diff --git a/main.tex b/main.tex index 70ab47fae79fa83856091338cff397f18413559c..992d5c3f47ea7a9d92bbeb4751b36f2668dd4b03 100644 --- a/main.tex +++ b/main.tex @@ -781,22 +781,24 @@ Some of the details around the associated numerics are explored next. The strategy here is similar to what was shown in (sect \ref{sec:twisted-chern}), % ref to Schmidt? -Suppose $\beta = \frac{a}{n}$ for some coprime $n \in \NN,a \in \ZZ$. +\renewcommand{\aa}{{a_F}} +\newcommand{\bb}{{b_q}} +Suppose $\beta = \frac{\aa}{n}$ for some coprime $n \in \NN,\aa \in \ZZ$. Then fix a value of $q$: \begin{equation} q:=\chern_1^{\beta}(E) - =\frac{b}{n} + =\frac{\bb}{n} \in \frac{1}{n} \ZZ \cap [0, \chern_1^{\beta}(F)] \end{equation} as noted at the beginning of this section (\ref{sec:refinement}). -Firstly, we only consider $r$-values for which $c:=\chern_1(E)$ is not integral: +Firstly, we only consider $r$-values for which $c:=\chern_1(E)$ is integral: \begin{sagesilent} -var("a b n") # Define symbols introduce for values of beta and q -q_value_expr = (q == b/n) -beta_value_expr = (beta == a/n) +var("a_F b_q n") # Define symbols introduce for values of beta and q +beta_value_expr = (beta == a_F/n) +q_value_expr = (q == b_q/n) \end{sagesilent} \begin{equation} @@ -806,7 +808,8 @@ beta_value_expr = (beta == a/n) \end{equation} \noindent -That is, $r \equiv -a^{-1}b$ mod $n$ ($a$ is coprime to $n$, and so invertible mod $n$). +That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to +$n$, and so invertible mod $n$). Substituting the current values of $q$ and $\beta$ into the condition for the radius of the pseudo-wall being positive @@ -816,7 +819,9 @@ radius of the pseudo-wall being positive \label{eqn:positive_rad_condition_in_terms_of_q_beta} \frac{1}{m}\ZZ \ni + \qquad \sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()} + \qquad \in \frac{1}{2n^2}\ZZ \end{equation} @@ -838,7 +843,7 @@ this happens when: \sage{bgmlv2_d_upperbound_exp_term}, \sage{bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0)}, \right) - < \epsilon := \frac{1}{\lcm(m,2n^2)} + < \epsilon_{\beta} := \frac{1}{\lcm(m,2n^2)} \end{equation} %% refinements using specific values of q and beta @@ -859,13 +864,13 @@ Considering the numerator of the right-hand-side of \begin{align} \sage{rhs_numerator} - &\equiv (a(-a^{-1}b)+2b)a &\mod n + &\equiv (\aa(-\aa^{-1}\bb)+2\bb)\aa &\mod n \\ - &\equiv ab &\mod n + &\equiv \aa\bb &\mod n \end{align} \noindent -And so, we also have $a(ar+2b) \equiv ab$ (mod $2n^2$). +And so, we also have $\aa(\aa r+2\bb) \equiv \aa\bb$ (mod $2n^2$). \minorheading{Irrational $\beta$}