From 16c6732abde238900b4f4146a402b6ceb0b7b7a2 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Tue, 18 Jul 2023 15:27:47 +0100 Subject: [PATCH] Tweak := to be more centered --- main.tex | 51 ++++++++++++++++++++++++++------------------------- 1 file changed, 26 insertions(+), 25 deletions(-) diff --git a/main.tex b/main.tex index 73f2fc5..b4bf7a9 100644 --- a/main.tex +++ b/main.tex @@ -11,6 +11,7 @@ \usepackage{minted} \usepackage{subcaption} \usepackage{cancel} +\usepackage{mathtools} \usepackage[]{breqn} \usepackage[ backend=biber, @@ -538,7 +539,7 @@ normal one. So $0 \leq \Delta(E)$ yields: \begin{theorem}[Bound on $r$ - Benjamin Schmidt] \label{thm:loose-bound-on-r} -Given a Chern character $v$ such that $\beta_-:=\beta_{-}(v)\in\QQ$, the rank $r$ of +Given a Chern character $v$ such that $\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of any semistabilizer $E$ of some $F \in \firsttilt{\beta_-}$ with $\chern(F)=v$ is bounded above by: @@ -748,8 +749,8 @@ was implicitly happening before). First, let us fix a Chern character for $F$, and some semistabilizer $E$: \begin{align} - v &:= \chern(F) = (R,C\ell,D\ell^2) \\ - u &:= \chern(E) = (r,c\ell,d\ell^2) + v &\coloneqq \chern(F) = (R,C\ell,D\ell^2) \\ + u &\coloneqq \chern(E) = (r,c\ell,d\ell^2) \end{align} \begin{sagesilent} @@ -783,7 +784,7 @@ c_in_terms_of_q = c_lower_bound + q \begin{equation} \label{eqn-cintermsofm} c=\chern_1(u) = \sage{c_in_terms_of_q} - \qquad 0 \leq q := \chern_1^{\beta}(u) \leq \chern_1^{\beta}(v) + \qquad 0 \leq q \coloneqq \chern_1^{\beta}(u) \leq \chern_1^{\beta}(v) \end{equation} Furthermore, $\chern_1 \in \ZZ$ so we only need to consider @@ -851,7 +852,7 @@ in the context of our problem. Finally, $r>0$ as per the statement of the problem, so the right-hand-side of equation \ref{eqn:bgmlv1-pt1} is always greater than, or equal, to zero. -And so, when $P:=(\beta_{-},0)$, this condition $\Delta(u,v-u) \geq 0$ is +And so, when $P\coloneqq(\beta_{-},0)$, this condition $\Delta(u,v-u) \geq 0$ is always satisfied when $2r \geq R$, provided that the other conditions of the problem statement (\ref{subsect:problem-statement}) hold. @@ -1334,20 +1335,20 @@ def plot_d_bound( \label{fig:d_bounds_xmpl_max_q} \end{subfigure} \caption{ - Bounds on $d:=\chern_2(E)$ in terms of $r:=\chern_0(E)$ for fixed, extreme, - values of $q:=\chern_1^{\beta}(E)$. + Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq\chern_0(E)$ for fixed, extreme, + values of $q\coloneqq\chern_1^{\beta}(E)$. Where $\chern(F) = (3,2,-2)$. } \label{fig:d_bounds_xmpl_extrm_q} \end{figure} -Recalling that $q := \chern^{\beta}_1(E) \in [0, \chern^{\beta}_1(F)]$, +Recalling that $q \coloneqq \chern^{\beta}_1(E) \in [0, \chern^{\beta}_1(F)]$, it is worth noting that the extreme values of $q$ in this range lead to the tightest bounds on $d$, as illustrated in figure (\ref{fig:d_bounds_xmpl_extrm_q}). In fact, in each case, one of the weak upper bounds coincides with one of the weak lower bounds, (implying no possible destabilizers $E$ with -$\chern_0(E)=:r>R:=\chern_0(F)$ for these $q$-values). +$\chern_0(E)=\vcentcolon r>R\coloneqq\chern_0(F)$ for these $q$-values). This indeed happens in general since the right hand sides of (eqn \ref{eqn:bgmlv2_d_bound_betamin}) and (eqn \ref{eqn:positive_rad_d_bound_betamin}) match when $q=0$. @@ -1356,7 +1357,7 @@ In the other case, $q=\chern^{\beta}_1(F)$, it is the right hand sides of (eqn \ref{eqn:positive_rad_d_bound_betamin}) which match. -The more generic case, when $0 < q:=\chern_1^{\beta}(E) < \chern_1^{\beta}(F)$ +The more generic case, when $0 < q\coloneqq\chern_1^{\beta}(E) < \chern_1^{\beta}(F)$ for the bounds on $d$ in terms of $r$ is illustrated in figure (\ref{fig:d_bounds_xmpl_gnrc_q}). The question of whether there are pseudo-destabilizers of arbitrarily large @@ -1379,8 +1380,8 @@ Some of the details around the associated numerics are explored next. width=\linewidth ]{plot_d_bound(v_example, 2, ymax=4, ymin=-2, aspect_ratio=1)} \caption{ - Bounds on $d:=\chern_2(E)$ in terms of $r:=\chern_0(E)$ for a fixed - value $\chern_1^{\beta}(F)/2$ of $q:=\chern_1^{\beta}(E)$. + Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq \chern_0(E)$ for a fixed + value $\chern_1^{\beta}(F)/2$ of $q\coloneqq\chern_1^{\beta}(E)$. Where $\chern(F) = (3,2,-2)$. } \label{fig:d_bounds_xmpl_gnrc_q} @@ -1399,7 +1400,7 @@ $(r,c,d)$ that satisfy all inequalities to give a pseudowall. The strategy here is similar to what was shown in (sect \ref{sec:twisted-chern}). -One specialization here is to use that $\ell:=c_1(H)$ generates $NS(X)$, so that +One specialization here is to use that $\ell\coloneqq c_1(H)$ generates $NS(X)$, so that in fact, any Chern character can be written as $\left(r,c\ell,\frac{e}{2}\ell^2\right)$ for $r,c,e\in\ZZ$. % ref to Schmidt? @@ -1415,7 +1416,7 @@ q_value_expr = (q == b_q/n) Suppose $\beta = \frac{\aa}{n}$ for some coprime $n \in \NN,\aa \in \ZZ$. Then fix a value of $q$: \begin{equation} - q:=\chern_1^{\beta}(E) + q\coloneqq \chern_1^{\beta}(E) =\frac{\bb}{n} \in \frac{1}{n} \ZZ @@ -1530,7 +1531,7 @@ bounds_too_tight_condition2 = ( \sage{bgmlv2_d_upperbound_exp_term}, \sage{bgmlv3_d_upperbound_exp_term_alt2} \right) - \geq \epsilon := \frac{1}{2n^2} + \geq \epsilon \coloneqq \frac{1}{2n^2} \end{equation} \egroup @@ -1576,7 +1577,7 @@ r_upper_bound_all_q = ( \begin{corrolary}[Bound on $r$ \#2] \label{cor:direct_rmax_with_uniform_eps} Let $v$ be a fixed Chern character and - $R:=\chern_0(v) \leq n^2\Delta(v)$. + $R\coloneqq\chern_0(v) \leq n^2\Delta(v)$. Then the ranks of the pseudo-semistabilizers for $v$ are bounded above by the following expression. @@ -1599,8 +1600,8 @@ maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem \ref{thm:rmax_with_uniform_eps}. Noticing that the expression is a maximum of two quadratic functions in $q$: \begin{equation*} - f_1(q):=\sage{r_upper_bound1.subs(kappa==1).rhs()} \qquad - f_2(q):=\sage{r_upper_bound2.subs(kappa==1).rhs()} + f_1(q)\coloneqq\sage{r_upper_bound1.subs(kappa==1).rhs()} \qquad + f_2(q)\coloneqq\sage{r_upper_bound2.subs(kappa==1).rhs()} \end{equation*} These have their minimums at $q=0$ and $q=\chern_1^{\beta}(F)$ respectively. It suffices to find their intersection in @@ -1687,7 +1688,7 @@ which would then determine $c$, and then find the corresponding possible values for $d$. -Firstly, we only need to consider $r$-values for which $c:=\chern_1(E)$ is +Firstly, we only need to consider $r$-values for which $c\coloneqq\chern_1(E)$ is integral: \begin{equation} @@ -1742,7 +1743,7 @@ proof of theorem \ref{thm:rmax_with_uniform_eps}: Where $\epsilon_{v,q}$ is defined as follows: \begin{equation*} - \epsilon_{v,q} := + \epsilon_{v,q} \coloneqq \frac{k_{q}}{2n^2} \end{equation*} with $k_{v,q}$ being the least $k\in\ZZ_{>0}$ satisfying $k \equiv -\aa\bb \mod n$ @@ -1800,7 +1801,7 @@ $\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$. \begin{theorem}[Bound on $r$ \#3] \label{thm:rmax_with_eps1} - Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta:=\beta(v)$ + Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$ rational and expressed in lowest terms. Then the ranks $r$ of the pseudo-semistabilizers $u$ for $v$ with $\chern_1^\beta(u) = q = \frac{b_q}{n}$ @@ -1837,8 +1838,8 @@ take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that $\beta=\sage{recurring.b}$, giving $n=\sage{recurring.b.denominator()}$ and $\chern_1^{\sage{recurring.b}}(F) = \sage{recurring.twisted.ch[1]}$. %% TODO transcode notebook code -The (non-exclusive) upper bounds for $r:=\chern_0(u)$ of a tilt semistabilizer $u$ of $v$ -in terms of the possible values for $q:=\chern_1^{\beta}(u)$ are as follows: +The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabilizer $u$ of $v$ +in terms of the possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows: \begin{sagesilent} import numpy as np @@ -1923,8 +1924,8 @@ possible values for $k_{v,q}$, in dfn/lemma \ref{lemdfn:epsilon_q}. This allows for a larger possible difference between the bounds given by theorems \ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound from the second being up to $\sage{n}$ smaller, for any given $q$ value. -The (non-exclusive) upper bounds for $r:=\chern_0(u)$ of a tilt semistabilizer $u$ of $v$ -in terms of the first few smallest possible values for $q:=\chern_1^{\beta}(u)$ are as follows: +The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabilizer $u$ of $v$ +in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows: \begin{sagesilent} qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant) -- GitLab