diff --git a/examples.ipynb b/examples.ipynb index f14242b98a437f4c8faaa3096d3934355d58d4d9..ec5739e12506f13b4a17b6bcc43900ecd574d466 100644 --- a/examples.ipynb +++ b/examples.ipynb @@ -69,7 +69,7 @@ "$\\displaystyle \\text{Chern Character:} \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = 3 \\\\ \\mathrm{ch}_{1} = 2 \\ell^{1} \\\\ \\mathrm{ch}_{2} = -2 \\ell^{2} \\end{array}$" ], "text/plain": [ - "<pseudowalls.chern_character.Chern_Char object at 0x7ff85e32f1f0>" + "<pseudowalls.chern_character.Chern_Char object at 0x7f1718d278e0>" ] }, "execution_count": 2, @@ -100,7 +100,7 @@ "$\\displaystyle \\text{Chern Character:} \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = 29 \\\\ \\mathrm{ch}_{1} = 13 \\ell^{1} \\\\ \\mathrm{ch}_{2} = -\\frac{3}{2} \\ell^{2} \\end{array}$" ], "text/plain": [ - "<pseudowalls.chern_character.Chern_Char object at 0x7ff8548d70d0>" + "<pseudowalls.chern_character.Chern_Char object at 0x7f1718d263b0>" ] }, "execution_count": 3, @@ -263,13 +263,13 @@ { "data": { "text/html": [ - "<html>\\(\\displaystyle \\frac{1}{2} \\, R + \\frac{\\Delta \\Omega}{8 \\, m} + \\frac{R^{2} m}{2 \\, \\Delta \\Omega}\\)</html>" + "<html>\\(\\displaystyle \\frac{1}{2} \\, R + \\frac{{\\Delta(v)} {\\operatorname{lcm}(m,2n^2)}}{8 \\, m} + \\frac{R^{2} m}{2 \\, {\\Delta(v)} {\\operatorname{lcm}(m,2n^2)}}\\)</html>" ], "text/latex": [ - "$\\displaystyle \\frac{1}{2} \\, R + \\frac{\\Delta \\Omega}{8 \\, m} + \\frac{R^{2} m}{2 \\, \\Delta \\Omega}$" + "$\\displaystyle \\frac{1}{2} \\, R + \\frac{{\\Delta(v)} {\\operatorname{lcm}(m,2n^2)}}{8 \\, m} + \\frac{R^{2} m}{2 \\, {\\Delta(v)} {\\operatorname{lcm}(m,2n^2)}}$" ], "text/plain": [ - "1/2*R + 1/8*Delta*Omega/m + 1/2*R^2*m/(Delta*Omega)" + "1/2*R + 1/8*bgmlv_v*lcm_m_2n2/m + 1/2*R^2*m/(bgmlv_v*lcm_m_2n2)" ] }, "execution_count": 8, @@ -278,7 +278,7 @@ } ], "source": [ - "from plots_and_expressions import main_theorem1, Delta, m, R, n, lcm_m_2n2\n", + "from plots_and_expressions import main_theorem1, bgmlv_v, m, R, n, lcm_m_2n2\n", "# Delta: symbol for Δ(v)\n", "# n: symbol for denominator for β_(v)\n", "# R : symbol for chern_0(v)\n", @@ -296,7 +296,7 @@ "def corrolary_bound(example):\n", " return (\n", " main_theorem1.corollary_r_bound\n", - " .subs(Delta==example.bgmlv)\n", + " .subs(bgmlv_v==example.bgmlv)\n", " .subs(m==example.m)\n", " .subs(R==example.chern.ch[0])\n", " .subs(n==example.n)\n", diff --git a/main.tex b/main.tex index 2c14f5599f73535ed7e5dedcbded9a6b1a3494b4..facd95285d121c0c9efb85d7f0623a08439bf6e1 100644 --- a/main.tex +++ b/main.tex @@ -511,8 +511,6 @@ Let $P$ be a point on $\Theta_v^-$. \noindent The following conditions: -\bgroup -\renewcommand{\labelenumi}{\alph{enumi}.} \begin{enumerate} \item $u$ is a pseudo-semistabilizer of $v$ at some point on $\Theta_v^-$ above $P$ @@ -520,7 +518,6 @@ The following conditions: $\nu_{\alpha,\beta}(u)<\nu_{\alpha,\beta}(v)$ outside the pseudo-wall, and $\nu_{\alpha,\beta}(u)>\nu_{\alpha,\beta}(v)$ inside. \end{enumerate} -\egroup \noindent are equivalent to the following more numerical conditions: @@ -1121,9 +1118,6 @@ $d$ yields: from plots_and_expressions import bgmlv3_d_upperbound_terms \end{sagesilent} -\bgroup -\def\psi{\chern_1^{\beta}(v)} -\def\phi{\chern_2^{\beta}(v)} \begin{equation*} \label{eqn-bgmlv3_d_upperbound} d \leq @@ -1133,7 +1127,6 @@ from plots_and_expressions import bgmlv3_d_upperbound_terms \qquad \text{where }r>R \end{equation*} -\egroup \noindent @@ -1175,9 +1168,6 @@ These give bounds with the same assymptotes when we take $r\to\infty$ \let\originalbeta\beta \renewcommand\beta{{\originalbeta_{-}}} -\bgroup -% redefine \psi in sage expressions (placeholder for ch_1^\beta(F) -\def\psi{\chern_1^{\beta}(F)} \begin{align} d &>& \frac{1}{2}\beta^2 r @@ -1201,7 +1191,6 @@ These give bounds with the same assymptotes when we take $r\to\infty$ &\qquad\text{when\:} r > R \label{eqn:bgmlv3_d_bound_betamin} \end{align} -\egroup \begin{sagesilent} @@ -1340,9 +1329,6 @@ from plots_and_expressions import main_theorem1 with $\chern_1^\beta = q$ are bounded above by the following expression. - \bgroup - \def\psi{\chern_1^{\beta}(F)} - \renewcommand\Omega{{\lcm(m,2n^2)}} \begin{align*} \min \left( @@ -1350,7 +1336,6 @@ from plots_and_expressions import main_theorem1 \sage{main_theorem1.r_upper_bound2} \right) \end{align*} - \egroup Taking the maximum of this expression over $q \in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$ @@ -1376,32 +1361,20 @@ considering equations \ref{eqn:bgmlv3_d_bound_betamin}, \ref{eqn:radiuscond_d_bound_betamin}. -\bgroup - -\let\originalepsilon\epsilon -\renewcommand\epsilon{{\originalepsilon_{v}}} - \begin{sagesilent} from plots_and_expressions import \ -assymptote_gap_condition1, assymptote_gap_condition2, kappa +assymptote_gap_condition1, assymptote_gap_condition2, k \end{sagesilent} -\bgroup -\def\psi{\chern_1^{\beta}(F)} -\renewcommand\Omega{{\lcm(m,2n^2)}} \begin{align} - &\sage{assymptote_gap_condition1.subs(kappa==1)} \\ - &\sage{assymptote_gap_condition2.subs(kappa==1)} + &\sage{assymptote_gap_condition1.subs(k==1)} \\ + &\sage{assymptote_gap_condition2.subs(k==1)} \end{align} -\egroup \noindent This is equivalent to: -\bgroup -\renewcommand\Omega{{\lcm(m,2n^2)}} -\def\psi{\chern_1^{\beta}(F)} \begin{equation} \label{eqn:thm-bound-for-r-impossible-cond-for-r} r \leq @@ -1414,15 +1387,12 @@ This is equivalent to: } \right) \end{equation} -\egroup - -\egroup % end scope where epsilon redefined \end{proof} \begin{sagesilent} -from plots_and_expressions import q_sol, Delta, psi +from plots_and_expressions import q_sol, bgmlv_v, psi \end{sagesilent} \begin{corollary}[Bound on $r$ \#2] @@ -1433,21 +1403,12 @@ from plots_and_expressions import q_sol, Delta, psi which are solutions to problem \ref{problem:problem-statement-2}, are bounded above by the following expression. - \bgroup - \let\originalDelta\Delta - \renewcommand\Delta{{\originalDelta(v)}} - \renewcommand\Omega{{\lcm(m,2n^2)}} \begin{equation*} \sage{main_theorem1.corollary_r_bound} \end{equation*} - \egroup \end{corollary} \begin{proof} -\bgroup -\renewcommand\Omega{{\lcm(m,2n^2)}} -\def\psi{\chern_1^{\beta}(F)} -\let\originalDelta\Delta The ranks of the pseudo-semistabilizers for $v$ are bounded above by the maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem \ref{thm:rmax_with_uniform_eps}. @@ -1474,7 +1435,6 @@ And evaluating $f_1$ at this $q$-value gives: \end{equation*} Finally, noting that $\originalDelta(v)=\psi^2\ell^2$, we get the bound as stated in the corollary. -\egroup \end{proof} @@ -1666,10 +1626,6 @@ from plots_and_expressions import main_theorem2 $\chern_1^\beta(u) = q = \frac{b_q}{n}$ are bounded above by the following expression: - \bgroup - \def\kappa{k_{v,q}} - \def\psi{\chern_1^{\beta}(F)} - \renewcommand\Omega{{\lcm(m,2n^2)}} \begin{align*} \min \left( @@ -1677,7 +1633,6 @@ from plots_and_expressions import main_theorem2 \sage{main_theorem2.r_upper_bound2} \right) \end{align*} - \egroup Where $k_{v,q}$ is defined as in definition/lemma \ref{lemdfn:epsilon_q}, and $R = \chern_0(v)$ @@ -1702,9 +1657,6 @@ from plots_and_expressions import main_theorem2_corollary $\chern_1^\beta(u) = q = \frac{b_q}{n}$ are bounded above by the following expression: - \bgroup - \def\kappa{k_{v,q}} - \def\psi{\chern_1^{\beta}(F)} \begin{align*} \min \left( @@ -1712,7 +1664,6 @@ from plots_and_expressions import main_theorem2_corollary \sage{main_theorem2_corollary.r_upper_bound2} \right) \end{align*} - \egroup Where $R = \chern_0(v)$ and $k_{v,q}$ is the least $k\in\ZZ_{>0}$ satisfying \begin{equation*}