diff --git a/main.tex b/main.tex index 379ec40e1bd711f2751f08415eeac7515873ad07..fb7181593de314fae27c9f24103e4c1e55f5b32d 100644 --- a/main.tex +++ b/main.tex @@ -706,8 +706,9 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \item $r > 0$ \item $\Delta(u) \geq 0$ \item $\Delta(v-u) \geq 0$ - \item $\beta(P)<\mu(u)=\frac{c}{r}<\mu(v)$ - \item $\chern_1^{\beta(P)}(u)\leq\chern_1^{\beta(P)}(v)$ + \item $\mu(u)=\frac{c}{r}<\mu(v)$ + \item $0\leq\chern_1^{\beta(P)}(u)\leq\chern_1^{\beta(P)}(v)$ + \label{item:chern1bound:lem:num_test_prob1} \item $\chern_2^{P}(u)>0$ \end{enumerate} \end{lemma} @@ -719,6 +720,8 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. conditions for $u$ being a solution to problem \ref{problem:problem-statement-1} are precisely equivalent to the remaining conditions in this lemma. + % TODO maybe make this more explicit + % (the conditions are not exactly the same) \end{proof} @@ -733,8 +736,8 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \item $r > 0$ \item $\Delta(u) \geq 0$ \item $\Delta(v-u) \geq 0$ - \item $\beta(P)<\mu(u)=\frac{c}{r}<\mu(v)$ - \item $\chern_1^{\beta(P)}(u)\leq\chern_1^{\beta(P)}(v)$ + \item $\mu(u)=\frac{c}{r}<\mu(v)$ + \item $0\leq\chern_1^{\beta_{-}}(u)\leq\chern_1^{\beta_{-}}(v)$ \item $\chern_2^{\beta_{-}}(u)>0$ \end{enumerate} \end{corrolary} @@ -952,10 +955,17 @@ As opposed to only eliminating possible values of $\chern_0(E)$ for which all corresponding $\chern_1^{\beta}(E)$ fail one of the inequalities (which is what was implicitly happening before). -First, let us fix a Chern character for $F$, and some semistabilizer $E$: +% NOTE FUTURE: surface specialization +First, let us fix a Chern character for $F$, and some pseudo-semistabilizer +$u$ which is a solution to problem +\ref{problem:problem-statement-1} or +\ref{problem:problem-statement-2}. \begin{align} - v &\coloneqq \chern(F) = (R,C\ell,D\ell^2) \\ - u &\coloneqq \chern(E) = (r,c\ell,d\ell^2) + \chern(F) =\vcentcolon\: v \:=& \:(R,C\ell,D\ell^2) + && \text{where $R,C,2D\in \ZZ$} + \\ + u \coloneqq& \:(r,c\ell,d\ell^2) + && \text{where $r,c,2d\in \ZZ$} \end{align} \begin{sagesilent} @@ -970,8 +980,11 @@ u = Chern_Char(*var("r c d", domain="real")) Δ = lambda v: v.Q_tilt() \end{sagesilent} -Recall from eqn \ref{eqn-tilt-cat-cond} that $\chern_1^{\beta}(u)$ has fixed -bounds in terms of $\chern_1^{\beta}(v)$, and so we can write: +Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in +lemma \ref{lem:pseudo_wall_numerical_tests} +(or corrolary \ref{cor:numerical-test-left-pseudowalls-rational-betamin}) +that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$, +and so we can write: \begin{sagesilent} ts = stability.Tilt