diff --git a/main.tex b/main.tex index bfc0b39f1d558b50be8778abe9220da279fcc544..2ff26cd1a83e093fffd6ddf1c03a418501563fcd 100644 --- a/main.tex +++ b/main.tex @@ -1155,7 +1155,7 @@ previous subsubsections. %%%% RATIONAL BETA MINUS As mentioned in passing, when specializing to solutions $u$ of problem \ref{problem:problem-statement-2}, the bounds on -$d=\chern^{\beta_{-}}_2(u)$ induced by conditions +$d=\chern_2(u)$ induced by conditions \ref{item:bgmlvu:lem:num_test_prob2}, \ref{item:bgmlvv-u:lem:num_test_prob2}, and \ref{item:radiuscond:lem:num_test_prob1} @@ -1272,6 +1272,75 @@ from plots_and_expressions import typical_bounds_on_d \label{fig:d_bounds_xmpl_gnrc_q} \end{figure} +\subsubsection{All Bounds on $d$ Together for Problem +\ref{problem:problem-statement-1}} +\label{subsubsect:all-bounds-on-d-prob1} + +Unlike for problem \ref{problem:problem-statement-2}, +the bounds on $d=\chern_2(u)$ induced by conditions +\ref{item:bgmlvu:lem:num_test_prob2}, +\ref{item:bgmlvv-u:lem:num_test_prob2}, and +\ref{item:radiuscond:lem:num_test_prob1} +from corollary \ref{cor:num_test_prob2} have different +constant and linear terms, so that the graphs for upper +bounds do not share the same assymptote as the lower bound +(and they will turn out to intersect). + +\begin{align} + \sage{problem1.radius_condition_d_bound.lhs()} + &> + \sage{problem1.radius_condition_d_bound.rhs()} + &\text{where }r>0 + \label{eqn:prob1:radiuscond} + \\ + d &\leq + \sage{problem1.bgmlv2_d_upperbound_terms.linear} + + \sage{problem1.bgmlv2_d_upperbound_terms.const} + + \sage{problem1.bgmlv2_d_upperbound_terms.hyperbolic} + &\text{where }r>R + \label{eqn:prob1:bgmlv2} + \\ + d &\leq + \sage{problem1.bgmlv3_d_upperbound_terms.linear} + + \sage{problem1.bgmlv3_d_upperbound_terms.const} + + \sage{problem1.bgmlv3_d_upperbound_terms.hyperbolic} + &\text{where }r>R + \label{eqn:prob1:bgmlv3} +\end{align} + +Notice that as a function in $r$, the linear term in +equation \ref{eqn:prob1:radiuscond} is strictly greater than +those in equations \ref{eqn:prob1:bgmlv2} +and \ref{eqn:prob1:bgmlv3}. This is because $r$, $R$ +and $\chern_2^B(v)$ are all strictly positive: +\begin{itemize} + \item $R > 0$ from the setting of problem + \ref{problem:problem-statement-1} + \item $r > 0$ from lemma \ref{lem:num_test_prob1} + \item $\chern_2^B(v)$ because $B < \originalbeta_{-}$ due to the choice of $P$ being + a point on $\Theta_v^{-}$ +\end{itemize} + +This means that the lower bound for $d$ will be large than either of the two +upper bounds for sufficiently large $r$, and hence those values of $r$ would yield no +solution to problem \ref{problem:problem-statement-1}. + +A generic example of this is plotted in figure +\ref{fig:problem1:d_bounds_xmpl_gnrc_q}. + +\begin{figure} +\centering +\sageplot[width=\linewidth]{typical_bounds_on_d} +\caption{ + Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq \chern_0(E)$ for a fixed + value $\chern_1^{\beta}(F)/2$ of $q\coloneqq\chern_1^{\beta}(E)$. + Where $\chern(F) = (3,2,-2)$ and $P$ chosen as the point on $\Theta_v$ + with $B\coloneqq-2/3-1/99$ in the context of problem + \ref{problem:problem-statement-1}. +} +\label{fig:problem1:d_bounds_xmpl_gnrc_q} +\end{figure} + \subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{r} in Problem \ref{problem:problem-statement-2}}