diff --git a/examples.ipynb b/examples.ipynb
index f14242b98a437f4c8faaa3096d3934355d58d4d9..ec5739e12506f13b4a17b6bcc43900ecd574d466 100644
--- a/examples.ipynb
+++ b/examples.ipynb
@@ -69,7 +69,7 @@
        "$\\displaystyle \\text{Chern Character:} \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = 3 \\\\ \\mathrm{ch}_{1} = 2 \\ell^{1} \\\\ \\mathrm{ch}_{2} = -2 \\ell^{2} \\end{array}$"
       ],
       "text/plain": [
-       "<pseudowalls.chern_character.Chern_Char object at 0x7ff85e32f1f0>"
+       "<pseudowalls.chern_character.Chern_Char object at 0x7f1718d278e0>"
       ]
      },
      "execution_count": 2,
@@ -100,7 +100,7 @@
        "$\\displaystyle \\text{Chern Character:} \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = 29 \\\\ \\mathrm{ch}_{1} = 13 \\ell^{1} \\\\ \\mathrm{ch}_{2} = -\\frac{3}{2} \\ell^{2} \\end{array}$"
       ],
       "text/plain": [
-       "<pseudowalls.chern_character.Chern_Char object at 0x7ff8548d70d0>"
+       "<pseudowalls.chern_character.Chern_Char object at 0x7f1718d263b0>"
       ]
      },
      "execution_count": 3,
@@ -263,13 +263,13 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\frac{1}{2} \\, R + \\frac{\\Delta \\Omega}{8 \\, m} + \\frac{R^{2} m}{2 \\, \\Delta \\Omega}\\)</html>"
+       "<html>\\(\\displaystyle \\frac{1}{2} \\, R + \\frac{{\\Delta(v)} {\\operatorname{lcm}(m,2n^2)}}{8 \\, m} + \\frac{R^{2} m}{2 \\, {\\Delta(v)} {\\operatorname{lcm}(m,2n^2)}}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\frac{1}{2} \\, R + \\frac{\\Delta \\Omega}{8 \\, m} + \\frac{R^{2} m}{2 \\, \\Delta \\Omega}$"
+       "$\\displaystyle \\frac{1}{2} \\, R + \\frac{{\\Delta(v)} {\\operatorname{lcm}(m,2n^2)}}{8 \\, m} + \\frac{R^{2} m}{2 \\, {\\Delta(v)} {\\operatorname{lcm}(m,2n^2)}}$"
       ],
       "text/plain": [
-       "1/2*R + 1/8*Delta*Omega/m + 1/2*R^2*m/(Delta*Omega)"
+       "1/2*R + 1/8*bgmlv_v*lcm_m_2n2/m + 1/2*R^2*m/(bgmlv_v*lcm_m_2n2)"
       ]
      },
      "execution_count": 8,
@@ -278,7 +278,7 @@
     }
    ],
    "source": [
-    "from plots_and_expressions import main_theorem1, Delta, m, R, n, lcm_m_2n2\n",
+    "from plots_and_expressions import main_theorem1, bgmlv_v, m, R, n, lcm_m_2n2\n",
     "# Delta: symbol for Δ(v)\n",
     "# n: symbol for denominator for β_(v)\n",
     "# R : symbol for chern_0(v)\n",
@@ -296,7 +296,7 @@
     "def corrolary_bound(example):\n",
     "    return (\n",
     "        main_theorem1.corollary_r_bound\n",
-    "        .subs(Delta==example.bgmlv)\n",
+    "        .subs(bgmlv_v==example.bgmlv)\n",
     "        .subs(m==example.m)\n",
     "        .subs(R==example.chern.ch[0])\n",
     "        .subs(n==example.n)\n",
diff --git a/main.tex b/main.tex
index 2c14f5599f73535ed7e5dedcbded9a6b1a3494b4..facd95285d121c0c9efb85d7f0623a08439bf6e1 100644
--- a/main.tex
+++ b/main.tex
@@ -511,8 +511,6 @@ Let $P$ be a point on $\Theta_v^-$.
 
 \noindent
 The following conditions:
-\bgroup
-\renewcommand{\labelenumi}{\alph{enumi}.}
 \begin{enumerate}
 \item $u$ is a pseudo-semistabilizer of $v$ at some point on $\Theta_v^-$ above
 	$P$
@@ -520,7 +518,6 @@ The following conditions:
 	$\nu_{\alpha,\beta}(u)<\nu_{\alpha,\beta}(v)$ outside the pseudo-wall, and
 	$\nu_{\alpha,\beta}(u)>\nu_{\alpha,\beta}(v)$ inside.
 \end{enumerate}
-\egroup
 
 \noindent
 are equivalent to the following more numerical conditions:
@@ -1121,9 +1118,6 @@ $d$ yields:
 from plots_and_expressions import bgmlv3_d_upperbound_terms
 \end{sagesilent}
 
-\bgroup
-\def\psi{\chern_1^{\beta}(v)}
-\def\phi{\chern_2^{\beta}(v)}
 \begin{equation*}
 	\label{eqn-bgmlv3_d_upperbound}
 	d \leq
@@ -1133,7 +1127,6 @@ from plots_and_expressions import bgmlv3_d_upperbound_terms
 	\qquad
 	\text{where }r>R
 \end{equation*}
-\egroup
 
 
 \noindent
@@ -1175,9 +1168,6 @@ These give bounds with the same assymptotes when we take $r\to\infty$
 \let\originalbeta\beta
 \renewcommand\beta{{\originalbeta_{-}}}
 
-\bgroup
-% redefine \psi in sage expressions (placeholder for ch_1^\beta(F)
-\def\psi{\chern_1^{\beta}(F)}
 \begin{align}
 	d &>&
 	\frac{1}{2}\beta^2 r
@@ -1201,7 +1191,6 @@ These give bounds with the same assymptotes when we take $r\to\infty$
 	 &\qquad\text{when\:} r > R
 	 \label{eqn:bgmlv3_d_bound_betamin}
 \end{align}
-\egroup
 
 
 \begin{sagesilent}
@@ -1340,9 +1329,6 @@ from plots_and_expressions import main_theorem1
 	with $\chern_1^\beta = q$
 	are bounded above by the following expression.
 
-	\bgroup
-	\def\psi{\chern_1^{\beta}(F)}
-	\renewcommand\Omega{{\lcm(m,2n^2)}}
 	\begin{align*}
 		\min
 		\left(
@@ -1350,7 +1336,6 @@ from plots_and_expressions import main_theorem1
 			\sage{main_theorem1.r_upper_bound2}
 		\right)
 	\end{align*}
-	\egroup
 
 	Taking the maximum of this expression over
 	$q \in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$
@@ -1376,32 +1361,20 @@ considering equations
 \ref{eqn:bgmlv3_d_bound_betamin},
 \ref{eqn:radiuscond_d_bound_betamin}.
 
-\bgroup
-
-\let\originalepsilon\epsilon
-\renewcommand\epsilon{{\originalepsilon_{v}}}
-
 \begin{sagesilent}
 from plots_and_expressions import \
-assymptote_gap_condition1, assymptote_gap_condition2, kappa
+assymptote_gap_condition1, assymptote_gap_condition2, k
 \end{sagesilent}
 
 
-\bgroup
-\def\psi{\chern_1^{\beta}(F)}
-\renewcommand\Omega{{\lcm(m,2n^2)}}
 \begin{align}
-	&\sage{assymptote_gap_condition1.subs(kappa==1)} \\
-	&\sage{assymptote_gap_condition2.subs(kappa==1)}
+	&\sage{assymptote_gap_condition1.subs(k==1)} \\
+	&\sage{assymptote_gap_condition2.subs(k==1)}
 \end{align}
-\egroup
 
 \noindent
 This is equivalent to:
 
-\bgroup
-\renewcommand\Omega{{\lcm(m,2n^2)}}
-\def\psi{\chern_1^{\beta}(F)}
 \begin{equation}
 	\label{eqn:thm-bound-for-r-impossible-cond-for-r}
 	r \leq
@@ -1414,15 +1387,12 @@ This is equivalent to:
 		}
 	\right)
 \end{equation}
-\egroup
-
-\egroup % end scope where epsilon redefined
 
 \end{proof}
 
 
 \begin{sagesilent}
-from plots_and_expressions import q_sol, Delta, psi
+from plots_and_expressions import q_sol, bgmlv_v, psi
 \end{sagesilent}
 
 \begin{corollary}[Bound on $r$ \#2]
@@ -1433,21 +1403,12 @@ from plots_and_expressions import q_sol, Delta, psi
 	which are solutions to problem \ref{problem:problem-statement-2},
 	are bounded above by the following expression.
 
-	\bgroup
-	\let\originalDelta\Delta
-	\renewcommand\Delta{{\originalDelta(v)}}
-	\renewcommand\Omega{{\lcm(m,2n^2)}}
 	\begin{equation*}
 		\sage{main_theorem1.corollary_r_bound}
 	\end{equation*}
-	\egroup
 \end{corollary}
 
 \begin{proof}
-\bgroup
-\renewcommand\Omega{{\lcm(m,2n^2)}}
-\def\psi{\chern_1^{\beta}(F)}
-\let\originalDelta\Delta
 The ranks of the pseudo-semistabilizers for $v$ are bounded above by the
 maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem
 \ref{thm:rmax_with_uniform_eps}.
@@ -1474,7 +1435,6 @@ And evaluating $f_1$ at this $q$-value gives:
 \end{equation*}
 Finally, noting that $\originalDelta(v)=\psi^2\ell^2$, we get the bound as
 stated in the corollary.
-\egroup
 
 \end{proof}
 
@@ -1666,10 +1626,6 @@ from plots_and_expressions import main_theorem2
 	$\chern_1^\beta(u) = q = \frac{b_q}{n}$
 	are bounded above by the following expression:
 
-	\bgroup
-	\def\kappa{k_{v,q}}
-	\def\psi{\chern_1^{\beta}(F)}
-	\renewcommand\Omega{{\lcm(m,2n^2)}}
 	\begin{align*}
 		\min
 		\left(
@@ -1677,7 +1633,6 @@ from plots_and_expressions import main_theorem2
 			\sage{main_theorem2.r_upper_bound2}
 		\right)
 	\end{align*}
-	\egroup
 	Where $k_{v,q}$ is defined as in definition/lemma \ref{lemdfn:epsilon_q},
 	and $R = \chern_0(v)$
 
@@ -1702,9 +1657,6 @@ from plots_and_expressions import main_theorem2_corollary
 	$\chern_1^\beta(u) = q = \frac{b_q}{n}$
 	are bounded above by the following expression:
 
-	\bgroup
-	\def\kappa{k_{v,q}}
-	\def\psi{\chern_1^{\beta}(F)}
 	\begin{align*}
 		\min
 		\left(
@@ -1712,7 +1664,6 @@ from plots_and_expressions import main_theorem2_corollary
 			\sage{main_theorem2_corollary.r_upper_bound2}
 		\right)
 	\end{align*}
-	\egroup
 	Where $R = \chern_0(v)$ and $k_{v,q}$ is the least
 	$k\in\ZZ_{>0}$ satisfying
 	\begin{equation*}