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1 Introduction
[ref] shows that for any rational β0, the vertical line {σα,β0 :α ∈ R>0} only
intersects finitely many walls. A consequence of this is that if β− is rational,
then there can only be finitely many circular walls to the left of the vertical
wall β = µ. On the other hand, when β− is not rational, [ref] showed that
there are infinitely many walls.

This dichotomy does not only hold for real walls, realised by actual ob-
jects in Db(X), but also for pseudowalls. Here pseudowalls are defined as
‘potential’ walls, induced by hypothetical Chern characters of destabilizers
which satisfy certain numerical conditions which would be satisfied by any
real destabilizer, regardless of whether they are realised by actual semistabi-
lizers in Db(X).

Since real walls are a subset of pseudowalls, the irrational β− case follows
immediately from the corresponding case for real walls. However, the rational
β− case involves showing that the following conditions only admit finitely
many solutions (despite the fact that the same conditions admit infinitely
many solutions when β− is irrational).

For a destabilizing sequence E �→ F � G in Bβ we have the fol-
lowing conditions. There are some Bogomolov-Gieseker type inequalities:
0 ≤ Δ(E),Δ(G) and Δ(E)+Δ(G) ≤ Δ(F ). We also have a condition relat-
ing to the tilt category Bβ: 0 ≤ chβ

1 (E) ≤ chβ
1 (F ). Finally, there’s a condition

ensuring that the radius of the circular wall is strictly positive: chβ−
2 (E) > 0.
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Figure 1

For any fixed ch0(E), the inequality 0 ≤ chβ
1 (E) ≤ chβ

1 (F ), allows us
to bound ch1(E). Then, the other inequalities allow us to bound ch2(E).
The final part to showing the finiteness of pseudowalls would be bounding
ch0(E). This has been hinted at in [ref] and done explicitly by Benjamin
Schmidt within a computer program which computes pseudowalls. Here we
discuss these bounds in more detail, along with the methods used, followed
by refinements on them which give explicit formulae for tighter bounds on
ch0(E) of potential destabilizers E of F .

2 Characteristic Curves of Stability Condi-
tions Associated to Chern Characters

Talk about figure 1.
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3 Loose Bounds on ch0(E) for Semistabilizers
Along Fixed β ∈ Q

Definition 3.1 (Twisted Chern Character). For a given β, define the twisted
Chern character as follows.

chβ(E) = ch(E) · exp(−β�)

Component-wise, this is:

chβ
0 (E) = ch0(E)

chβ
1 (E) = ch1(E)− β ch0(E)

chβ
2 (E) = ch2(E)− β ch1(E) +

β2

2
ch0(E)

chβ
1 (E) is the imaginary component of the central charge Zα,β(E) and

any element of Bβ satisfies chβ
1 ≥ 0. This, along with additivity gives us, for

any destabilizing sequence [ref]:

0 ≤ chβ
1 (E) ≤ chβ

1 (F ) (1)

When finding Chern characters of potential destabilizers E for some fixed
Chern character ch(F ), this bounds ch1(E).

The Bogomolov form applied to the twisted Chern character is the same
as the normal one. So 0 ≤ Δ(E) yields:

2 chβ
0 (E) chβ

2 (E) ≤ chβ
1 (E)2 (2)

Theorem 3.1 (Bound on r - Benjamin Schmidt). Given a Chern character
v such that β−(v) ∈ Q, the rank r of any semistabilizer E of some F ∈ Bβ

with ch(F ) = v is bounded above by:

r ≤ mn2 chβ
1 (v)

2

gcd(m, 2n2)

Proof. The restrictions on chβ
0 (E) and chβ

2 (E) is best seen with the following
graph:

This is where the rationality of β− comes in. If β− = ∗
n
for some ∗, n ∈ Z.

Then chβ
2 (E) ∈ 1

lcm(m,2n2)
Z where m is the integer which guarantees ch2(E) ∈
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1
m
Z (determined by the variety). In particular, since ch2(E) > 0 we must

also have chβ
2 (E) ≥ 1

lcm(m,2n2)
, which then in turn gives a bound for the rank

of E:

ch0(E) = chβ
0 (E) (3)

≤ lcm(m, 2n2) chβ
1 (E)2

2
(4)

≤ mn2 chβ
1 (F )2

gcd(m, 2n2)
(5)

4 B.Schmidt’s Method

5 Limitations

6 Refinement
To get tighter bounds on the rank of destabilizers E of some F with some
fixed Chern character, we will need to consider each of the values which
chβ

1 (E) can take. Doing this will allow us to eliminate possible values of
ch0(E) for which each chβ

1 (E) leads to the failure of at least one of the
inequalities. As opposed to only eliminating possible values of ch0(E) for
which all corresponding chβ

1 (E) fail one of the inequalities (which is what
was implicitly happening before).

First, let us fix a Chern character for F , ch(F ) = (R,C,D), and consider
the possible Chern characters ch(E) = (r, c, d) of some semistabilizer E.

Recall [ref] that chβ
1 has fixed bounds in terms of ch(F ), and so we can

write:

c = ch1(E) = βr + q 0 ≤ q ≤ chβ
1 (F ) (6)

Furthermore, ch1 ∈ Z so we only need to consider q ∈ 1
n
Z ∩ [0, chβ

1 (F )].
For the next subsections, we consider q to be fixed with one of these values,
and we shall be varying ch0(E) = r to see when certain inequalities fail.
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6.1 Δ(E) +Δ(G) ≤ Δ(F )

This condition expressed in terms of R,C,D, r, c, d looks as follows:

0 ≤ 2Cc− 2 c2 − 2Rd− 2Dr + 4 dr (7)
Expressing c in terms of q as defined in (eqn 6) we get the following:

0 ≤ −2 (βr + q)2 + 2 (βr + q)C − 2Rd− 2Dr + 4 dr (8)
This can be rearranged to express a bound on d as follows:

(9)
d ≥ 1

4
Rβ2 − R2β2

4 (R− 2 r)
+

1

2
β2r − 1

2
Cβ +

CRβ

2 (R− 2 r)

− Rβq

R− 2 r
+ βq +

1

2
D − DR

2 (R− 2 r)
+

Cq

R− 2 r
− q2

R− 2 r

Viewing equation 9 as a lower bound for d given as a function of r, the terms
can be rewritten as follows. The constant term in r is chβ

2 (F )/2 + βq. The
linear term in r is 1

2
β2r. Finally, there’s an hyperbolic term in r which tends

to 0 as r → ∞, and can be written: R chβ2 (F )/2+Rβq−Cq+q2

2r−R
. In the case β = β−

(or β+) we have chβ
2 (F ) = 0, so some of these expressions simplify.

6.2 Δ(E) ≥ 0

This condition expressed in terms of R,C,D, r, c, d looks as follows:

0 ≤ c2 − 2 dr (10)
Expressing c in terms of q as defined in (eqn 6) we get the following:

0 ≤ (βr + q)2 − 2 dr (11)
This can be rearranged to express a bound on d as follows:

d ≤ 1

2
β2r + βq +

q2

2 r
(12)

Viewing equation 12 as a lower bound for d in term of r again, there’s a
constant term βq, a linear term 1

2
β2r, and a hyperbolic term q2

2 r
. Notice that

for β = β− (or β+), that is when chβ
2 (F ) = 0, the constant and linear terms

match up with the ones for the bound found for d in subsection 6.1.
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6.3 Δ(G) ≥ 0

This condition expressed in terms of R,C,D, r, c, d looks as follows:

0 ≤ C2 − 2DR− 2Cc+ c2 + 2Rd+ 2Dr − 2 dr (13)
Expressing c in terms of q as defined in (eqn 6) we get the following:

0 ≤ (βr + q)2 − 2 (βr + q)C + C2 − 2DR + 2Rd+ 2Dr − 2 dr (14)

This can be rearranged to express a bound on d as follows:

(15)
d ≤ 1

2
Rβ2 − R2β2

2 (R− r)
+

1

2
β2r − Cβ +

CRβ

R− r
− Rβq

R− r

+ βq +D − C2

2 (R− r)
+

Cq

R− r
− q2

2 (R− r)

Viewing equation 15 as an upper bound for d give: as a function of r, the
terms can be rewritten as follows. The constant term in r is chβ

2 (F )+βq. The
linear term in r is 1

2
β2r. Finally, there’s an hyperbolic term in r which tends

to 0 as r → ∞, and can be written: R chβ2 (F )+(C−q)2/2+Rβq−DR

r−R
. In the case

β = β− (or β+) we have chβ
2 (F ) = 0, so some of these expressions simplify,

and in particular, the constant and linear terms match those of the other
bounds in the previous subsections.

6.4 Bounds on r

Now, the inequalities from the last three subsections will be used to find, for
each given q = chβ

1 (E), how large r needs to be in order to leave no possible
solutions for d. At that point, there are no Chern characters (r, c, d) that
satisfy all inequalities to give a pseudowall.

6.4.1 All circular pseudowalls left of vertical wall

Suppose we take β = β− (so that chβ
2 (F ) = 0) in the previous subsections,

to find all circular walls to the left of the vertical wall (TODO as discussed
in ref).
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(a) q = 0 (all bounds other than
green coincide on line)
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(b) q = chβ−(F ) (all bounds other
than blue coincide on line)

Figure 2: Bounds on d := ch2(E) in terms of r := ch0(E) for fixed, extreme,
values of q := ch

β−
1 (E). Where ch(F ) = (3, 2,−2).

d ≥ 1

2
β−

2r + β−q+ −Rβ−q − Cq + q2

R− 2 r
, when r >

R

2
(16)

d ≤ 1

2
β−

2r + β−q+
q2

2 r
, when r > 0 (17)

d ≤ 1

2
β−

2r + β−q+ −2Rβ−q + (C − q)2 − 2DR

2 (R− r)
, when r > R (18)

Furthermore, we get an extra bound for d resulting from the condition
that the radius of the circular wall must be positive. As discussed in (TODO
ref), this is equivalent to ch

β−
2 (E) > 0, which yields:

d >
1

2
β−

2r + β−q (19)

Recalling that q := ch
β−
1 (E) ∈ [0, ch

β−
1 (F )], it’s worth noting that the ex-

treme values of q in this range lead to the tightest bounds on d, as illustrated
in figure (2). In fact, in each case, one of the weak upper bounds coincides
with one of the weak lower bounds, (implying no possible destabilizers E
with ch0(E) =: r > R := ch0(F ) for these q-values). This indeed happens
in general since the right hand sides of (eqn 17) and (eqn 19) match when
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Figure 3: Bounds on d := ch2(E) in terms of r := ch0(E) for a fixed value
ch

β−
1 (F )/2 of q := ch

β−
1 (E). Where ch(F ) = (3, 2,−2).

q = 0. In the other case, q = ch
β−
1 (F ), it’s the right hand sides of (eqn 18)

and (eqn 19) which match.
The more generic case, when 0 < q := ch

β−
1 (E) < ch

β−
1 (F ) for the bounds

on d in terms of r is illustrated in figure (3). The question of whether there
are pseudo-destabilizers of arbitrarily large rank, in the context of the graph,
comes down to whether there are points (r, d) ∈ Z⊕ 1

m
Z (with large r) that

fit above the yellow line (ensuring positive radius of wall) but below the blue
and green (ensuring Δ(E),Δ(G) > 0). These lines have the same assymptote
at r → ∞ (eqns 17, 18, 19). As mentioned in the introduction (sec 1), the
finiteness of these solutions is entirely determined by whether β− is rational
or irrational. Some of the details around the associated numerics are explored
next.
Rational β− �= 0

The strategy here is similar to what was shown in (sect 3.1),
Suppose β− = aF

n
for some coprime n ∈ N, aF ∈ Z. Then fix a value of q:

q := ch
β−
1 (E) =

bq
n

∈ 1

n
Z ∩ [0, ch

β−
1 (F )] (20)

as noted at the beginning of this section (6).
Substituting the current values of q and β− into the condition for the

radius of the pseudo-wall being positive (eqn 19) we get:
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1

m
Z � d >

(aF r + 2 bq)aF
2n2

∈ 1

2n2
Z (21)

Theorem 6.1 (Bound on r #1). Let v = (R,C,D) be a fixed Chern char-
acter. Then the ranks of the pseudo-semistabilizers for v are bounded above
by the following expression.

lcm(m, 2n2)

2
max

q∈[0,chβ−1 (v)]�
min

�
q2, 2Rβ−q + C2 − 2DR− 2Cq + q2 +

R

lcm(m, 2n2)

��

Proof. Both d and the lower bound in (eqn 21) are elements of 1
lcm(m,2n2)

Z.
So, if any of the two upper bounds on d come to within 1

lcm(m,2n2)
of this

lower bound, then there are no solutions for d.
Considering equations 17, 18, 19, this happens when:

min

�
q2

2 r
,−2Rβ−q + (C − q)2 − 2DR

2 (R− r)

�
< �F :=

1

lcm(m, 2n2)
(22)

This is equivalent to:

r > min

�
q2

2 �F
,
2Rβ−q + C2 − 2DR + 2R�F − 2Cq + q2

2 �F

�
(23)

If this condition holds for all q, then there are no solutions for d, and
therefore r cannot satisfy this condition for all q. Taking the maximum of all
these expressions over q, and substituting the value for �F gives the result.

This bound can be refined a bit more by considering restrictions from the
possible values that r take. Furthermore, the proof of theorem 6.1 uses the
fact that, given an element of 1

2n2Z, the closest non-equal element of 1
m
Z is

at least 1
lcm(m,2n2)

away. However this a conservative estimate, and a larger
gap can sometimes be guaranteed if we know this value of 1

2n2Z explicitly.
The expressions that will follow will be a bit more complicated and have

more parts which depend on the values of q and β−, even their numerators
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aF , bq specifically. The upcoming theorem (TODO ref) is less useful as a
‘clean’ formula for a bound on the ranks of the pseudo-semistabilizers, but
has a purpose in the context of writing a computer program to find pseudo-
semistabilizers. Such a program would iterate through possible values of q,
then iterate through values of r within the bounds (dependent on q), which
would then determine c, and then find the corresponding possible values for
d.

Firstly, we only need to consider r-values for which c := ch1(E) is integral:

c =
aF r

n
+

bq
n

∈ Z (24)

That is, r ≡ −aF
−1bq mod n (aF is coprime to n, and so invertible mod n).

Let aF
� be an integer representative of aF−1 in Z/nZ.

Next, we seek to find a larger � to use in place of �F in the proof of
theorem 6.1:

Lemma/Definition 6.1 ( Finding better alternatives to �F : �q,1 and �q,2 ).
Suppose d ∈ 1

m
Z satisfies the condition in eqn 21. That is:

d >
(aF r + 2 bq)aF

2n2

Then we have:

d− (aF r + 2bq)aF
2n2

≥ �q,2 ≥ �q,1 > 0

Where �q,1 and �q,2 are defined as follows:

�q,1 :=
k1
q

2mn2
�q,2 :=

k2
q

2mn2

where k1
q is the least k ∈ Z>0 s.t. : k ≡ −aF bqm mod n

k2
q is the least k ∈ Z>0 s.t. : k ≡ aF bqm(aFaF

� − 2) mod n gcd(2n, aF
2m)

It is worth noting that �q,2 is potentially larger than �q,2 but calculating
it involves a gcd, a modulo reduction, and a modulo n inverse, for each q
considered.

10



Proof. Consider the following tautology:

x

m
− (aF r + 2bq)aF

2n2
=

k

2mn2
for some x ∈ Z (25)

⇐⇒ −(aF r + 2bq)aFm ≡ k mod 2n2 (26)
⇐⇒ −aF

2mr − 2aF bqm ≡ k mod 2n2 (27)
=⇒ aF

2aF
�
bqm− 2aF bqm ≡ k mod gcd(2n2, aF

2mn) (28)
=⇒ −aF bqm ≡ k mod n (29)

In our situation, we want to find the least k satisfying eqn 25. Since such
a k must also satisfy eqn 29, we can pick the smallest k1

q ∈ Z>0 which satisfies
this new condition (a computation only depending on q and β−, but not r).
We are then guaranteed that the gap k

2mn2 is at least �q,1. Furthermore, k
also satisfies eqn 28 so we can also pick the smallest k2

q ∈ Z>0 satisfying this
condition, which also guarantees that the gap k

2mn2 is at least �q,2.

Theorem 6.2 (Bound on r #3). Let v = (R,C,D) be a fixed Chern char-
acter. Then the ranks of the pseudo-semistabilizers for v with ch

β−
1 = q = aq

n

are bounded above by the following expression (with i = 1 or 2).

1

2�q,i
min

�
q2, 2Rβ−q + C2 − 2DR− 2Cq + q2 +

R

lcm(m, 2n2)
+R�q,i

�

Where �q,i is defined as in definition/lemma 6.1.

Irrational β−

7 Conclusion
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8 Appendix - SageMath code
# Requires extra package:
#! sage -pip install "pseudowalls==0.0.3" --extra-index-url

https://gitlab.com/api/v4/projects/43962374/packages/pypi/simple�→

from pseudowalls import *

Δ = lambda v: v.Q_tilt()
mu = stability.Mumford().slope
## ####### ############ ##
## SECTION Introduction ##
## ####### ############ ##

v = Chern_Char(3, 2, -2)
u = Chern_Char(1, 0, 0)

alpha = stability.Tilt().alpha
beta = stability.Tilt().beta

coords_range = (beta, -5, 5), (alpha, 0, 5)

charact_curve_plot = (
implicit_plot(stability.Tilt().degree(u), *coords_range , rgbcolor =

"red")�→

+ implicit_plot(stability.Tilt().degree(v), *coords_range )
+ line([(mu(v),0),(mu(v),5)], linestyle = "dashed", legend_label =
r"$(3,2\ell,-4\ell^2/2)$")
+ line([(mu(u),0),(mu(u),5)], rgbcolor = "red", linestyle =
"dashed", legend_label = r"$(1,0,0)$")
+ implicit_plot(stability.Tilt().wall_eqn(u,v)/alpha,
*coords_range , rgbcolor = "black")

)
charact_curve_plot.xmax(1)
charact_curve_plot.xmin(-2)
charact_curve_plot.ymax(1.5)
charact_curve_plot.axes_labels([r"$\beta$", r"$\alpha$"])
var("m") # Initialize symbol for variety parameter
## ####### ########### ###### ##
## SECTION B.Schmidt's Method ##
## ####### ########### ###### ##

## ####### ########### ##
## SECTION Limitations ##
## ####### ########### ##

12



## ####### ########## ##
## SECTION Refinement ##
## ####### ########## ##

# Requires extra package:
#! sage -pip install "pseudowalls==0.0.3" --extra-index-url

https://gitlab.com/api/v4/projects/43962374/packages/pypi/simple�→

from pseudowalls import *

v = Chern_Char(*var("R C D", domain="real"))
u = Chern_Char(*var("r c d", domain="real"))

Δ = lambda v: v.Q_tilt()
ts = stability.Tilt
var("beta", domain="real")

c_lower_bound = -(
ts(beta=beta).rank(u)
/ts().alpha

).expand() + c

var("q", domain="real")
c_in_terms_of_q = c_lower_bound + q
# RENDERED TO LATEX: c_in_terms_of_q
# First Bogomolov-Gieseker form expression that must be non-negative:
bgmlv1 = Δ(v) - Δ(u) - Δ(v-u)
# RENDERED TO LATEX: 0 <= bgmlv1.expand()
bgmlv1_with_q = (

bgmlv1
.expand()
.subs(c == c_in_terms_of_q)

)
# RENDERED TO LATEX: 0 <= bgmlv1_with_q
var("r_alt",domain="real") # r_alt = r - R/2 temporary substitution

bgmlv1_with_q_reparam = (bgmlv1_with_q.subs(r == r_alt +
R/2)/r_alt).expand()�→

bgmlv1_d_ineq = (
((0 >= -bgmlv1_with_q_reparam)/4 + d) # Rearrange for d
.subs(r_alt == r - R/2) # Resubstitute r back in
.expand()

)

13



bgmlv1_d_lowerbound = bgmlv1_d_ineq.rhs() # Keep hold of lower bound for d
# RENDERED TO LATEX: bgmlv1_d_ineq
# Separate out the terms of the lower bound for d
bgmlv1_d_lowerbound_without_hyp = bgmlv1_d_lowerbound.subs(1/(R-2*r) == 0)

bgmlv1_d_lowerbound_exp_term = (
bgmlv1_d_lowerbound
- bgmlv1_d_lowerbound_without_hyp

).expand()

bgmlv1_d_lowerbound_const_term =
bgmlv1_d_lowerbound_without_hyp.subs(r==0)�→

bgmlv1_d_lowerbound_linear_term = (
bgmlv1_d_lowerbound_without_hyp
- bgmlv1_d_lowerbound_const_term

).expand()

# Verify the simplified forms of the terms that will be mentioned in text
var("chbv",domain="real") # symbol to represent ch_1^\beta(v)

assert bgmlv1_d_lowerbound_const_term == (
(

# Keep hold of this alternative expression:
bgmlv1_d_lowerbound_const_term_alt :=
(
chbv/2
+ beta*q

)
)
.subs(chbv == v.twist(beta).ch[2])
.expand()

)

assert bgmlv1_d_lowerbound_exp_term == (
(

# Keep hold of this alternative expression:
bgmlv1_d_lowerbound_exp_term_alt :=
(
- R*chbv/2
- R*beta*q
+ C*q
- q^2

)/(R-2*r)

14



)
.subs(chbv == v.twist(beta).ch[2])
.expand()

)
# RENDERED TO LATEX: bgmlv1_d_lowerbound_linear_term
# First Bogomolov-Gieseker form expression that must be non-negative:
bgmlv2 = Δ(u)
# RENDERED TO LATEX: 0 <= bgmlv2.expand()
bgmlv2_with_q = (

bgmlv2
.expand()
.subs(c == c_in_terms_of_q)

)
# RENDERED TO LATEX: 0 <= bgmlv2_with_q
bgmlv2_d_ineq = (

(0 <= bgmlv2_with_q)/2/r # rescale assuming r > 0
+ d # Rearrange for d

).expand()

# Keep hold of lower bound for d
bgmlv2_d_upperbound = bgmlv2_d_ineq.rhs()
# RENDERED TO LATEX: bgmlv2_d_ineq
# Seperate out the terms of the lower bound for d

bgmlv2_d_upperbound_without_hyp = (
bgmlv2_d_upperbound
.subs(1/r == 0)

)

bgmlv2_d_upperbound_const_term = (
bgmlv2_d_upperbound_without_hyp
.subs(r==0)

)

bgmlv2_d_upperbound_linear_term = (
bgmlv2_d_upperbound_without_hyp
- bgmlv2_d_upperbound_const_term

).expand()

bgmlv2_d_upperbound_exp_term = (
bgmlv2_d_upperbound
- bgmlv2_d_upperbound_without_hyp

).expand()
# RENDERED TO LATEX: bgmlv2_d_upperbound_const_term
# RENDERED TO LATEX: bgmlv2_d_upperbound_linear_term

15



# RENDERED TO LATEX: bgmlv2_d_upperbound_exp_term
# Third Bogomolov-Gieseker form expression that must be non-negative:
bgmlv3 = Δ(v-u)
# RENDERED TO LATEX: 0 <= bgmlv3.expand()
bgmlv3_with_q = (

bgmlv3
.expand()
.subs(c == c_in_terms_of_q)

)
# RENDERED TO LATEX: 0 <= bgmlv3_with_q
var("r_alt",domain="real") # r_alt = r - R temporary substitution

bgmlv3_with_q_reparam = (
bgmlv3_with_q
.subs(r == r_alt + R)
/r_alt # This operation assumes r_alt > 0

).expand()

bgmlv3_d_ineq = (
((0 <= bgmlv3_with_q_reparam)/2 + d) # Rearrange for d
.subs(r_alt == r - R) # Resubstitute r back in
.expand()

)

# Check that this equation represents a bound for d
assert bgmlv3_d_ineq.lhs() == d

bgmlv3_d_upperbound = bgmlv3_d_ineq.rhs() # Keep hold of lower bound for d
# RENDERED TO LATEX: bgmlv3_d_ineq
# Seperate out the terms of the lower bound for d

bgmlv3_d_upperbound_without_hyp = (
bgmlv3_d_upperbound
.subs(1/(R-r) == 0)

)

bgmlv3_d_upperbound_const_term = (
bgmlv3_d_upperbound_without_hyp
.subs(r==0)

)

bgmlv3_d_upperbound_linear_term = (
bgmlv3_d_upperbound_without_hyp
- bgmlv3_d_upperbound_const_term

).expand()
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bgmlv3_d_upperbound_exp_term = (
bgmlv3_d_upperbound
- bgmlv3_d_upperbound_without_hyp

).expand()

# Verify the simplified forms of the terms that will be mentioned in text

var("chbv",domain="real") # symbol to represent ch_1^\beta(v)

assert bgmlv3_d_upperbound_const_term == (
(

# keep hold of this alternative expression:
bgmlv3_d_upperbound_const_term_alt := (
chbv
+ beta*q

)
)
.subs(chbv == v.twist(beta).ch[2]) # subs real val of ch_1^\beta(v)
.expand()

)

assert bgmlv3_d_upperbound_exp_term == (
(

# Keep hold of this alternative expression:
bgmlv3_d_upperbound_exp_term_alt :=
(
R*chbv
+ (C - q)^2/2
+ R*beta*q
- D*R

)/(r-R)
)
.subs(chbv == v.twist(beta).ch[2]) # subs real val of ch_1^\beta(v)
.expand()

)
# RENDERED TO LATEX: bgmlv3_d_upperbound_linear_term
# SUB SECTION Bounds on \texorpdfstring{$r$}{r} #
# ### ####### ###### ## ####################### #

# RENDERED TO LATEX: bgmlv1_d_lowerbound_linear_term
# RENDERED TO LATEX: bgmlv1_d_lowerbound_const_term_alt.subs(chbv == 0)
# RENDERED TO LATEX: bgmlv1_d_lowerbound_exp_term_alt.subs(chbv == 0)
# RENDERED TO LATEX: bgmlv2_d_upperbound_linear_term
# RENDERED TO LATEX: bgmlv2_d_upperbound_const_term
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# RENDERED TO LATEX: bgmlv2_d_upperbound_exp_term
# RENDERED TO LATEX: bgmlv3_d_upperbound_linear_term
# RENDERED TO LATEX: bgmlv3_d_upperbound_const_term_alt.subs(chbv == 0)
# RENDERED TO LATEX: bgmlv3_d_upperbound_exp_term_alt.subs(chbv == 0)
positive_radius_condition = (

(
(0 > - u.twist(beta).ch[2])
+ d # rearrange for d

)
.subs(solve(q == u.twist(beta).ch[1], c)[0]) # express c in term of q
.expand()

)
# RENDERED TO LATEX: positive_radius_condition
def beta_min(chern):

ts = stability.Tilt()
return min(
map(
lambda soln: soln.rhs(),
solve(
(ts.degree(chern))
.expand()
.subs(ts.alpha == 0),

beta
)

)
)

v_example = Chern_Char(3,2,-2)
q_example = 7/3

def plot_d_bound(
v_example,
q_example,
ymax=5,
ymin=-2,
xmax=20,
aspect_ratio=None

):

# Equations to plot imminently representing the bounds on d:
eq1 = (

bgmlv1_d_lowerbound
.subs(R == v_example.ch[0])
.subs(C == v_example.ch[1])
.subs(D == v_example.ch[2])
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.subs(beta = beta_min(v_example))

.subs(q == q_example)
)

eq2 = (
bgmlv2_d_upperbound
.subs(R == v_example.ch[0])
.subs(C == v_example.ch[1])
.subs(D == v_example.ch[2])
.subs(beta = beta_min(v_example))
.subs(q == q_example)

)

eq3 = (
bgmlv3_d_upperbound
.subs(R == v_example.ch[0])
.subs(C == v_example.ch[1])
.subs(D == v_example.ch[2])
.subs(beta = beta_min(v_example))
.subs(q == q_example)

)

eq4 = (
positive_radius_condition.rhs()
.subs(q == q_example)
.subs(beta = beta_min(v_example))

)

example_bounds_on_d_plot = (
plot(
eq3,
(r,v_example.ch[0],xmax),
color='green',
linestyle = "dashed",
legend_label=r"upper bound: $\Delta(G) \geq 0$",

)
+ plot(
eq2,
(r,0,xmax),
color='blue',
linestyle = "dashed",
legend_label=r"upper bound: $\Delta(E) \geq 0$"

)
+ plot(
eq4,
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(r,0,xmax),
color='orange',
linestyle = "dotted",
legend_label=r"lower bound: $\mathrm{ch}_2^{\beta_{-}}(E)>0$"

)
+ plot(
eq1,
(r,v_example.ch[0]/2,xmax),
color='red',
linestyle = "dotted",
legend_label=r"lower bound: $\Delta(E) + \Delta(G) \leq \Delta(F)$"

)
)
example_bounds_on_d_plot.ymin(ymin)
example_bounds_on_d_plot.ymax(ymax)
example_bounds_on_d_plot.axes_labels(['$r$', '$d$'])
if aspect_ratio:
example_bounds_on_d_plot.set_aspect_ratio(aspect_ratio)

return example_bounds_on_d_plot

var("a_F b_q n") # Define symbols introduce for values of beta and q
beta_value_expr = (beta == a_F/n)
q_value_expr = (q == b_q/n)
# RENDERED TO LATEX: positive_radius_condition �

.subs([q_value_expr,beta_value_expr]).factor()�→

var("epsilon")

# Tightness conditions:

bounds_too_tight_condition1 = (
bgmlv2_d_upperbound_exp_term
< epsilon

)

bounds_too_tight_condition2 = (
bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0)
< epsilon

)
# RENDERED TO LATEX: bgmlv2_d_upperbound_exp_term
# RENDERED TO LATEX: bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0)
# rearrange the "tightness" conditions in terms of r

bounds_too_tight_condition1 = (
(bounds_too_tight_condition1 * r / epsilon)
.expand()
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)
bounds_too_tight_condition2 = (

(bounds_too_tight_condition2 * (r - R) / epsilon + R)
.expand()

)

# Check that these are indeed rearranged for r
assert bounds_too_tight_condition1.rhs() == r
assert bounds_too_tight_condition2.rhs() == r
# RENDERED TO LATEX: c_in_terms_of_q.subs([q_value_expr,beta_value_expr])
rhs_numerator = (

positive_radius_condition
.rhs()
.subs([q_value_expr,beta_value_expr])
.factor()
.numerator()

)
# RENDERED TO LATEX: positive_radius_condition �

.subs([q_value_expr,beta_value_expr]).factor()�→

## ####### ########## ##
## SECTION Conclusion ##
## ####### ########## ##

## ####### ######## # ######## #### ##
## SECTION Appendix - SageMath code ##
## ####### ######## # ######## #### ##
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