From 0f9a603dee6f96210f1c24af96760bf9af3b49a7 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Sat, 10 Aug 2024 23:13:27 +0100 Subject: [PATCH] Implement Jul08 feedback (non-continued) --- tex/bounds-on-semistabilisers.tex | 98 ++++++++++++++++++------------- tex/computing-solutions.tex | 2 +- 2 files changed, 57 insertions(+), 43 deletions(-) diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex index a9d4e4a..fac1c21 100644 --- a/tex/bounds-on-semistabilisers.tex +++ b/tex/bounds-on-semistabilisers.tex @@ -24,7 +24,7 @@ bundle $L$ such that $\ell\coloneqq c_1(L)$ generates $\neronseveri(X)$ and take $m\coloneqq \ell^2$. Given a Chern character $v$ with $\Delta(v) \geq 0$ and positive rank (or -$\chern_0(v) = 0$ but $\chern_1(v) > 0$) +$\chern_0(v) = 0$ and $\chern_1(v) > 0$) such that $\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of any solution $u$ of Problem \ref{problem:problem-statement-2} is @@ -155,8 +155,8 @@ we will need to consider each of the values which $\chern_1^{\beta}(u)$ can take. Doing this will allow us to eliminate possible values of $\chern_0(u)$ for which each possible value of $\chern_1^{\beta}(u)$ leads to the failure of at least one -of the inequalities. -As opposed to only eliminating possible values of $\chern_0(u)$ for which all +of the inequalities, +as opposed to only eliminating possible values of $\chern_0(u)$ for which all corresponding $\chern_1^{\beta}(u)$ fail one of the inequalities (which is what was implicitly happening before in the proof of Theorem \ref{thm:loose-bound-on-r}). @@ -172,13 +172,15 @@ of travel. \noindent If $u$ is a solution to the Problem then $u$ satisfies: - \begin{align} - q\coloneqq \chern^{\beta_0}_1(u) &\in \left( 0, \chern_1^{\beta_0}(v) \right) + \begin{equation} + q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right) \label{lem:eqn:cond-for-fixed-q} - \\ - \chern_0(u) &> \frac{q}{\mu(v) - \beta_0} + \qquad + \text{and} + \qquad + \chern_0(u) > \frac{q}{\mu(v) - \beta_0}. \nonumber - \end{align} + \end{equation} \noindent Conversely, any $u = (r,c\ell,d\ell^2)$ @@ -221,14 +223,18 @@ of travel. Then any solution $u$ satisfies: \begin{align*} \chern^{\beta_0}_1(u) - &= \frac{b_q}{n} - &\text{for some } - b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\} - \\ - a_v r &\equiv -b_q \pmod{n} - \\ - r &> \frac{q}{\mu(v) - \beta_0} + = \frac{b_q}{n}, + \qquad + a_v r &\equiv -b_q \pmod{n}, + \quad + \text{and} + \qquad + r > \frac{q}{\mu(v) - \beta_0} \end{align*} + \[ + \text{for some } + b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\}. + \] And any $u = (r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ satisfying these equations is a solution to the Problem if and only if, again, @@ -275,9 +281,9 @@ $\chern_0(v)>0$, or $\chern_0(v)=0$ and $\chern_1(v)>0$, and consider Problem \ref{problem:problem-statement-1} or \ref{problem:problem-statement-2}. -Take $\beta_0 = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem +Take $\beta_0 = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in Problem \ref{problem:problem-statement-1} -(or $\beta_0 = \beta_{-}$ for problem \ref{problem:problem-statement-2}). +(or $\beta_0 = \beta_{-}$ for Problem \ref{problem:problem-statement-2}). Lemma \ref{lem:fixed-q-semistabs-criterion} states that any solution \begin{equation} u \coloneqq \:(r,c\ell,d\ell^2) @@ -295,7 +301,8 @@ to the Problem satisfies \] and also gives a lower bound for $r$ when considering $u$ with a fixed $q$. This Section studies the extra numerical conditions that such $u$ must satisfy -as per that Lemma, and will express them as bounds on $d$ in terms of $r$ (for a +as given by Lemma \ref{lem:fixed-q-semistabs-criterion}, +and will express them as bounds on $d$ in terms of $r$ (for a fixed $q$). These bounds will later be used in Subsections \ref{subsec:bounds-on-semistab-rank-prob-1} and @@ -305,18 +312,21 @@ to construct upper bounds on $r$ Theorem \ref{thm:loose-bound-on-r} by considering bounds on $\chern^{\beta_0}_0(u)$ in terms of the former). -\subsubsection{Size of pseudo-wall\texorpdfstring{: $\chern_2^P(u)>0$}{}} +\subsubsection{Radius of the pseudo-wall\texorpdfstring{: $\chern_2^P(u)>0$}{}} \label{subsect-d-bound-radiuscond} In the context of Problem \ref{problem:problem-statement-2}, this condition, when rearranged to a bound on $d$, amounts to: -\begin{align} +\begin{equation} \label{eqn:radius-cond-betamin} - \chern_2^{\beta_{-}}(u) &> 0 \\ - d &> \frac{1}{2} {\beta_{-}}^2r + \beta_{-}q + \chern_2^{\beta_{-}}(u) &> 0 + \qquad + \text{and} + \qquad + d > \frac{1}{2} {\beta_{-}}^2r + \beta_{-}q. \nonumber -\end{align} +\end{equation} \begin{sagesilent} import other_P_choice as problem1 @@ -395,9 +405,9 @@ from plots_and_expressions import bgmlv3_d_upperbound_terms d \leq \sage{bgmlv3_d_upperbound_terms.linear} + \sage{bgmlv3_d_upperbound_terms.const} - \sage{bgmlv3_d_upperbound_terms.hyperbolic} + \sage{bgmlv3_d_upperbound_terms.hyperbolic}, \qquad - \text{when }r>R + \text{when }r>R. \end{equation} \noindent @@ -411,7 +421,7 @@ given by $\chern^P_2(u)>0$ if $u$ already satisfies Equations Since $r, R-r>0$, we have: \begin{equation} \label{lem:proof:slope-order-rltR} - \beta_0, \mu(u) < \mu(v) < \mu(v-u) + \max(\beta_0, \mu(u)) < \mu(v) < \mu(v-u) \end{equation} \noindent The first inequality coming from $P \in \Theta_v^{-}$ and Equation @@ -443,6 +453,8 @@ see-saw principle. &\text{since }\Delta(v) \geq 0 \:\text{and }\chern_0(v) > 0 \\ + \text{So} + \quad \frac{ \left( q-\chern^{\beta_0}_1(v) @@ -454,7 +466,9 @@ see-saw principle. } &> 2 \frac{\chern^{\beta_0}_2(v)}{R} -\\ + & + \text{and} + \quad \chern_2^{\beta_0}(v) - \frac{ \left( @@ -491,25 +505,25 @@ for a potential solution to the problem of the form in Equation from plots_and_expressions import bgmlv2_d_upperbound_terms \end{sagesilent} \begin{align} - d &>& + d &> \frac{1}{2}{\beta_0}^2 r - &+ {\beta_0} q, - \phantom{+}& % to keep terms aligned + + {\beta_0} q, + \phantom{+} % to keep terms aligned &\qquad\text{when\:} r > 0 \label{eqn:radiuscond_d_bound_betamin} \\ - d &\leq& + d &\leq \sage{bgmlv2_d_upperbound_terms.problem2.linear} - &+ \sage{bgmlv2_d_upperbound_terms.problem2.const} - & +\sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic}, + + \sage{bgmlv2_d_upperbound_terms.problem2.const} + +\sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic}, &\qquad\text{when\:} r > 0 \label{eqn:bgmlv2_d_bound_betamin} \\ - d &\leq& + d &\leq \sage{bgmlv3_d_upperbound_terms.problem2.linear} - &+ \sage{bgmlv3_d_upperbound_terms.problem2.const} + + \sage{bgmlv3_d_upperbound_terms.problem2.const} % ^ ch_2^\beta(F)=0 for beta_{-} - & \sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic}, + \sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic}, &\qquad\text{when\:} r > R \label{eqn:bgmlv3_d_bound_betamin} \end{align} @@ -755,9 +769,9 @@ beta_value_expr \label{eqn:positive_rad_condition_in_terms_of_q_beta} \frac{1}{\lcm(m,2)}\ZZ \ni - \qquad + \:\: \sage{positive_radius_condition_with_q.subs([q_value_expr,beta_value_expr]).factor()} - \qquad + \:\: \in \frac{1}{2n^2}\ZZ \end{equation} @@ -915,12 +929,12 @@ we get the bounds as stated in the statement of the Corollary. \begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] \label{exmpl:recurring-second} -Just like in example \ref{exmpl:recurring-first}, take +Just like in Example \ref{exmpl:recurring-first}, take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that $m=2$, $\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$. -Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that +Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that the ranks of tilt semistabilisers for $v$ are bounded above by $\sage{recurring.corrolary_bound} \approx \sage{round(float(recurring.corrolary_bound), 1)}$, @@ -929,12 +943,12 @@ which is much closer to real maximum 25 than the original bound 144. \begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] \label{exmpl:extravagant-second} -Just like in example \ref{exmpl:extravagant-first}, take +Just like in Example \ref{exmpl:extravagant-first}, take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that $m=2$, $\beta=\sage{extravagant.betaminus}$, giving $n=\sage{extravagant.n}$. -Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that +Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that the ranks of tilt semistabilisers for $v$ are bounded above by $\sage{extravagant.corrolary_bound} \approx \sage{round(float(extravagant.corrolary_bound), 1)}$, diff --git a/tex/computing-solutions.tex b/tex/computing-solutions.tex index ba6d1d1..8f6a641 100644 --- a/tex/computing-solutions.tex +++ b/tex/computing-solutions.tex @@ -58,7 +58,7 @@ In particular, it is the $\chern_1^{\beta_{-}}(v-u) \geq 0$ condition which fails for $r$,$c$ pairs with large $r$ and $\frac{c}{r}$ too far from $\beta_{-}$. This condition is only checked within the internal loop. This, along with a conservative estimate for a bound on the $r$ values (as -illustrated in example \ref{exmpl:recurring-first}) occasionally leads to slow +illustrated in Example \ref{exmpl:recurring-first}) occasionally leads to slow computations. Here are some benchmarks to illustrate the performance benefits of the -- GitLab