_exp_term
RENDERED TO LATEX: bgmlu3_d_upperbound_exp_term_alt.subs (chbv==0)
rearrange the "tightness" conditions in terms of 7

bounds_too_tight_conditionl = (

(bounds_too_tight_conditionl * r / epsilon)
.expand ()

20

)
bounds_too_tight_condition2 = (
(bounds_too_tight_condition2 * (r - R) / epsilon + R)

.expand ()
)
Check that these are indeed rearranged for r
assert bounds_too_tight_conditionl.rhs() == r
assert bounds_too_tight_condition2.rhs() == r

RENDERED TO LATEX: c_in_terms_of_q.subs([q_value_expr,beta_value_expr])
rhs_numerator = (
positive_radius_condition
.ths
.subs([q_value_expr,beta_value_expr])
.factor()
.numerator ()
)
RENDERED TO LATEX: postitive_radius_condition
— .subs([q_value_expr,beta_value_expr]). factor()
HH AHARARE HABABHARARE #H
SECTION Conclusion
HH HBABHBH HARBBABARE #H

HH RHRAAAA RARRRRHR # ARAHRRRHR #AHHE HH

SECTION Appendiz - SageMath code
H#t HARHARH RHARHARE # BRRARRAS B HH

21

	Introduction
	Characteristic Curves of Stability Conditions Associated to Chern Characters
	Loose Bounds on ch_0(E) for Semistabilizers Along Fixed Q
	B.Schmidt's Method
	Limitations
	Refinement
	 Δ(E) + Δ(G) ≤ Δ(F)
	 Δ(E) ≥ 0
	 Δ(G) ≥ 0
	Bounds on r
	All circular pseudowalls left of vertical wall

	Conclusion
	Appendix - SageMath code

