diff --git a/main.tex b/main.tex index 18b33dee24be0a3f209470d7b186b89d57b4ea7a..9165a51a3907c3a61c64dd77967c9dce4694ec35 100644 --- a/main.tex +++ b/main.tex @@ -571,17 +571,19 @@ bgmlv3_d_upperbound_exp_term = ( # Verify the simplified forms of the terms that will be mentioned in text -var("chbv",domain="real") # symbol to represent ch_1^\beta(v) +var("chb1v chb2v",domain="real") # symbol to represent ch_1^\beta(v) +var("psi phi", domain="real") # symbol to represent ch_1^\beta(v) and +# ch_2^\beta(v) assert bgmlv3_d_upperbound_const_term == ( ( # keep hold of this alternative expression: bgmlv3_d_upperbound_const_term_alt := ( - chbv + phi + beta*q ) ) - .subs(chbv == v.twist(beta).ch[2]) # subs real val of ch_1^\beta(v) + .subs(phi == v.twist(beta).ch[2]) # subs real val of ch_1^\beta(v) .expand() ) @@ -590,13 +592,25 @@ assert bgmlv3_d_upperbound_exp_term == ( # Keep hold of this alternative expression: bgmlv3_d_upperbound_exp_term_alt := ( - R*chbv + R*phi + (C - q)^2/2 + R*beta*q - D*R )/(r-R) ) - .subs(chbv == v.twist(beta).ch[2]) # subs real val of ch_1^\beta(v) + .subs(phi == v.twist(beta).ch[2]) # subs real val of ch_1^\beta(v) + .expand() +) + +assert bgmlv3_d_upperbound_exp_term == ( + ( + # Keep hold of this alternative expression: + bgmlv3_d_upperbound_exp_term_alt2 := + ( + (psi - q)^2/2/(r-R) + ) + ) + .subs(psi == v.twist(beta).ch[1]) # subs real val of ch_1^\beta(v) .expand() ) \end{sagesilent} @@ -611,7 +625,10 @@ The linear term in $r$ is $\sage{bgmlv3_d_upperbound_linear_term}$. Finally, there's an hyperbolic term in $r$ which tends to 0 as $r \to \infty$, and can be written: -$\frac{R\chern^{\beta}_2(F) + (C-q)^2/2 + R\beta q - DR}{r-R}$. +\bgroup +\def\psi{\chern_1^{\beta}(F)} +$\sage{bgmlv3_d_upperbound_exp_term_alt2}$. +\egroup In the case $\beta = \beta_{-}$ (or $\beta_{+}$) we have $\chern^{\beta}_2(F) = 0$, so some of these expressions simplify, and in particular, the constant and