diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex
index a1ff9fdc3faf21e4efaf2f71c122c66c351ca0f1..a45a5f17302cc21d95bc58b6bc280d3422f83da7 100644
--- a/tex/bounds-on-semistabilisers.tex
+++ b/tex/bounds-on-semistabilisers.tex
@@ -4,6 +4,7 @@
 The proof for the following Theorem \ref{thm:loose-bound-on-r} was hinted at in
 \cite{SchmidtBenjamin2020Bsot}, but the value appears explicitly in
 \cite{SchmidtGithub2020} as shown in the following Listing
+% texlab: ignore
 \ref{fig:code:schmidt-bound}.
 The latter citation is a SageMath \cite{sagemath}
 library for computing certain quantities related to Bridgeland stabilities on
@@ -18,130 +19,130 @@ pseudo-semistabilisers for tilt stability.
 ]{schmidt-snippet}
 
 \begin{theorem}[Bound on $r$ - Benjamin Schmidt]
-\label{thm:loose-bound-on-r}
-Let $X$ be a smooth projective Picard rank 1 surface with choice of ample line
-bundle $L$ such that $\ell\coloneqq c_1(L)$ generates $\neronseveri(X)$ and
-take $m\coloneqq \ell^2$.
-
-Given a Chern character $v$ with $\Delta(v) \geq 0$ and positive rank (or
-$\chern_0(v) = 0$ and $\chern_1(v) > 0$)
-such that
-$\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of
-any solution $u$ of Problem \ref{problem:problem-statement-2} is
-bounded above by:
-
-\begin{equation*}
-	r \leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)}
-\end{equation*}
+	\label{thm:loose-bound-on-r}
+	Let $X$ be a smooth projective Picard rank 1 surface with choice of ample line
+	bundle $L$ such that $\ell\coloneqq c_1(L)$ generates $\neronseveri(X)$ and
+	take $m\coloneqq \ell^2$.
+
+	Given a Chern character $v$ with $\Delta(v) \geq 0$ and positive rank (or
+	$\chern_0(v) = 0$ and $\chern_1(v) > 0$)
+	such that
+	$\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of
+	any solution $u$ of Problem \ref{problem:problem-statement-2} is
+	bounded above by:
+
+	\begin{equation*}
+		r \leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)}
+	\end{equation*}
 \end{theorem}
 
 \begin{proof}
-The Bogomolov form applied to the twisted Chern character is the same as the
-untwisted one.
-
-\noindent
-\begin{minipage}{0.57\linewidth}
-	So $0 \leq \Delta(u)$ (condition 2 from Corollary \ref{cor:num_test_prob2})
-	yields:
-	\begin{equation}
-		\label{eqn-bgmlv-on-E}
-		2\chern_0(u) \chern^{\beta_{-}}_2(u) \leq \chern^{\beta_{-}}_1(u)^2
-	\end{equation}
+	The Bogomolov form applied to the twisted Chern character is the same as the
+	untwisted one.
 
 	\noindent
-	Furthermore,
-	condition 5 from Corollary \ref{cor:num_test_prob2}
-	gives:
-	\begin{equation}
-		\label{eqn-tilt-cat-cond}
-		0 < \chern^{\beta_{-}}_1(u) < \chern^{\beta_{-}}_1(v)
-	\end{equation}
-
+	\begin{minipage}{0.57\linewidth}
+		So $0 \leq \Delta(u)$ (condition 2 from Corollary \ref{cor:num_test_prob2})
+		yields:
+		\begin{equation}
+			\label{eqn-bgmlv-on-E}
+			2\chern_0(u) \chern^{\beta_{-}}_2(u) \leq \chern^{\beta_{-}}_1(u)^2
+		\end{equation}
+
+		\noindent
+		Furthermore,
+		condition 5 from Corollary \ref{cor:num_test_prob2}
+		gives:
+		\begin{equation}
+			\label{eqn-tilt-cat-cond}
+			0 < \chern^{\beta_{-}}_1(u) < \chern^{\beta_{-}}_1(v)
+		\end{equation}
+
+		\noindent
+		The induced restrictions on possible pairs $\chern^{\beta_-}_0(u)$ and
+		$\chern^{\beta_-}_2(u)$,
+		as well as conditions 1 and 6 from Corollary \ref{cor:num_test_prob2}
+		are illustrated here on the right, with the invalid regions shaded.
+	\end{minipage}
+	\hfill
+	\begin{minipage}{0.39\linewidth}
+		%\label{prop:proof:fig:pseudowall-pos}
+		\begin{center}
+			\def\svgwidth{\linewidth}
+			{\small
+				\subimport{../figures/}{schmidt-arg-diag.pdf_tex}
+			}
+		\end{center}
+		\vspace{3pt}
+	\end{minipage}
+
+	Currently, the unshaded region in the diagram above, corresponding to possible
+	values for $\chern_0(u)$ and $\chern^{\beta_{-}}_2(u)$ that satisfy the
+	currently considered restrictions, is unbounded.
+	This is where the rationality of $\beta_{-}$ comes in.
+	If $\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$,
+	then $\chern^{\beta_-}_2(u) \in \frac{1}{\lcm(m,2n^2)}\ZZ$.
+	In particular, since $\chern_2^{\beta_-}(u) > 0$ we must also have
+	$\chern^{\beta_-}_2(u) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a
+	bound for the rank of $u$:
+
+	\begin{align}
+		\chern_0(u)
+		 & \leq \frac{\chern^{\beta_-}_1(u)^2}{2\chern^{\beta_{-}}_2(u)} \nonumber \\
+		 & \leq \frac{\lcm(m,2n^2) \chern^{\beta_-}_1(u)^2}{2} \nonumber           \\
+		 & = \frac{mn^2 \chern^{\beta_-}_1(u)^2}{\gcd(m,2n^2)}
+		\label{proof:first-bound-on-r}
+	\end{align}
 	\noindent
-	The induced restrictions on possible pairs $\chern^{\beta_-}_0(u)$ and
-	$\chern^{\beta_-}_2(u)$,
-	as well as conditions 1 and 6 from Corollary \ref{cor:num_test_prob2}
-	are illustrated here on the right, with the invalid regions shaded.
-\end{minipage}
-\hfill
-\begin{minipage}{0.39\linewidth}
-	%\label{prop:proof:fig:pseudowall-pos}
-	\begin{center}
-	\def\svgwidth{\linewidth}
-	{\small
-	\subimport{../figures/}{schmidt-arg-diag.pdf_tex}
-	}
-	\end{center}
-	\vspace{3pt}
-\end{minipage}
-
-Currently, the unshaded region in the diagram above, corresponding to possible
-values for $\chern_0(u)$ and $\chern^{\beta_{-}}_2(u)$ that satisfy the
-currently considered restrictions, is unbounded.
-This is where the rationality of $\beta_{-}$ comes in.
-If $\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$,
-then $\chern^{\beta_-}_2(u) \in \frac{1}{\lcm(m,2n^2)}\ZZ$.
-In particular, since $\chern_2^{\beta_-}(u) > 0$ we must also have
-$\chern^{\beta_-}_2(u) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a
-bound for the rank of $u$:
-
-\begin{align}
-	\chern_0(u)
-	&\leq \frac{\chern^{\beta_-}_1(u)^2}{2\chern^{\beta_{-}}_2(u)} \nonumber \\
-	&\leq \frac{\lcm(m,2n^2) \chern^{\beta_-}_1(u)^2}{2} \nonumber \\
-	&= \frac{mn^2 \chern^{\beta_-}_1(u)^2}{\gcd(m,2n^2)}
-	\label{proof:first-bound-on-r}
-\end{align}
-\noindent
-Which we can then immediately bound using Equation \ref{eqn-tilt-cat-cond}.
-Alternatively, given that
-$\chern_1^{\beta_{-}}(u)$, $\chern_1^{\beta_{-}}(v)\in\frac{1}{n}\ZZ$,
-we can tighten this bound on $\chern_1^{\beta_{-}}(u)$ given by that equation to:
-\[
-	n\chern^{\beta_{-}}_1(u) \leq n\chern^{\beta_{-}}_1(v) - 1
-\]
-allowing us to bound the expression in Equation \ref{proof:first-bound-on-r} to
-the following:
-\[
-	\chern_0(u)
-	\leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)}
-\]
+	Which we can then immediately bound using Equation \ref{eqn-tilt-cat-cond}.
+	Alternatively, given that
+	$\chern_1^{\beta_{-}}(u)$, $\chern_1^{\beta_{-}}(v)\in\frac{1}{n}\ZZ$,
+	we can tighten this bound on $\chern_1^{\beta_{-}}(u)$ given by that equation to:
+	\[
+		n\chern^{\beta_{-}}_1(u) \leq n\chern^{\beta_{-}}_1(v) - 1
+	\]
+	allowing us to bound the expression in Equation \ref{proof:first-bound-on-r} to
+	the following:
+	\[
+		\chern_0(u)
+		\leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)}
+	\]
 
 \end{proof}
 
 \begin{sagesilent}
-from examples import recurring
+	from examples import recurring
 \end{sagesilent}
 
 \begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
-\label{exmpl:recurring-first}
-Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
-that $m=1$, $\beta_-=\sage{recurring.betaminus}$,
-giving $n=\sage{recurring.n}$ and
-$\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
-
-Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
-tilt semistabilisers for $v$ are bounded above by $\sage{recurring.loose_bound}$.
-However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum
-rank that appears turns out to be 25. This will be a recurring example to
-illustrate the performance of later theorems about rank bounds
+	\label{exmpl:recurring-first}
+	Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
+	that $m=1$, $\beta_-=\sage{recurring.betaminus}$,
+	giving $n=\sage{recurring.n}$ and
+	$\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
+
+	Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
+	tilt semistabilisers for $v$ are bounded above by $\sage{recurring.loose_bound}$.
+	However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum
+	rank that appears turns out to be 25. This will be a recurring example to
+	illustrate the performance of later theorems about rank bounds
 \end{example}
 
 \begin{sagesilent}
-from examples import extravagant
+	from examples import extravagant
 \end{sagesilent}
 
 \begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
-\label{exmpl:extravagant-first}
-Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
-that $m=1$, $\beta_-=\sage{extravagant.betaminus}$,
-giving $n=\sage{extravagant.n}$ and
-$\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
-
-Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
-tilt semistabilisers for $v$ are bounded above by $\sage{extravagant.loose_bound}$.
-However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum
-rank that appears turns out to be $\sage{round(extravagant.actual_rmax, 1)}$.
+	\label{exmpl:extravagant-first}
+	Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
+	that $m=1$, $\beta_-=\sage{extravagant.betaminus}$,
+	giving $n=\sage{extravagant.n}$ and
+	$\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
+
+	Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
+	tilt semistabilisers for $v$ are bounded above by $\sage{extravagant.loose_bound}$.
+	However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum
+	rank that appears turns out to be $\sage{round(extravagant.actual_rmax, 1)}$.
 \end{example}
 
 
@@ -166,19 +167,19 @@ and Corollary \ref{cor:num_test_prob2}, in a way which better fits our direction
 of travel.
 
 \begin{lemma}
-\label{lem:fixed-q-semistabs-criterion}
+	\label{lem:fixed-q-semistabs-criterion}
 	Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}),
 	with choice of point $P=(\alpha_0,\beta_0)$ on $\Theta_v^{-}$
-    (or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.).
+	(or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.).
 
 	\noindent
 	If $u$ is a solution to the Problem then $u$ satisfies:
 	\begin{equation}
 		q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right)
 		\label{lem:eqn:cond-for-fixed-q}
-	\qquad
-	\text{and}
-	\qquad
+		\qquad
+		\text{and}
+		\qquad
 		\chern_0(u) > \frac{q}{\mu(v) - \beta_0}.
 		\nonumber
 	\end{equation}
@@ -189,11 +190,11 @@ of travel.
 	satisfying the above Equations \ref{lem:eqn:cond-for-fixed-q}
 	is a solution to the Problem if and only if the following are satisfied:
 	\begin{multicols}{3}
-	\begin{itemize}
-		\item $\Delta(u) \geq 0$
-		\item $\Delta(v-u) \geq 0$
-		\item $\chern^{\alpha_0,\beta_0}_2(u) \geq 0$
-	\end{itemize}
+		\begin{itemize}
+			\item $\Delta(u) \geq 0$
+			\item $\Delta(v-u) \geq 0$
+			\item $\chern^{\alpha_0,\beta_0}_2(u) \geq 0$
+		\end{itemize}
 	\end{multicols}
 \end{lemma}
 
@@ -202,23 +203,23 @@ of travel.
 	to the problem are given by $u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$
 	which satisfy six numerical conditions.
 	The first line of Equation \ref{lem:eqn:cond-for-fixed-q} is equivalent to
-    numerical condition 5.
+	numerical condition 5.
 	The second line is a rearrangement of numerical condition 4, assuming $r>0$ which is given by
 	the first numerical condition.
 	Therefore any solution $u$ satisfies Equation \ref{lem:eqn:cond-for-fixed-q}.
 
 	But then Theorems \ref{lem:num_test_prob1} and \ref{cor:num_test_prob2}, also give that
-    $u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ satisfying Equation
-    \ref{lem:eqn:cond-for-fixed-q} is in fact a solution provided the remaining numerical conditions
-    1, 2, 3 and 6 are satisfied.
+	$u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ satisfying Equation
+	\ref{lem:eqn:cond-for-fixed-q} is in fact a solution provided the remaining numerical conditions
+	1, 2, 3 and 6 are satisfied.
 	This is in essence the second part of the Lemma.
 \end{proof}
 
 \begin{corollary}
-\label{cor:rational-beta:fixed-q-semistabs-criterion}
+	\label{cor:rational-beta:fixed-q-semistabs-criterion}
 	Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}),
 	with choice of point $P=(\alpha_0,\beta_0)$ on $\Theta_v^{-}$
-    (or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.),
+	(or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.),
 	and suppose that $\beta_{0}$ is
 	rational, and written $\beta_0=\frac{a_v}{n}$ for
 	some coprime integers $a_v$, $n$ with $n>0$.
@@ -227,27 +228,27 @@ of travel.
 	\begin{align*}
 		\chern^{\beta_0}_1(u)
 		= \frac{b_q}{n},
-    	\qquad
-		a_v r &\equiv -b_q \pmod{n},
+		\qquad
+		a_v r & \equiv -b_q \pmod{n},
 		\quad
 		\text{and}
 		\qquad
 		r > \frac{q}{\mu(v) - \beta_0}
 	\end{align*}
 	\[
-    	\text{for some }
-    	b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\}.
+		\text{for some }
+		b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\}.
 	\]
 	And any $u = (r,c\ell,d\ell^2)$
 	with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$
 	satisfying these equations is a solution to the Problem if and only if, again,
 	the following are satisfied:
 	\begin{multicols}{3}
-	\begin{itemize}
-		\item $\Delta(u) \geq 0$
-		\item $\Delta(v-u) \geq 0$
-		\item $\chern^P_2(u) \geq 0$
-	\end{itemize}
+		\begin{itemize}
+			\item $\Delta(u) \geq 0$
+			\item $\Delta(v-u) \geq 0$
+			\item $\chern^P_2(u) \geq 0$
+		\end{itemize}
 	\end{multicols}
 
 \end{corollary}
@@ -256,24 +257,24 @@ of travel.
 	This is a specialisation of Lemma \ref{lem:fixed-q-semistabs-criterion}
 	with a modification to the statement
 	\[
-	q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right)
+		q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right)
 	\]
-    for the case where $\beta_0$ is rational.
-    Taking $\beta_0 = \frac{a_v}{n}$ we have:
+	for the case where $\beta_0$ is rational.
+	Taking $\beta_0 = \frac{a_v}{n}$ we have:
 	\[
-	   q\coloneqq\chern_1^{\beta_0}(u)
-        = c - \frac{a_v}{n}r
-        \in \frac{1}{n}\ZZ
+		q\coloneqq\chern_1^{\beta_0}(u)
+		= c - \frac{a_v}{n}r
+		\in \frac{1}{n}\ZZ
 	\]
 	So $q=\frac{b_q}{n}$ for some $b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\}$
 	and then
 	${
-	   nc - a_v r = b_q
-	}$
-    and so
+				nc - a_v r = b_q
+			}$
+	and so
 	${
-	a_v r \equiv -b_q
-	}$ modulo $n$.
+				a_v r \equiv -b_q
+			}$ modulo $n$.
 \end{proof}
 
 \subsection{Bounds on \texorpdfstring{`$d$'}{d}-values for Solutions of Problems}
@@ -299,7 +300,7 @@ to the Problem satisfies
 	q \coloneqq \chern_1^{\beta_0}(u)
 	\in
 	\left(
-		0, \chern_1^{\beta_0}(v)
+	0, \chern_1^{\beta_0}(v)
 	\right)
 \]
 and also gives a lower bound for $r$ when considering $u$ with a fixed $q$.
@@ -322,7 +323,7 @@ In the context of Problem \ref{problem:problem-statement-2}, this condition,
 when rearranged to a bound on $d$, amounts to:
 
 \begin{equation}
-\label{eqn:radius-cond-betamin}
+	\label{eqn:radius-cond-betamin}
 	\chern_2^{\beta_{-}}(u) > 0
 	\qquad
 	\text{and}
@@ -332,7 +333,7 @@ when rearranged to a bound on $d$, amounts to:
 \end{equation}
 
 \begin{sagesilent}
-import other_P_choice as problem1
+	import other_P_choice as problem1
 \end{sagesilent}
 
 In the case where we are tackling Problem \ref{problem:problem-statement-1},
@@ -368,7 +369,7 @@ $q = \chern^{\beta_0}_1(u) = c - r\beta_0$,
 we get:
 
 \begin{sagesilent}
-from plots_and_expressions import bgmlv2_with_q
+	from plots_and_expressions import bgmlv2_with_q
 \end{sagesilent}
 \begin{equation}
 	\sage{bgmlv2_with_q}
@@ -379,7 +380,7 @@ Rearranging to express this as a bound on $d$, we get the following.
 Recall that $r>0$ is ensured by Equations \ref{lem:eqn:cond-for-fixed-q}.
 
 \begin{sagesilent}
-from plots_and_expressions import bgmlv2_d_ineq
+	from plots_and_expressions import bgmlv2_d_ineq
 \end{sagesilent}
 \begin{equation}
 	\label{eqn-bgmlv2_d_upperbound}
@@ -400,7 +401,7 @@ $d$ yields:
 
 
 \begin{sagesilent}
-from plots_and_expressions import bgmlv3_d_upperbound_terms
+	from plots_and_expressions import bgmlv3_d_upperbound_terms
 \end{sagesilent}
 
 \begin{equation}
@@ -433,31 +434,31 @@ see-saw principle.
 % TODO maybe cover the see-saw principle
 \begin{align*}
 	\left(
-		\frac{\chern^{\beta_0}_1(v-u)}{\chern_0(v-u)}
+	\frac{\chern^{\beta_0}_1(v-u)}{\chern_0(v-u)}
 	\right)^2
-	&=
+	 & =
 	\left(
-		\mu(v-u) - \beta_0
+	\mu(v-u) - \beta_0
 	\right)^2
-\\
-	&>
+	\\
+	 & >
 	\left(
-		\mu(v) - \beta_0
+	\mu(v) - \beta_0
 	\right)^2
-	&\text{by Equation \ref{lem:proof:slope-order-rltR}}
-\\
-	&=
+	 & \text{by Equation \ref{lem:proof:slope-order-rltR}}
+	\\
+	 & =
 	\left(
-		\frac{\chern^{\beta_0}_1(v)}{\chern_0(v)}
+	\frac{\chern^{\beta_0}_1(v)}{\chern_0(v)}
 	\right)^2
-\\
-	&\geq
+	\\
+	 & \geq
 	2 \frac{\chern^{\beta_0}_2(v)}{\chern_0(v)}
-	&\text{since }\Delta(v) \geq 0
+	 & \text{since }\Delta(v) \geq 0
 	\:\text{and }\chern_0(v) > 0
-\\
-    \text{So}
-    \quad
+	\\
+	\text{So}
+	\quad
 	\frac{
 		\left(
 		q-\chern^{\beta_0}_1(v)
@@ -467,9 +468,9 @@ see-saw principle.
 		R-r
 		\right)^2
 	}
-	&>
+	 & >
 	2 \frac{\chern^{\beta_0}_2(v)}{R}
-	&
+	 &
 	\text{and}
 	\quad
 	\chern_2^{\beta_0}(v)
@@ -482,7 +483,7 @@ see-saw principle.
 		R-r
 		\right)
 	}
-	&<
+	 & <
 	\frac{r\chern^{\beta_0}_2(v)}{R}
 \end{align*}
 \noindent
@@ -493,7 +494,7 @@ are greater than those of Equation
 
 
 \subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem
-\texorpdfstring{\ref{problem:problem-statement-2}}{2}}
+	\texorpdfstring{\ref{problem:problem-statement-2}}{2}}
 \label{subsubsect:all-bounds-on-d-prob2}
 
 In the context of Problem \ref{problem:problem-statement-2}, with
@@ -505,30 +506,30 @@ for a potential solution to the problem of the form in Equation
 \ref{eqn:u-coords}, amounts to the following:
 
 \begin{sagesilent}
-from plots_and_expressions import bgmlv2_d_upperbound_terms
+	from plots_and_expressions import bgmlv2_d_upperbound_terms
 \end{sagesilent}
 \begin{align}
-	d &>
+	d & >
 	\frac{1}{2}{\beta_0}^2 r
 	+ {\beta_0} q,
 	\phantom{+} % to keep terms aligned
-	 &\qquad\text{when\:} r > 0
+	  & \qquad\text{when\:} r > 0
 	\label{eqn:radiuscond_d_bound_betamin}
-\\
-	d &\leq
+	\\
+	d & \leq
 	\sage{bgmlv2_d_upperbound_terms.problem2.linear}
 	+ \sage{bgmlv2_d_upperbound_terms.problem2.const}
-	 +\sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic},
-	 &\qquad\text{when\:} r > 0
-	 \label{eqn:bgmlv2_d_bound_betamin}
-\\
-	d &\leq
+	+\sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic},
+	  & \qquad\text{when\:} r > 0
+	\label{eqn:bgmlv2_d_bound_betamin}
+	\\
+	d & \leq
 	\sage{bgmlv3_d_upperbound_terms.problem2.linear}
 	+ \sage{bgmlv3_d_upperbound_terms.problem2.const}
 	% ^ ch_2^\beta(F)=0 for beta_{-}
-	 \sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic},
-	 &\qquad\text{when\:} r > R
-	 \label{eqn:bgmlv3_d_bound_betamin}
+	\sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic},
+	  & \qquad\text{when\:} r > R
+	\label{eqn:bgmlv3_d_bound_betamin}
 \end{align}
 
 Recalling that $q \coloneqq \chern^{\beta}_1(u) \in (0, \chern^{\beta}_1(v))$,
@@ -560,22 +561,22 @@ This will be pursued in Subsection
 \ref{subsec:bounds-on-semistab-rank-prob-2}.
 
 \begin{sagesilent}
-from plots_and_expressions import typical_bounds_on_d
+	from plots_and_expressions import typical_bounds_on_d
 \end{sagesilent}
 
 \begin{figure}
-\centering
-\sageplot[width=\linewidth]{typical_bounds_on_d}
-\caption{
-	Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed
-	value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(u)$.
-	Where $\chern(v) = (3,2\ell,-2\ell^2)$.
-}
-\label{fig:d_bounds_xmpl_gnrc_q}
+	\centering
+	\sageplot[width=\linewidth]{typical_bounds_on_d}
+	\caption{
+		Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed
+		value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(u)$.
+		Where $\chern(v) = (3,2\ell,-2\ell^2)$.
+	}
+	\label{fig:d_bounds_xmpl_gnrc_q}
 \end{figure}
 
 \subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem
-\texorpdfstring{\ref{problem:problem-statement-1}}{1}}
+	\texorpdfstring{\ref{problem:problem-statement-1}}{1}}
 \label{subsubsect:all-bounds-on-d-prob1}
 
 Unlike for Problem \ref{problem:problem-statement-2},
@@ -588,37 +589,37 @@ bounds do not share the same assymptote as the lower bound
 
 \begin{align}
 	\sage{problem1.radius_condition_d_bound.lhs()}
-	&>
+	  & >
 	\sage{problem1.radius_condition_d_bound.rhs()}
-	&\text{when }r>0
+	  & \text{when }r>0
 	\label{eqn:prob1:radiuscond}
 	\\
-	d &\leq
+	d & \leq
 	\sage{problem1.bgmlv2_d_upperbound_terms.linear}
 	+ \sage{problem1.bgmlv2_d_upperbound_terms.const}
 	+ \sage{problem1.bgmlv2_d_upperbound_terms.hyperbolic}
-	&\text{when }r>R
+	  & \text{when }r>R
 	\label{eqn:prob1:bgmlv2}
 	\\
-	d &\leq
+	d & \leq
 	\sage{problem1.bgmlv3_d_upperbound_terms.linear}
 	+ \sage{problem1.bgmlv3_d_upperbound_terms.const}
-	 \sage{problem1.bgmlv3_d_upperbound_terms.hyperbolic}
-	&\text{when }r>R
+	\sage{problem1.bgmlv3_d_upperbound_terms.hyperbolic}
+	  & \text{when }r>R
 	\label{eqn:prob1:bgmlv3}
 \end{align}
 
 \begin{figure}
-\centering
-\sageplot[width=\linewidth]{problem1.example_plot}
-\caption{
-	Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed
-	value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(E)$.
-	Where $\chern(v) = (3,2\ell,-2\ell^2)$ and $P$ chosen as the point on $\Theta_v$
-	with $\beta(P)\coloneqq-2/3-1/99$ in the context of Problem
-	\ref{problem:problem-statement-1}.
-}
-\label{fig:problem1:d_bounds_xmpl_gnrc_q}
+	\centering
+	\sageplot[width=\linewidth]{problem1.example_plot}
+	\caption{
+		Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed
+		value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(E)$.
+		Where $\chern(v) = (3,2\ell,-2\ell^2)$ and $P$ chosen as the point on $\Theta_v$
+		with $\beta(P)\coloneqq-2/3-1/99$ in the context of Problem
+		\ref{problem:problem-statement-1}.
+	}
+	\label{fig:problem1:d_bounds_xmpl_gnrc_q}
 \end{figure}
 
 
@@ -630,11 +631,11 @@ This is because $R\coloneqq\chern_0(v)$
 and $\chern_2^{\beta_0}(v)$ are all strictly positive:
 \begin{itemize}
 	\item $R > 0$ from the setting of Problem
-		\ref{problem:problem-statement-1}
+	      \ref{problem:problem-statement-1}
 	\item $\chern_2^{\beta_0}(v)>0$
-		by Lemma \ref{lem:comparison-test-with-beta_}
-		because ${\beta_0} < \beta_{-}$ due to the choice of $P$ being
-		a point on $\Theta_v^{-}$
+	      by Lemma \ref{lem:comparison-test-with-beta_}
+	      because ${\beta_0} < \beta_{-}$ due to the choice of $P$ being
+	      a point on $\Theta_v^{-}$
 \end{itemize}
 
 This means that the lower bound for $d$ will be larger than either of the two
@@ -645,7 +646,7 @@ A generic example of this is plotted in Figure
 idea will be pursued in Subsection \ref{subsec:bounds-on-semistab-rank-prob-1}.
 
 \subsection{Bounds on Semistabiliser Rank \texorpdfstring{$r$}{} in Problem
-\ref{problem:problem-statement-1}}
+	\ref{problem:problem-statement-1}}
 \label{subsec:bounds-on-semistab-rank-prob-1}
 
 As discussed at the end of Subsection \ref{subsubsect:all-bounds-on-d-prob1}
@@ -659,7 +660,7 @@ the lower bound on $d$ is equal to one of the upper bounds on $d$
 \ref{fig:problem1:d_bounds_xmpl_gnrc_q}).
 
 \begin{theorem}[Problem \ref{problem:problem-statement-1} upper Bound on $r$]
-\label{lem:prob1:r_bound}
+	\label{lem:prob1:r_bound}
 	Let $u$ be a solution to Problem \ref{problem:problem-statement-1}
 	and $q\coloneqq\chern_1^{B}(u)$.
 	Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression:
@@ -682,13 +683,13 @@ the lower bound on $d$ is equal to one of the upper bounds on $d$
 	Solving for the lower bound in Equation \ref{eqn:prob1:radiuscond} being
 	less than the upper bound in Equation \ref{eqn:prob1:bgmlv2} yields:
 	\begin{equation}
-	r<\sage{problem1.positive_intersection_bgmlv2}
+		r<\sage{problem1.positive_intersection_bgmlv2}
 	\end{equation}
 
 	\noindent
 	Similarly, but with the upper bound in Equation \ref{eqn:prob1:bgmlv3}, gives:
 	\begin{equation}
-	r<\sage{problem1.positive_intersection_bgmlv3}
+		r<\sage{problem1.positive_intersection_bgmlv3}
 	\end{equation}
 
 	\noindent
@@ -703,7 +704,7 @@ bound, over $q$ in this range, to get a simpler (but weaker) bound in the
 following Lemma \ref{lem:prob1:convenient_r_bound}.
 
 \begin{theorem}[Problem \ref{problem:problem-statement-1} global upper Bound on $r$]
-\label{lem:prob1:convenient_r_bound}
+	\label{lem:prob1:convenient_r_bound}
 	Let $u$ be a solution to Problem \ref{problem:problem-statement-1}.
 	Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression:
 	\begin{equation}
@@ -731,7 +732,7 @@ following Lemma \ref{lem:prob1:convenient_r_bound}.
 
 
 \subsection{Bounds on Semistabiliser Rank \texorpdfstring{$r$}{} in Problem
-\ref{problem:problem-statement-2}}
+	\ref{problem:problem-statement-2}}
 \label{subsec:bounds-on-semistab-rank-prob-2}
 
 Now, the inequalities from the above Subsubsection
@@ -763,13 +764,13 @@ $\chern^{\beta_0}(u) > 0$
 (Equation \ref{eqn:radiuscond_d_bound_betamin}) we get:
 
 \begin{sagesilent}
-from plots_and_expressions import \
-positive_radius_condition_with_q, \
-q_value_expr, \
-beta_value_expr
+	from plots_and_expressions import \
+	positive_radius_condition_with_q, \
+	q_value_expr, \
+	beta_value_expr
 \end{sagesilent}
 \begin{equation}
-\label{eqn:positive_rad_condition_in_terms_of_q_beta}
+	\label{eqn:positive_rad_condition_in_terms_of_q_beta}
 	\frac{1}{\lcm(m,2)}\ZZ
 	\ni
 	\:\:
@@ -786,10 +787,10 @@ proof of Theorem
 
 
 \begin{sagesilent}
-from plots_and_expressions import main_theorem1, betamin_subs
+	from plots_and_expressions import main_theorem1, betamin_subs
 \end{sagesilent}
 \begin{theorem}[First bound on $r$ for Problem \ref{problem:problem-statement-2}]
-\label{thm:rmax_with_uniform_eps}
+	\label{thm:rmax_with_uniform_eps}
 	Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample
 	line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and
 	$m\coloneqq\ell^2$.
@@ -803,8 +804,8 @@ from plots_and_expressions import main_theorem1, betamin_subs
 	\begin{align*}
 		\min
 		\left(
-			\sage{main_theorem1.r_upper_bound1.subs(betamin_subs)}, \:\:
-			\sage{main_theorem1.r_upper_bound2.subs(betamin_subs)}
+		\sage{main_theorem1.r_upper_bound1.subs(betamin_subs)}, \:\:
+		\sage{main_theorem1.r_upper_bound2.subs(betamin_subs)}
 		\right)
 	\end{align*}
 	\noindent
@@ -812,57 +813,57 @@ from plots_and_expressions import main_theorem1, betamin_subs
 \end{theorem}
 
 \begin{proof}
-Both $d$ and the lower bound in
-(Equation \ref{eqn:positive_rad_condition_in_terms_of_q_beta})
-are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$.
-So, if any of the two upper bounds on $d$ come to within
-$\epsilon_v \coloneqq \frac{1}{\lcm(m,2n^2)}$ of this lower bound,
-then there are no solutions for $d$.
-Hence any corresponding $r$ cannot be a rank of a
-pseudo-semistabiliser for $v$.
-
-To avoid this, we must have,
-considering Equations
-\ref{eqn:bgmlv2_d_bound_betamin},
-\ref{eqn:bgmlv3_d_bound_betamin},
-\ref{eqn:radiuscond_d_bound_betamin}.
+	Both $d$ and the lower bound in
+	(Equation \ref{eqn:positive_rad_condition_in_terms_of_q_beta})
+	are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$.
+	So, if any of the two upper bounds on $d$ come to within
+	$\epsilon_v \coloneqq \frac{1}{\lcm(m,2n^2)}$ of this lower bound,
+	then there are no solutions for $d$.
+	Hence any corresponding $r$ cannot be a rank of a
+	pseudo-semistabiliser for $v$.
+
+	To avoid this, we must have,
+	considering Equations
+	\ref{eqn:bgmlv2_d_bound_betamin},
+	\ref{eqn:bgmlv3_d_bound_betamin},
+	\ref{eqn:radiuscond_d_bound_betamin}.
+
+	\begin{sagesilent}
+		from plots_and_expressions import \
+		assymptote_gap_condition1, assymptote_gap_condition2, k
+	\end{sagesilent}
+
+
+	\begin{align}
+		\epsilon_v = & \sage{assymptote_gap_condition1.subs(k==1)} \\
+		\epsilon_v = & \sage{assymptote_gap_condition2.subs(k==1)}
+	\end{align}
 
-\begin{sagesilent}
-from plots_and_expressions import \
-assymptote_gap_condition1, assymptote_gap_condition2, k
-\end{sagesilent}
-
-
-\begin{align}
-	\epsilon_v =&\sage{assymptote_gap_condition1.subs(k==1)} \\
-	\epsilon_v =&\sage{assymptote_gap_condition2.subs(k==1)}
-\end{align}
-
-\noindent
-This is equivalent to:
+	\noindent
+	This is equivalent to:
 
-\begin{equation}
-	\label{eqn:thm-bound-for-r-impossible-cond-for-r}
-	r \leq
-	\min\left(
+	\begin{equation}
+		\label{eqn:thm-bound-for-r-impossible-cond-for-r}
+		r \leq
+		\min\left(
 		\sage{
 			main_theorem1.r_upper_bound1
 		} ,
 		\sage{
 			main_theorem1.r_upper_bound2
 		}
-	\right)
-\end{equation}
+		\right)
+	\end{equation}
 
 \end{proof}
 
 
 \begin{sagesilent}
-from plots_and_expressions import q_sol, bgmlv_v, psi
+	from plots_and_expressions import q_sol, bgmlv_v, psi
 \end{sagesilent}
 
 \begin{corollary}[Second, global bound on $r$ for Problem \ref{problem:problem-statement-2}]
-\label{cor:direct_rmax_with_uniform_eps}
+	\label{cor:direct_rmax_with_uniform_eps}
 	Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample
 	line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and
 	$m\coloneqq\ell^2$.
@@ -873,90 +874,90 @@ from plots_and_expressions import q_sol, bgmlv_v, psi
 	are bounded above as follows.
 
 	\begin{align*}
-		r &\leq \sage{main_theorem1.corollary_r_bound}
-			&\text{if } R < \frac{\Delta(v)\lcm(m,2n^2)}{2m}
+		r & \leq \sage{main_theorem1.corollary_r_bound}
+		  & \text{if } R < \frac{\Delta(v)\lcm(m,2n^2)}{2m}
 		\\
-		r &\leq \frac{\Delta(v)\lcm(m,2n^2)}{2m}
-			&\text{if } R \geq \frac{\Delta(v)\lcm(m,2n^2)}{2m}
+		r & \leq \frac{\Delta(v)\lcm(m,2n^2)}{2m}
+		  & \text{if } R \geq \frac{\Delta(v)\lcm(m,2n^2)}{2m}
 	\end{align*}
 \end{corollary}
 
 \begin{proof}
-The ranks of the pseudo-semistabilisers for $v$ are bounded above by the
-maximum over $q\in [0, \chern_1^{\beta_{-}}(v)]$ of the expression in Theorem
-\ref{thm:rmax_with_uniform_eps}.
-Noticing that the expression is a maximum of two quadratic functions in $q$
-($\beta_0=\beta_{-}(v)$ in this context):
-\begin{equation*}
-	f_1(q)\coloneqq\sage{main_theorem1.r_upper_bound1} \qquad
-	f_2(q)\coloneqq\sage{main_theorem1.r_upper_bound2}
-\end{equation*}
-These have their minimums at $q=0$ and $q=\chern_1^{\beta_{-}}(v)$ respectively,
-with values 0 and $R>0$ respectively.
-So provided that
-$f_2\left(\chern^{\beta_{-}}_1(v)\right) < f_1\left(\chern^{\beta_{-}}_1(v)\right)$,
-the maximum is achieved at their intersection.
-Otherwise, the maximum is achieved at
-$\chern^{\beta_{-}}_1(v)$.
-So we can say that
+	The ranks of the pseudo-semistabilisers for $v$ are bounded above by the
+	maximum over $q\in [0, \chern_1^{\beta_{-}}(v)]$ of the expression in Theorem
+	\ref{thm:rmax_with_uniform_eps}.
+	Noticing that the expression is a maximum of two quadratic functions in $q$
+	($\beta_0=\beta_{-}(v)$ in this context):
+	\begin{equation*}
+		f_1(q)\coloneqq\sage{main_theorem1.r_upper_bound1} \qquad
+		f_2(q)\coloneqq\sage{main_theorem1.r_upper_bound2}
+	\end{equation*}
+	These have their minimums at $q=0$ and $q=\chern_1^{\beta_{-}}(v)$ respectively,
+	with values 0 and $R>0$ respectively.
+	So provided that
+	$f_2\left(\chern^{\beta_{-}}_1(v)\right) < f_1\left(\chern^{\beta_{-}}_1(v)\right)$,
+	the maximum is achieved at their intersection.
+	Otherwise, the maximum is achieved at
+	$\chern^{\beta_{-}}_1(v)$.
+	So we can say that
 
-\begin{align*}
-	r &\leq
+	\begin{align*}
+		r & \leq
 		f_{1}(q_{\mathrm{max}})
-		&\text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) <
+		  & \text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) <
 		f_1\left(\chern^{\beta_{-}}_1(v)\right)
- \\ &&
+		\\ &&
 		\text{where $q_{\mathrm{max}}$ is the $q$-value where the $f_i$ intersect}
-	\\
-	r &\leq f_1\left(\chern^{\beta_{-}}(v)\right)
-		&\text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) \geq
+		\\
+		r & \leq f_1\left(\chern^{\beta_{-}}(v)\right)
+		  & \text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) \geq
 		f_1\left(\chern^{\beta_{-}}_1(v)\right)
-\end{align*}
+	\end{align*}
 
-\noindent
-In the first case,
-solving for $f_1(q)=f_2(q)$ yields
-\begin{equation*}
-	q=\sage{q_sol.expand()}
-\end{equation*}
-And evaluating $f_1$ at this $q$-value gives:
-\begin{equation*}
-	\sage{main_theorem1.corollary_intermediate}
-\end{equation*}
+	\noindent
+	In the first case,
+	solving for $f_1(q)=f_2(q)$ yields
+	\begin{equation*}
+		q=\sage{q_sol.expand()}
+	\end{equation*}
+	And evaluating $f_1$ at this $q$-value gives:
+	\begin{equation*}
+		\sage{main_theorem1.corollary_intermediate}
+	\end{equation*}
 
-\noindent
-Finally, noting that $\Delta(v)=\left(\chern_1^{\beta_{-}(v)}(v)\right)^2\ell^2$,
-we get the bounds as stated in the statement of the Corollary.
+	\noindent
+	Finally, noting that $\Delta(v)=\left(\chern_1^{\beta_{-}(v)}(v)\right)^2\ell^2$,
+	we get the bounds as stated in the statement of the Corollary.
 
 \end{proof}
 
 \begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
-\label{exmpl:recurring-second}
-Just like in Example \ref{exmpl:recurring-first}, take
-$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
-that $m=2$, $\beta=\sage{recurring.betaminus}$,
-giving $n=\sage{recurring.n}$.
-
-Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
-the ranks of tilt semistabilisers for $v$ are bounded above by
-$\sage{recurring.corrolary_bound} \approx
-\sage{round(float(recurring.corrolary_bound), 1)}$,
-which is much closer to real maximum 25 than the original bound 144.
+	\label{exmpl:recurring-second}
+	Just like in Example \ref{exmpl:recurring-first}, take
+	$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
+	that $m=2$, $\beta=\sage{recurring.betaminus}$,
+	giving $n=\sage{recurring.n}$.
+
+	Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
+	the ranks of tilt semistabilisers for $v$ are bounded above by
+	$\sage{recurring.corrolary_bound} \approx
+		\sage{round(float(recurring.corrolary_bound), 1)}$,
+	which is much closer to real maximum 25 than the original bound 144.
 \end{example}
 
 \begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
-\label{exmpl:extravagant-second}
-Just like in Example \ref{exmpl:extravagant-first}, take
-$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
-that $m=2$, $\beta=\sage{extravagant.betaminus}$,
-giving $n=\sage{extravagant.n}$.
-
-Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
-the ranks of tilt semistabilisers for $v$ are bounded above by
-$\sage{extravagant.corrolary_bound} \approx
-\sage{round(float(extravagant.corrolary_bound), 1)}$,
-which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the
-original bound 215296.
+	\label{exmpl:extravagant-second}
+	Just like in Example \ref{exmpl:extravagant-first}, take
+	$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
+	that $m=2$, $\beta=\sage{extravagant.betaminus}$,
+	giving $n=\sage{extravagant.n}$.
+
+	Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
+	the ranks of tilt semistabilisers for $v$ are bounded above by
+	$\sage{extravagant.corrolary_bound} \approx
+		\sage{round(float(extravagant.corrolary_bound), 1)}$,
+	which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the
+	original bound 215296.
 \end{example}
 %% refinements using specific values of q and beta
 
@@ -982,8 +983,8 @@ Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_v$ in the
 proof of Theorem \ref{thm:rmax_with_uniform_eps}:
 
 \begin{lemmadfn}[%
-	A better alternative to $\epsilon_v$:
-	$\epsilon_{v,q}$
+		A better alternative to $\epsilon_v$:
+		$\epsilon_{v,q}$
 	]
 	\label{lemdfn:epsilon_q}
 	Suppose $d \in \frac{1}{\lcm(m,2n^2)}\ZZ$ satisfies the condition in
@@ -1021,94 +1022,94 @@ proof of Theorem \ref{thm:rmax_with_uniform_eps}:
 		\mod{\gcd\left(
 			\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
 			\frac{mn\aa}{\gcd(m,2n^2)}
-		\right)}
+			\right)}
 	\end{equation*}
 
 \end{lemmadfn}
 
 \begin{remark}
-    The quantity $m$ is determined by the variety, whereas $a_v$ and $n$ are determined by the Chern
-    character $v$ for which we are trying to find pseudo-semistabilisers.
-    So the $\gcd$ expression we are taking the modulus with respect to is considered
-    constant in the context of the problem we are solving for
-    (i.e. Problem \ref{problem:problem-statement-2}).
-    However $b_q$ depends on the choice of $q$, that is the value of
-    $\chern_1^{\beta_{-}(v)}(u)$ for which we are searching for solutions $u$, hence
-    why $k_{v,q}$ is denoted to depend on $q$ on top of $v$ and the context of the problem.
+	The quantity $m$ is determined by the variety, whereas $a_v$ and $n$ are determined by the Chern
+	character $v$ for which we are trying to find pseudo-semistabilisers.
+	So the $\gcd$ expression we are taking the modulus with respect to is considered
+	constant in the context of the problem we are solving for
+	(i.e. Problem \ref{problem:problem-statement-2}).
+	However $b_q$ depends on the choice of $q$, that is the value of
+	$\chern_1^{\beta_{-}(v)}(u)$ for which we are searching for solutions $u$, hence
+	why $k_{v,q}$ is denoted to depend on $q$ on top of $v$ and the context of the problem.
 \end{remark}
 
 \begin{proof}
 
-Consider the following sequence of logical implications.
-The one-way implication follows from
-$\aa r + \bb \equiv 0 \pmod{n}$,
-and the final logical equivalence is just a simplification of the expressions.
-
-\begin{align}
-	\frac{ x }{ \lcm(m,2) }
-	- \frac{
-		(\aa r+2\bb)\aa
-	}{
-		2n^2
-	}
-	= \frac{ k }{ \lcm(m,2n^2) }
-	\quad \text{for some } x \in \ZZ
-	\span \span \span \span \span
-	\label{eqn:finding_better_eps_problem}
-\\ \nonumber
-\\ \Leftrightarrow& &
-	- (\aa r+2\bb)\aa
-	\frac{\lcm(m,2n^2)}{2n^2}
-	&\equiv k &&
-	\nonumber
-\\ &&&
-	\mod \frac{\lcm(m,2n^2)}{\lcm(m,2)}
-	\span \span \span
-	\nonumber
-\\ \Rightarrow& &
-	- \bb\aa
-	\frac{\lcm(m,2n^2)}{2n^2}
-	&\equiv k &&
-	\nonumber
-\\ &&&
-	\mod \gcd\left(
+	Consider the following sequence of logical implications.
+	The one-way implication follows from
+	$\aa r + \bb \equiv 0 \pmod{n}$,
+	and the final logical equivalence is just a simplification of the expressions.
+
+	\begin{align}
+		\frac{ x }{ \lcm(m,2) }
+		- \frac{
+			(\aa r+2\bb)\aa
+		}{
+			2n^2
+		}
+		= \frac{ k }{ \lcm(m,2n^2) }
+		\quad \text{for some } x \in \ZZ
+		\span \span \span \span \span
+		\label{eqn:finding_better_eps_problem}
+		\\ \nonumber
+		\\ \Leftrightarrow& &
+		- (\aa r+2\bb)\aa
+		\frac{\lcm(m,2n^2)}{2n^2}
+		 & \equiv k &  &
+		\nonumber
+		\\ &&&
+		\mod \frac{\lcm(m,2n^2)}{\lcm(m,2)}
+		\span \span \span
+		\nonumber
+		\\ \Rightarrow& &
+		- \bb\aa
+		\frac{\lcm(m,2n^2)}{2n^2}
+		 & \equiv k &  &
+		\nonumber
+		\\ &&&
+		\mod \gcd\left(
 		\frac{\lcm(m,2n^2)}{\lcm(m,2)},
 		\frac{n \aa \lcm(m,2n^2)}{2n^2}
-	\right)
-	\span \span \span
-	\nonumber
-\\ \Leftrightarrow& &
-	- \bb\aa
-	\frac{m}{\gcd(m,2n^2)}
-	&\equiv k &&
-	\label{eqn:better_eps_problem_k_mod_n}
-\\ &&&
-	\mod \gcd\left(
+		\right)
+		\span \span \span
+		\nonumber
+		\\ \Leftrightarrow& &
+		- \bb\aa
+		\frac{m}{\gcd(m,2n^2)}
+		 & \equiv k &  &
+		\label{eqn:better_eps_problem_k_mod_n}
+		\\ &&&
+		\mod \gcd\left(
 		\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
 		\frac{mn \aa}{\gcd(m,2n^2)}
-	\right)
-	\span \span \span
-	\nonumber
-\end{align}
-
-In our situation, we want to find the least $k>0$ satisfying
-Equation \ref{eqn:finding_better_eps_problem}.
-Since such a $k$ must also satisfy Equation \ref{eqn:better_eps_problem_k_mod_n},
-we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition
-(a computation only depending on $q$ and $\beta$, but not $r$).
-We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying Equation
-\ref{eqn:finding_better_eps_problem}, giving the first inequality in Equation
-\ref{eqn:epsilon_q_lemma_prop}.
-Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality:
-$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$.
+		\right)
+		\span \span \span
+		\nonumber
+	\end{align}
+
+	In our situation, we want to find the least $k>0$ satisfying
+	Equation \ref{eqn:finding_better_eps_problem}.
+	Since such a $k$ must also satisfy Equation \ref{eqn:better_eps_problem_k_mod_n},
+	we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition
+	(a computation only depending on $q$ and $\beta$, but not $r$).
+	We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying Equation
+	\ref{eqn:finding_better_eps_problem}, giving the first inequality in Equation
+	\ref{eqn:epsilon_q_lemma_prop}.
+	Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality:
+	$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$.
 
 \end{proof}
 
 \begin{sagesilent}
-from plots_and_expressions import main_theorem2
+	from plots_and_expressions import main_theorem2
 \end{sagesilent}
 \begin{theorem}[Third bound on $r$ for Problem \ref{problem:problem-statement-2}]
-\label{thm:rmax_with_eps1}
+	\label{thm:rmax_with_eps1}
 	Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample
 	line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and
 	$m\coloneqq\ell^2$.
@@ -1122,8 +1123,8 @@ from plots_and_expressions import main_theorem2
 	\begin{align*}
 		\min
 		\left(
-			\sage{main_theorem2.r_upper_bound1.subs(betamin_subs)}, \:\:
-			\sage{main_theorem2.r_upper_bound2.subs(betamin_subs)}
+		\sage{main_theorem2.r_upper_bound1.subs(betamin_subs)}, \:\:
+		\sage{main_theorem2.r_upper_bound2.subs(betamin_subs)}
 		\right),
 	\end{align*}
 	where $k_{v,q}$ is defined as in Definition/Lemma \ref{lemdfn:epsilon_q},
@@ -1142,10 +1143,10 @@ Although the general form of this bound is quite complicated, it does simplify a
 lot when $m$ is small.
 
 \begin{sagesilent}
-from plots_and_expressions import main_theorem2_corollary
+	from plots_and_expressions import main_theorem2_corollary
 \end{sagesilent}
 \begin{corollary}[Third bound on $r$ on $\PP^2$ and principally polarised abelian surfaces]
-\label{cor:rmax_with_eps1}
+	\label{cor:rmax_with_eps1}
 	Suppose we are working over $\PP^2$ or a principally polarised abelian surface
 	(or any other surfaces with $m=\ell^2=1$ or $2$).
 	Let $v$ be a fixed Chern character, with $\beta_{-}\coloneqq\beta_{-}(v)=\frac{a_v}{n}$
@@ -1158,127 +1159,127 @@ from plots_and_expressions import main_theorem2_corollary
 	\begin{align*}
 		\min
 		\left(
-			\sage{main_theorem2_corollary.r_upper_bound1.subs(betamin_subs)}, \:\:
-			\sage{main_theorem2_corollary.r_upper_bound2.subs(betamin_subs)}
+		\sage{main_theorem2_corollary.r_upper_bound1.subs(betamin_subs)}, \:\:
+		\sage{main_theorem2_corollary.r_upper_bound2.subs(betamin_subs)}
 		\right),
 	\end{align*}
 	where $R = \chern_0(v)$ and $k_{v,q}$ is the least
 	$k\in\ZZ_{>0}$ satisfying
 	${
-		k \equiv -\aa\bb
-		\pmod{n}
-	}$.
+				k \equiv -\aa\bb
+				\pmod{n}
+			}$.
 \end{corollary}
 
 \begin{proof}
-This is a specialisation of Theorem \ref{thm:rmax_with_eps1}, where we can
-drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both
-$2$ and $2n^2$, and that $a_v$ is coprime to $n$.
+	This is a specialisation of Theorem \ref{thm:rmax_with_eps1}, where we can
+	drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both
+	$2$ and $2n^2$, and that $a_v$ is coprime to $n$.
 \end{proof}
 
 \begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
-\label{exmpl:recurring-third}
-Just like in Examples \ref{exmpl:recurring-first} and
-\ref{exmpl:recurring-second},
-take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
-$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$
-and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
-%% TODO transcode notebook code
-The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
-in terms of the possible values for $q\coloneqq\chern_1^{\beta_{-}}(u)$ are as follows:
-
-\begin{sagesilent}
-from examples import bound_comparisons
-qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring)
-\end{sagesilent}
-
-\vspace{1em}
-\noindent
-\directlua{ table_width = 3*4+1 }
-\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}}
-	$q=\chern_1^{\beta_{-}}(u)$
-\directlua{for i=0,table_width-1 do
-	local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$"
-  tex.sprint(cell)
-end}
-	\\ \hline
-	Theorem \ref{thm:rmax_with_uniform_eps}
-\directlua{for i=0,table_width-1 do
-	local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
-  tex.sprint(cell)
-end}
-	\\
-	Theorem \ref{thm:rmax_with_eps1}
-\directlua{for i=0,table_width-1 do
-	local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
-  tex.sprint(cell)
-end}
-\end{tabular}
-\vspace{1em}
+	\label{exmpl:recurring-third}
+	Just like in Examples \ref{exmpl:recurring-first} and
+	\ref{exmpl:recurring-second},
+	take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
+	$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$
+	and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
+	%% TODO transcode notebook code
+	The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
+	in terms of the possible values for $q\coloneqq\chern_1^{\beta_{-}}(u)$ are as follows:
+
+	\begin{sagesilent}
+		from examples import bound_comparisons
+		qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring)
+	\end{sagesilent}
+
+	\vspace{1em}
+	\noindent
+	\directlua{ table_width = 3*4+1 }
+	\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}}
+		$q=\chern_1^{\beta_{-}}(u)$
+		\directlua{for i=0,table_width-1 do
+		local cell = [[ & $\noexpand\sage{qs[]] .. i .. "]}$"
+		tex.sprint(cell)
+		end}
+		\\ \hline
+		Theorem \ref{thm:rmax_with_uniform_eps}
+		\directlua{for i=0,table_width-1 do
+		local cell = [[ & $\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
+		tex.sprint(cell)
+		end}
+		\\
+		Theorem \ref{thm:rmax_with_eps1}
+		\directlua{for i=0,table_width-1 do
+		local cell = [[ & $\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
+		tex.sprint(cell)
+		end}
+	\end{tabular}
+	\vspace{1em}
 
-\noindent
-It is worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1}
-reach, but do not exceed, the actual maximum rank 25 of the
-pseudo-semistabilisers of $v$ in this case.
-As a reminder, the original loose bound from Theorem \ref{thm:loose-bound-on-r}
-was 144.
+	\noindent
+	It is worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1}
+	reach, but do not exceed, the actual maximum rank 25 of the
+	pseudo-semistabilisers of $v$ in this case.
+	As a reminder, the original loose bound from Theorem \ref{thm:loose-bound-on-r}
+	was 144.
 
 \end{example}
 
 \begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
-\label{exmpl:extravagant-third}
-Just like in examples \ref{exmpl:extravagant-first} and
-\ref{exmpl:extravagant-second},
-take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
-$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$
-and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
-This example was chosen because the $n$ value is moderatly large, giving more
-possible values for $k_{v,q}$, in Definition/Lemma \ref{lemdfn:epsilon_q}. This allows
-for a larger possible difference between the bounds given by Theorems
-\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound
-from the second being up to $\sage{n}$ times smaller, for any given $q$ value.
-The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
-in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
-
-\begin{sagesilent}
-qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant)
-\end{sagesilent}
-
-
-\vspace{1em}
-\noindent
-\directlua{ table_width = 12 }
-\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}}
-	$q=\chern_1^\beta(u)$
-\directlua{for i=0,table_width-1 do
-	local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$"
-  tex.sprint(cell)
-end}
-	&$\cdots$
-	\\ \hline
-	Theorem \ref{thm:rmax_with_uniform_eps}
-\directlua{for i=0,table_width-1 do
-	local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
-  tex.sprint(cell)
-end}
-	&$\cdots$
-	\\
-	Theorem \ref{thm:rmax_with_eps1}
-\directlua{for i=0,table_width-1 do
-	local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
-  tex.sprint(cell)
-end}
-	&$\cdots$
-\end{tabular}
-\vspace{1em}
+	\label{exmpl:extravagant-third}
+	Just like in examples \ref{exmpl:extravagant-first} and
+	\ref{exmpl:extravagant-second},
+	take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
+	$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$
+	and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
+	This example was chosen because the $n$ value is moderatly large, giving more
+	possible values for $k_{v,q}$, in Definition/Lemma \ref{lemdfn:epsilon_q}. This allows
+	for a larger possible difference between the bounds given by Theorems
+	\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound
+	from the second being up to $\sage{n}$ times smaller, for any given $q$ value.
+	The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$
+	in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
+
+	\begin{sagesilent}
+		qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant)
+	\end{sagesilent}
+
+
+	\vspace{1em}
+	\noindent
+	\directlua{ table_width = 12 }
+	\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}}
+		$q=\chern_1^\beta(u)$
+		\directlua{for i=0,table_width-1 do
+		local cell = [[ & $\noexpand\sage{qs[]] .. i .. "]}$"
+		tex.sprint(cell)
+		end}
+		                & $\cdots$
+		\\ \hline
+		Theorem \ref{thm:rmax_with_uniform_eps}
+		\directlua{for i=0,table_width-1 do
+		local cell = [[ & $\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
+		tex.sprint(cell)
+		end}
+		                & $\cdots$
+		\\
+		Theorem \ref{thm:rmax_with_eps1}
+		\directlua{for i=0,table_width-1 do
+		local cell = [[ & $\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
+		tex.sprint(cell)
+		end}
+		                & $\cdots$
+	\end{tabular}
+	\vspace{1em}
 
 
-\noindent
-However the reduction in the overall bound on $r$ is not as drastic, since all
-possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through
-cyclically as we consider successive possible values for $q$.
-And for each $q$ where $k_{v,q}=1$, both theorems give the same bound.
-Calculating the maximums over all values of $q$ yields
-$\sage{max(theorem2_bounds)}$ for Theorem \ref{thm:rmax_with_uniform_eps}, and
-$\sage{max(theorem3_bounds)}$ for Theorem \ref{thm:rmax_with_eps1}.
+	\noindent
+	However the reduction in the overall bound on $r$ is not as drastic, since all
+	possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through
+	cyclically as we consider successive possible values for $q$.
+	And for each $q$ where $k_{v,q}=1$, both theorems give the same bound.
+	Calculating the maximums over all values of $q$ yields
+	$\sage{max(theorem2_bounds)}$ for Theorem \ref{thm:rmax_with_uniform_eps}, and
+	$\sage{max(theorem3_bounds)}$ for Theorem \ref{thm:rmax_with_eps1}.
 \end{example}
diff --git a/tex/computing-solutions.tex b/tex/computing-solutions.tex
index 96763db414a03b2bc13ae7edc56b6a44e53c21a7..690dbdf98e7ed407cec76f0069c282eb3ffff77d 100644
--- a/tex/computing-solutions.tex
+++ b/tex/computing-solutions.tex
@@ -13,7 +13,7 @@ a different algorithm will be presented making use of theorems from Section
 with the goal of cutting down the run time.
 
 \subsubsection{Finding possible \texorpdfstring{$r$}{r} and
-\texorpdfstring{$c$}{c}}
+	\texorpdfstring{$c$}{c}}
 To do this, first calculate the upper bound $r_{\mathrm{max}}$ on the ranks of tilt
 semistabilisers, as given by Theorem \ref{thm:loose-bound-on-r}.
 
@@ -36,7 +36,7 @@ the Bogomolov inequalities and Consequence 3 of Lemma
 ($\chern_2^{\beta_{-}}(u)>0$).
 
 \subsubsection{Finding \texorpdfstring{$d$}{d} for fixed \texorpdfstring{$r$}{r}
-and \texorpdfstring{$c$}{c}}
+	and \texorpdfstring{$c$}{c}}
 
 $\Delta(u) \geq 0$ induces an upper bound $\frac{c^2}{2r}$ on $d$, and the
 $\chern_2^{\beta_{-}}(u)>0$ condition induces a lower bound on $d$.
@@ -51,8 +51,8 @@ end up not yielding any solutions for the problem.
 In fact, solutions $u$ to our problem with high rank must have $\mu(u)$ close to
 $\beta_{-}(v)$:
 \begin{align*}
-	0 &\leq \chern_1^{\beta_{-}}(u) \leq \chern_1^{\beta_{-}}(u) \\
-	0 &\leq \mu(u) - \beta_{-} \leq \frac{\chern_1^{\beta_{-}}(v)}{r}
+	0 & \leq \chern_1^{\beta_{-}}(u) \leq \chern_1^{\beta_{-}}(u)      \\
+	0 & \leq \mu(u) - \beta_{-} \leq \frac{\chern_1^{\beta_{-}}(v)}{r}
 \end{align*}
 In particular, it is the $\chern_1^{\beta_{-}}(v-u) \geq 0$ condition which
 fails for $r$,$c$ pairs with large $r$ and $\frac{c}{r}$ too far from $\beta_{-}$.
@@ -66,17 +66,17 @@ alternative algorithm which will later be described in Section
 \ref{sect:prob2-algorithm}.
 
 \begin{center}
-\label{table:bench-schmidt-vs-nay}
-\begin{tabular}{ |r|l|l| }
- \hline
- Choice of $v$ on $\mathbb{P}^2$
- & $(3, 2\ell, -2)$
- & $(3, 2\ell, -\frac{15}{2})$ \\
- \hline
- \cite[\texttt{tilt.walls_left}]{SchmidtGithub2020} exec time & \sim 20s & >1hr \\
- \cite{NaylorRust2023} exec time & \sim 50ms & \sim 50ms \\
- \hline
-\end{tabular}
+	\label{table:bench-schmidt-vs-nay}
+	\begin{tabular}{ |r|l|l| }
+		\hline
+		Choice of $v$ on $\mathbb{P}^2$
+		                                                             & $(3, 2\ell, -2)$
+		                                                             & $(3, 2\ell, -\frac{15}{2})$             \\
+		\hline
+		\cite[\texttt{tilt.walls_left}]{SchmidtGithub2020} exec time & \sim 20s                    & >1hr      \\
+		\cite{NaylorRust2023} exec time                              & \sim 50ms                   & \sim 50ms \\
+		\hline
+	\end{tabular}
 \end{center}
 
 \section{Computing Solutions to Problem \ref{problem:problem-statement-2}}
@@ -94,7 +94,7 @@ The algorithm yields solutions
 $u=(r,c\ell,d\ell^2)$ to the problem as follows.
 
 \subsubsection{Iterating Over Possible
-\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}}
+	\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}}
 
 Given a Chern character $v$, the domain of the problem are first verified: that
 $v$ has positive rank, that it satisfies $\Delta(v) \geq 0$, and that
@@ -102,6 +102,7 @@ $\beta_{-}(v)$ is rational.
 Take $\beta_{-}(v)=\frac{a_v}{n}$ in simplest terms.
 Iterate over $q = \frac{b_q}{n} \in (0,\chern_1^{\beta_{-}}(v))\cap\frac{1}{n}\ZZ$.
 The code used to generate the corresponding values for $b_q$ is shown in Listing
+% texlab: ignore
 \ref{fig:code:consideredb}.
 
 \lstinputlisting[
@@ -118,6 +119,7 @@ We can therefore reduce the problem of finding solutions to the more specialised
 problem of finding the solutions $u$ with each fixed possible $q=\chern_1^\beta(u)$
 (i.e. choice of $b$).
 The code representing this appears in Listing
+% texlab: ignore
 \ref{fig:code:reducingtoeachb}.
 Line 16 refers to creating an objects representing the context the specialised
 problem for the fixed $q$ value, with the next line `solving' the specialised
@@ -133,9 +135,9 @@ and collect up the results.
 ]{../tilt.rs/src/tilt_stability/find_all.git-untrack.rs.tex.git-untrack}
 
 \subsubsection{Iterating Over Possible
-\texorpdfstring{$r=\chern_0(u)$}{r}
-for Fixed
-\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}
+	\texorpdfstring{$r=\chern_0(u)$}{r}
+	for Fixed
+	\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}
 }
 
 Let $q=\frac{b_q}{n}$, for which we are now solving the more specialised problem of finding
@@ -159,6 +161,7 @@ Fixing $r$ and $q$ also determines $c\coloneqq\chern_1(u)$, and so we can genera
 the corresponding values of $c$, as we generate the $r$ values.
 It now remains to solve the problem for each of the combinations of fixed values
 for $q$ and $r$ (and consequently $c$) considered.
+% texlab: ignore
 This is shown in Listing \ref{fig:code:reducingtoeachr}.
 
 \lstinputlisting[
@@ -170,11 +173,11 @@ This is shown in Listing \ref{fig:code:reducingtoeachr}.
 
 
 \subsubsection{Iterating Over Possible
-\texorpdfstring{$d=\chern_2(u)/\ell^2$}{d}
-for Fixed
-\texorpdfstring{$r=\chern_0(u)$}{r}
-and
-\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}
+	\texorpdfstring{$d=\chern_2(u)/\ell^2$}{d}
+	for Fixed
+	\texorpdfstring{$r=\chern_0(u)$}{r}
+	and
+	\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}
 }
 
 At this point we are considering a specialisation of the problem
@@ -198,8 +201,10 @@ equivalent to bounds on $d$ given by the equations
 in Subsubsection \ref{subsubsect:all-bounds-on-d-prob2}
 It therefore remains to just pick values
 $d\in\frac{1}{\lcm(m,2n^2)}\ZZ$ within the bounds.
+% texlab: ignore
 Listing \ref{fig:code:solveforfixedr} is the code for solving this
 specialisation of the problem, where the possible $d$ values are computed in
+% texlab: ignore
 Listing \ref{fig:code:possible_chern2}.
 The explicit code for the bounds can be found in Appendix
 \ref{appendix:subsubsec:fixed-r}.
@@ -232,11 +237,11 @@ decrease in computational time to find the solutions to the problem.
 This could be due to a range of potential reasons:
 \begin{itemize}
 	\item Unexpected optimisations from the compiler for a certain form of the
-		program.
+	      program.
 	\item Increased complexity to computing the formulae for the tighter bounds.
 	\item Modern CPU architecture such as branch predictors
-		\cite{BranchPredictor2024} may offset the overhead of considering ranks that
-		turn out to be too large to have any solutions.
+	      \cite{BranchPredictor2024} may offset the overhead of considering ranks that
+	      turn out to be too large to have any solutions.
 \end{itemize}
 
 For relatively small Chern characters (as those appearing in examples so far),