From 1a27cd54a0cb27e27ca07ced953e03282aaf455a Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Fri, 11 Oct 2024 13:50:20 +0100 Subject: [PATCH] Add some texlab directives to ignore erroneous diagnostics --- tex/bounds-on-semistabilisers.tex | 1013 +++++++++++++++-------------- tex/computing-solutions.tex | 59 +- 2 files changed, 539 insertions(+), 533 deletions(-) diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex index a1ff9fd..a45a5f1 100644 --- a/tex/bounds-on-semistabilisers.tex +++ b/tex/bounds-on-semistabilisers.tex @@ -4,6 +4,7 @@ The proof for the following Theorem \ref{thm:loose-bound-on-r} was hinted at in \cite{SchmidtBenjamin2020Bsot}, but the value appears explicitly in \cite{SchmidtGithub2020} as shown in the following Listing +% texlab: ignore \ref{fig:code:schmidt-bound}. The latter citation is a SageMath \cite{sagemath} library for computing certain quantities related to Bridgeland stabilities on @@ -18,130 +19,130 @@ pseudo-semistabilisers for tilt stability. ]{schmidt-snippet} \begin{theorem}[Bound on $r$ - Benjamin Schmidt] -\label{thm:loose-bound-on-r} -Let $X$ be a smooth projective Picard rank 1 surface with choice of ample line -bundle $L$ such that $\ell\coloneqq c_1(L)$ generates $\neronseveri(X)$ and -take $m\coloneqq \ell^2$. - -Given a Chern character $v$ with $\Delta(v) \geq 0$ and positive rank (or -$\chern_0(v) = 0$ and $\chern_1(v) > 0$) -such that -$\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of -any solution $u$ of Problem \ref{problem:problem-statement-2} is -bounded above by: - -\begin{equation*} - r \leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)} -\end{equation*} + \label{thm:loose-bound-on-r} + Let $X$ be a smooth projective Picard rank 1 surface with choice of ample line + bundle $L$ such that $\ell\coloneqq c_1(L)$ generates $\neronseveri(X)$ and + take $m\coloneqq \ell^2$. + + Given a Chern character $v$ with $\Delta(v) \geq 0$ and positive rank (or + $\chern_0(v) = 0$ and $\chern_1(v) > 0$) + such that + $\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of + any solution $u$ of Problem \ref{problem:problem-statement-2} is + bounded above by: + + \begin{equation*} + r \leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)} + \end{equation*} \end{theorem} \begin{proof} -The Bogomolov form applied to the twisted Chern character is the same as the -untwisted one. - -\noindent -\begin{minipage}{0.57\linewidth} - So $0 \leq \Delta(u)$ (condition 2 from Corollary \ref{cor:num_test_prob2}) - yields: - \begin{equation} - \label{eqn-bgmlv-on-E} - 2\chern_0(u) \chern^{\beta_{-}}_2(u) \leq \chern^{\beta_{-}}_1(u)^2 - \end{equation} + The Bogomolov form applied to the twisted Chern character is the same as the + untwisted one. \noindent - Furthermore, - condition 5 from Corollary \ref{cor:num_test_prob2} - gives: - \begin{equation} - \label{eqn-tilt-cat-cond} - 0 < \chern^{\beta_{-}}_1(u) < \chern^{\beta_{-}}_1(v) - \end{equation} - + \begin{minipage}{0.57\linewidth} + So $0 \leq \Delta(u)$ (condition 2 from Corollary \ref{cor:num_test_prob2}) + yields: + \begin{equation} + \label{eqn-bgmlv-on-E} + 2\chern_0(u) \chern^{\beta_{-}}_2(u) \leq \chern^{\beta_{-}}_1(u)^2 + \end{equation} + + \noindent + Furthermore, + condition 5 from Corollary \ref{cor:num_test_prob2} + gives: + \begin{equation} + \label{eqn-tilt-cat-cond} + 0 < \chern^{\beta_{-}}_1(u) < \chern^{\beta_{-}}_1(v) + \end{equation} + + \noindent + The induced restrictions on possible pairs $\chern^{\beta_-}_0(u)$ and + $\chern^{\beta_-}_2(u)$, + as well as conditions 1 and 6 from Corollary \ref{cor:num_test_prob2} + are illustrated here on the right, with the invalid regions shaded. + \end{minipage} + \hfill + \begin{minipage}{0.39\linewidth} + %\label{prop:proof:fig:pseudowall-pos} + \begin{center} + \def\svgwidth{\linewidth} + {\small + \subimport{../figures/}{schmidt-arg-diag.pdf_tex} + } + \end{center} + \vspace{3pt} + \end{minipage} + + Currently, the unshaded region in the diagram above, corresponding to possible + values for $\chern_0(u)$ and $\chern^{\beta_{-}}_2(u)$ that satisfy the + currently considered restrictions, is unbounded. + This is where the rationality of $\beta_{-}$ comes in. + If $\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$, + then $\chern^{\beta_-}_2(u) \in \frac{1}{\lcm(m,2n^2)}\ZZ$. + In particular, since $\chern_2^{\beta_-}(u) > 0$ we must also have + $\chern^{\beta_-}_2(u) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a + bound for the rank of $u$: + + \begin{align} + \chern_0(u) + & \leq \frac{\chern^{\beta_-}_1(u)^2}{2\chern^{\beta_{-}}_2(u)} \nonumber \\ + & \leq \frac{\lcm(m,2n^2) \chern^{\beta_-}_1(u)^2}{2} \nonumber \\ + & = \frac{mn^2 \chern^{\beta_-}_1(u)^2}{\gcd(m,2n^2)} + \label{proof:first-bound-on-r} + \end{align} \noindent - The induced restrictions on possible pairs $\chern^{\beta_-}_0(u)$ and - $\chern^{\beta_-}_2(u)$, - as well as conditions 1 and 6 from Corollary \ref{cor:num_test_prob2} - are illustrated here on the right, with the invalid regions shaded. -\end{minipage} -\hfill -\begin{minipage}{0.39\linewidth} - %\label{prop:proof:fig:pseudowall-pos} - \begin{center} - \def\svgwidth{\linewidth} - {\small - \subimport{../figures/}{schmidt-arg-diag.pdf_tex} - } - \end{center} - \vspace{3pt} -\end{minipage} - -Currently, the unshaded region in the diagram above, corresponding to possible -values for $\chern_0(u)$ and $\chern^{\beta_{-}}_2(u)$ that satisfy the -currently considered restrictions, is unbounded. -This is where the rationality of $\beta_{-}$ comes in. -If $\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$, -then $\chern^{\beta_-}_2(u) \in \frac{1}{\lcm(m,2n^2)}\ZZ$. -In particular, since $\chern_2^{\beta_-}(u) > 0$ we must also have -$\chern^{\beta_-}_2(u) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a -bound for the rank of $u$: - -\begin{align} - \chern_0(u) - &\leq \frac{\chern^{\beta_-}_1(u)^2}{2\chern^{\beta_{-}}_2(u)} \nonumber \\ - &\leq \frac{\lcm(m,2n^2) \chern^{\beta_-}_1(u)^2}{2} \nonumber \\ - &= \frac{mn^2 \chern^{\beta_-}_1(u)^2}{\gcd(m,2n^2)} - \label{proof:first-bound-on-r} -\end{align} -\noindent -Which we can then immediately bound using Equation \ref{eqn-tilt-cat-cond}. -Alternatively, given that -$\chern_1^{\beta_{-}}(u)$, $\chern_1^{\beta_{-}}(v)\in\frac{1}{n}\ZZ$, -we can tighten this bound on $\chern_1^{\beta_{-}}(u)$ given by that equation to: -\[ - n\chern^{\beta_{-}}_1(u) \leq n\chern^{\beta_{-}}_1(v) - 1 -\] -allowing us to bound the expression in Equation \ref{proof:first-bound-on-r} to -the following: -\[ - \chern_0(u) - \leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)} -\] + Which we can then immediately bound using Equation \ref{eqn-tilt-cat-cond}. + Alternatively, given that + $\chern_1^{\beta_{-}}(u)$, $\chern_1^{\beta_{-}}(v)\in\frac{1}{n}\ZZ$, + we can tighten this bound on $\chern_1^{\beta_{-}}(u)$ given by that equation to: + \[ + n\chern^{\beta_{-}}_1(u) \leq n\chern^{\beta_{-}}_1(v) - 1 + \] + allowing us to bound the expression in Equation \ref{proof:first-bound-on-r} to + the following: + \[ + \chern_0(u) + \leq \frac{m\left(n \chern^{\beta_-}_1(v) - 1\right)^2}{\gcd(m,2n^2)} + \] \end{proof} \begin{sagesilent} -from examples import recurring + from examples import recurring \end{sagesilent} \begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] -\label{exmpl:recurring-first} -Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so -that $m=1$, $\beta_-=\sage{recurring.betaminus}$, -giving $n=\sage{recurring.n}$ and -$\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$. - -Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of -tilt semistabilisers for $v$ are bounded above by $\sage{recurring.loose_bound}$. -However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum -rank that appears turns out to be 25. This will be a recurring example to -illustrate the performance of later theorems about rank bounds + \label{exmpl:recurring-first} + Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so + that $m=1$, $\beta_-=\sage{recurring.betaminus}$, + giving $n=\sage{recurring.n}$ and + $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$. + + Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of + tilt semistabilisers for $v$ are bounded above by $\sage{recurring.loose_bound}$. + However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum + rank that appears turns out to be 25. This will be a recurring example to + illustrate the performance of later theorems about rank bounds \end{example} \begin{sagesilent} -from examples import extravagant + from examples import extravagant \end{sagesilent} \begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] -\label{exmpl:extravagant-first} -Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so -that $m=1$, $\beta_-=\sage{extravagant.betaminus}$, -giving $n=\sage{extravagant.n}$ and -$\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$. - -Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of -tilt semistabilisers for $v$ are bounded above by $\sage{extravagant.loose_bound}$. -However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum -rank that appears turns out to be $\sage{round(extravagant.actual_rmax, 1)}$. + \label{exmpl:extravagant-first} + Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so + that $m=1$, $\beta_-=\sage{extravagant.betaminus}$, + giving $n=\sage{extravagant.n}$ and + $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$. + + Using the above Theorem \ref{thm:loose-bound-on-r}, we get that the ranks of + tilt semistabilisers for $v$ are bounded above by $\sage{extravagant.loose_bound}$. + However, when computing all tilt semistabilisers for $v$ on $\PP^2$, the maximum + rank that appears turns out to be $\sage{round(extravagant.actual_rmax, 1)}$. \end{example} @@ -166,19 +167,19 @@ and Corollary \ref{cor:num_test_prob2}, in a way which better fits our direction of travel. \begin{lemma} -\label{lem:fixed-q-semistabs-criterion} + \label{lem:fixed-q-semistabs-criterion} Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}), with choice of point $P=(\alpha_0,\beta_0)$ on $\Theta_v^{-}$ - (or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.). + (or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.). \noindent If $u$ is a solution to the Problem then $u$ satisfies: \begin{equation} q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right) \label{lem:eqn:cond-for-fixed-q} - \qquad - \text{and} - \qquad + \qquad + \text{and} + \qquad \chern_0(u) > \frac{q}{\mu(v) - \beta_0}. \nonumber \end{equation} @@ -189,11 +190,11 @@ of travel. satisfying the above Equations \ref{lem:eqn:cond-for-fixed-q} is a solution to the Problem if and only if the following are satisfied: \begin{multicols}{3} - \begin{itemize} - \item $\Delta(u) \geq 0$ - \item $\Delta(v-u) \geq 0$ - \item $\chern^{\alpha_0,\beta_0}_2(u) \geq 0$ - \end{itemize} + \begin{itemize} + \item $\Delta(u) \geq 0$ + \item $\Delta(v-u) \geq 0$ + \item $\chern^{\alpha_0,\beta_0}_2(u) \geq 0$ + \end{itemize} \end{multicols} \end{lemma} @@ -202,23 +203,23 @@ of travel. to the problem are given by $u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ which satisfy six numerical conditions. The first line of Equation \ref{lem:eqn:cond-for-fixed-q} is equivalent to - numerical condition 5. + numerical condition 5. The second line is a rearrangement of numerical condition 4, assuming $r>0$ which is given by the first numerical condition. Therefore any solution $u$ satisfies Equation \ref{lem:eqn:cond-for-fixed-q}. But then Theorems \ref{lem:num_test_prob1} and \ref{cor:num_test_prob2}, also give that - $u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ satisfying Equation - \ref{lem:eqn:cond-for-fixed-q} is in fact a solution provided the remaining numerical conditions - 1, 2, 3 and 6 are satisfied. + $u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ satisfying Equation + \ref{lem:eqn:cond-for-fixed-q} is in fact a solution provided the remaining numerical conditions + 1, 2, 3 and 6 are satisfied. This is in essence the second part of the Lemma. \end{proof} \begin{corollary} -\label{cor:rational-beta:fixed-q-semistabs-criterion} + \label{cor:rational-beta:fixed-q-semistabs-criterion} Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}), with choice of point $P=(\alpha_0,\beta_0)$ on $\Theta_v^{-}$ - (or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.), + (or $\alpha_0=0$ and $\beta_0=\beta_{-}(v)$ resp.), and suppose that $\beta_{0}$ is rational, and written $\beta_0=\frac{a_v}{n}$ for some coprime integers $a_v$, $n$ with $n>0$. @@ -227,27 +228,27 @@ of travel. \begin{align*} \chern^{\beta_0}_1(u) = \frac{b_q}{n}, - \qquad - a_v r &\equiv -b_q \pmod{n}, + \qquad + a_v r & \equiv -b_q \pmod{n}, \quad \text{and} \qquad r > \frac{q}{\mu(v) - \beta_0} \end{align*} \[ - \text{for some } - b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\}. + \text{for some } + b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\}. \] And any $u = (r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ satisfying these equations is a solution to the Problem if and only if, again, the following are satisfied: \begin{multicols}{3} - \begin{itemize} - \item $\Delta(u) \geq 0$ - \item $\Delta(v-u) \geq 0$ - \item $\chern^P_2(u) \geq 0$ - \end{itemize} + \begin{itemize} + \item $\Delta(u) \geq 0$ + \item $\Delta(v-u) \geq 0$ + \item $\chern^P_2(u) \geq 0$ + \end{itemize} \end{multicols} \end{corollary} @@ -256,24 +257,24 @@ of travel. This is a specialisation of Lemma \ref{lem:fixed-q-semistabs-criterion} with a modification to the statement \[ - q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right) + q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right) \] - for the case where $\beta_0$ is rational. - Taking $\beta_0 = \frac{a_v}{n}$ we have: + for the case where $\beta_0$ is rational. + Taking $\beta_0 = \frac{a_v}{n}$ we have: \[ - q\coloneqq\chern_1^{\beta_0}(u) - = c - \frac{a_v}{n}r - \in \frac{1}{n}\ZZ + q\coloneqq\chern_1^{\beta_0}(u) + = c - \frac{a_v}{n}r + \in \frac{1}{n}\ZZ \] So $q=\frac{b_q}{n}$ for some $b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\}$ and then ${ - nc - a_v r = b_q - }$ - and so + nc - a_v r = b_q + }$ + and so ${ - a_v r \equiv -b_q - }$ modulo $n$. + a_v r \equiv -b_q + }$ modulo $n$. \end{proof} \subsection{Bounds on \texorpdfstring{`$d$'}{d}-values for Solutions of Problems} @@ -299,7 +300,7 @@ to the Problem satisfies q \coloneqq \chern_1^{\beta_0}(u) \in \left( - 0, \chern_1^{\beta_0}(v) + 0, \chern_1^{\beta_0}(v) \right) \] and also gives a lower bound for $r$ when considering $u$ with a fixed $q$. @@ -322,7 +323,7 @@ In the context of Problem \ref{problem:problem-statement-2}, this condition, when rearranged to a bound on $d$, amounts to: \begin{equation} -\label{eqn:radius-cond-betamin} + \label{eqn:radius-cond-betamin} \chern_2^{\beta_{-}}(u) > 0 \qquad \text{and} @@ -332,7 +333,7 @@ when rearranged to a bound on $d$, amounts to: \end{equation} \begin{sagesilent} -import other_P_choice as problem1 + import other_P_choice as problem1 \end{sagesilent} In the case where we are tackling Problem \ref{problem:problem-statement-1}, @@ -368,7 +369,7 @@ $q = \chern^{\beta_0}_1(u) = c - r\beta_0$, we get: \begin{sagesilent} -from plots_and_expressions import bgmlv2_with_q + from plots_and_expressions import bgmlv2_with_q \end{sagesilent} \begin{equation} \sage{bgmlv2_with_q} @@ -379,7 +380,7 @@ Rearranging to express this as a bound on $d$, we get the following. Recall that $r>0$ is ensured by Equations \ref{lem:eqn:cond-for-fixed-q}. \begin{sagesilent} -from plots_and_expressions import bgmlv2_d_ineq + from plots_and_expressions import bgmlv2_d_ineq \end{sagesilent} \begin{equation} \label{eqn-bgmlv2_d_upperbound} @@ -400,7 +401,7 @@ $d$ yields: \begin{sagesilent} -from plots_and_expressions import bgmlv3_d_upperbound_terms + from plots_and_expressions import bgmlv3_d_upperbound_terms \end{sagesilent} \begin{equation} @@ -433,31 +434,31 @@ see-saw principle. % TODO maybe cover the see-saw principle \begin{align*} \left( - \frac{\chern^{\beta_0}_1(v-u)}{\chern_0(v-u)} + \frac{\chern^{\beta_0}_1(v-u)}{\chern_0(v-u)} \right)^2 - &= + & = \left( - \mu(v-u) - \beta_0 + \mu(v-u) - \beta_0 \right)^2 -\\ - &> + \\ + & > \left( - \mu(v) - \beta_0 + \mu(v) - \beta_0 \right)^2 - &\text{by Equation \ref{lem:proof:slope-order-rltR}} -\\ - &= + & \text{by Equation \ref{lem:proof:slope-order-rltR}} + \\ + & = \left( - \frac{\chern^{\beta_0}_1(v)}{\chern_0(v)} + \frac{\chern^{\beta_0}_1(v)}{\chern_0(v)} \right)^2 -\\ - &\geq + \\ + & \geq 2 \frac{\chern^{\beta_0}_2(v)}{\chern_0(v)} - &\text{since }\Delta(v) \geq 0 + & \text{since }\Delta(v) \geq 0 \:\text{and }\chern_0(v) > 0 -\\ - \text{So} - \quad + \\ + \text{So} + \quad \frac{ \left( q-\chern^{\beta_0}_1(v) @@ -467,9 +468,9 @@ see-saw principle. R-r \right)^2 } - &> + & > 2 \frac{\chern^{\beta_0}_2(v)}{R} - & + & \text{and} \quad \chern_2^{\beta_0}(v) @@ -482,7 +483,7 @@ see-saw principle. R-r \right) } - &< + & < \frac{r\chern^{\beta_0}_2(v)}{R} \end{align*} \noindent @@ -493,7 +494,7 @@ are greater than those of Equation \subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem -\texorpdfstring{\ref{problem:problem-statement-2}}{2}} + \texorpdfstring{\ref{problem:problem-statement-2}}{2}} \label{subsubsect:all-bounds-on-d-prob2} In the context of Problem \ref{problem:problem-statement-2}, with @@ -505,30 +506,30 @@ for a potential solution to the problem of the form in Equation \ref{eqn:u-coords}, amounts to the following: \begin{sagesilent} -from plots_and_expressions import bgmlv2_d_upperbound_terms + from plots_and_expressions import bgmlv2_d_upperbound_terms \end{sagesilent} \begin{align} - d &> + d & > \frac{1}{2}{\beta_0}^2 r + {\beta_0} q, \phantom{+} % to keep terms aligned - &\qquad\text{when\:} r > 0 + & \qquad\text{when\:} r > 0 \label{eqn:radiuscond_d_bound_betamin} -\\ - d &\leq + \\ + d & \leq \sage{bgmlv2_d_upperbound_terms.problem2.linear} + \sage{bgmlv2_d_upperbound_terms.problem2.const} - +\sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic}, - &\qquad\text{when\:} r > 0 - \label{eqn:bgmlv2_d_bound_betamin} -\\ - d &\leq + +\sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic}, + & \qquad\text{when\:} r > 0 + \label{eqn:bgmlv2_d_bound_betamin} + \\ + d & \leq \sage{bgmlv3_d_upperbound_terms.problem2.linear} + \sage{bgmlv3_d_upperbound_terms.problem2.const} % ^ ch_2^\beta(F)=0 for beta_{-} - \sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic}, - &\qquad\text{when\:} r > R - \label{eqn:bgmlv3_d_bound_betamin} + \sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic}, + & \qquad\text{when\:} r > R + \label{eqn:bgmlv3_d_bound_betamin} \end{align} Recalling that $q \coloneqq \chern^{\beta}_1(u) \in (0, \chern^{\beta}_1(v))$, @@ -560,22 +561,22 @@ This will be pursued in Subsection \ref{subsec:bounds-on-semistab-rank-prob-2}. \begin{sagesilent} -from plots_and_expressions import typical_bounds_on_d + from plots_and_expressions import typical_bounds_on_d \end{sagesilent} \begin{figure} -\centering -\sageplot[width=\linewidth]{typical_bounds_on_d} -\caption{ - Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed - value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(u)$. - Where $\chern(v) = (3,2\ell,-2\ell^2)$. -} -\label{fig:d_bounds_xmpl_gnrc_q} + \centering + \sageplot[width=\linewidth]{typical_bounds_on_d} + \caption{ + Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed + value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(u)$. + Where $\chern(v) = (3,2\ell,-2\ell^2)$. + } + \label{fig:d_bounds_xmpl_gnrc_q} \end{figure} \subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem -\texorpdfstring{\ref{problem:problem-statement-1}}{1}} + \texorpdfstring{\ref{problem:problem-statement-1}}{1}} \label{subsubsect:all-bounds-on-d-prob1} Unlike for Problem \ref{problem:problem-statement-2}, @@ -588,37 +589,37 @@ bounds do not share the same assymptote as the lower bound \begin{align} \sage{problem1.radius_condition_d_bound.lhs()} - &> + & > \sage{problem1.radius_condition_d_bound.rhs()} - &\text{when }r>0 + & \text{when }r>0 \label{eqn:prob1:radiuscond} \\ - d &\leq + d & \leq \sage{problem1.bgmlv2_d_upperbound_terms.linear} + \sage{problem1.bgmlv2_d_upperbound_terms.const} + \sage{problem1.bgmlv2_d_upperbound_terms.hyperbolic} - &\text{when }r>R + & \text{when }r>R \label{eqn:prob1:bgmlv2} \\ - d &\leq + d & \leq \sage{problem1.bgmlv3_d_upperbound_terms.linear} + \sage{problem1.bgmlv3_d_upperbound_terms.const} - \sage{problem1.bgmlv3_d_upperbound_terms.hyperbolic} - &\text{when }r>R + \sage{problem1.bgmlv3_d_upperbound_terms.hyperbolic} + & \text{when }r>R \label{eqn:prob1:bgmlv3} \end{align} \begin{figure} -\centering -\sageplot[width=\linewidth]{problem1.example_plot} -\caption{ - Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed - value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(E)$. - Where $\chern(v) = (3,2\ell,-2\ell^2)$ and $P$ chosen as the point on $\Theta_v$ - with $\beta(P)\coloneqq-2/3-1/99$ in the context of Problem - \ref{problem:problem-statement-1}. -} -\label{fig:problem1:d_bounds_xmpl_gnrc_q} + \centering + \sageplot[width=\linewidth]{problem1.example_plot} + \caption{ + Bounds on $d\coloneqq\chern_2(u)$ in terms of $r\coloneqq \chern_0(u)$ for a fixed + value $\chern_1^{\beta}(v)/2$ of $q\coloneqq\chern_1^{\beta}(E)$. + Where $\chern(v) = (3,2\ell,-2\ell^2)$ and $P$ chosen as the point on $\Theta_v$ + with $\beta(P)\coloneqq-2/3-1/99$ in the context of Problem + \ref{problem:problem-statement-1}. + } + \label{fig:problem1:d_bounds_xmpl_gnrc_q} \end{figure} @@ -630,11 +631,11 @@ This is because $R\coloneqq\chern_0(v)$ and $\chern_2^{\beta_0}(v)$ are all strictly positive: \begin{itemize} \item $R > 0$ from the setting of Problem - \ref{problem:problem-statement-1} + \ref{problem:problem-statement-1} \item $\chern_2^{\beta_0}(v)>0$ - by Lemma \ref{lem:comparison-test-with-beta_} - because ${\beta_0} < \beta_{-}$ due to the choice of $P$ being - a point on $\Theta_v^{-}$ + by Lemma \ref{lem:comparison-test-with-beta_} + because ${\beta_0} < \beta_{-}$ due to the choice of $P$ being + a point on $\Theta_v^{-}$ \end{itemize} This means that the lower bound for $d$ will be larger than either of the two @@ -645,7 +646,7 @@ A generic example of this is plotted in Figure idea will be pursued in Subsection \ref{subsec:bounds-on-semistab-rank-prob-1}. \subsection{Bounds on Semistabiliser Rank \texorpdfstring{$r$}{} in Problem -\ref{problem:problem-statement-1}} + \ref{problem:problem-statement-1}} \label{subsec:bounds-on-semistab-rank-prob-1} As discussed at the end of Subsection \ref{subsubsect:all-bounds-on-d-prob1} @@ -659,7 +660,7 @@ the lower bound on $d$ is equal to one of the upper bounds on $d$ \ref{fig:problem1:d_bounds_xmpl_gnrc_q}). \begin{theorem}[Problem \ref{problem:problem-statement-1} upper Bound on $r$] -\label{lem:prob1:r_bound} + \label{lem:prob1:r_bound} Let $u$ be a solution to Problem \ref{problem:problem-statement-1} and $q\coloneqq\chern_1^{B}(u)$. Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression: @@ -682,13 +683,13 @@ the lower bound on $d$ is equal to one of the upper bounds on $d$ Solving for the lower bound in Equation \ref{eqn:prob1:radiuscond} being less than the upper bound in Equation \ref{eqn:prob1:bgmlv2} yields: \begin{equation} - r<\sage{problem1.positive_intersection_bgmlv2} + r<\sage{problem1.positive_intersection_bgmlv2} \end{equation} \noindent Similarly, but with the upper bound in Equation \ref{eqn:prob1:bgmlv3}, gives: \begin{equation} - r<\sage{problem1.positive_intersection_bgmlv3} + r<\sage{problem1.positive_intersection_bgmlv3} \end{equation} \noindent @@ -703,7 +704,7 @@ bound, over $q$ in this range, to get a simpler (but weaker) bound in the following Lemma \ref{lem:prob1:convenient_r_bound}. \begin{theorem}[Problem \ref{problem:problem-statement-1} global upper Bound on $r$] -\label{lem:prob1:convenient_r_bound} + \label{lem:prob1:convenient_r_bound} Let $u$ be a solution to Problem \ref{problem:problem-statement-1}. Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression: \begin{equation} @@ -731,7 +732,7 @@ following Lemma \ref{lem:prob1:convenient_r_bound}. \subsection{Bounds on Semistabiliser Rank \texorpdfstring{$r$}{} in Problem -\ref{problem:problem-statement-2}} + \ref{problem:problem-statement-2}} \label{subsec:bounds-on-semistab-rank-prob-2} Now, the inequalities from the above Subsubsection @@ -763,13 +764,13 @@ $\chern^{\beta_0}(u) > 0$ (Equation \ref{eqn:radiuscond_d_bound_betamin}) we get: \begin{sagesilent} -from plots_and_expressions import \ -positive_radius_condition_with_q, \ -q_value_expr, \ -beta_value_expr + from plots_and_expressions import \ + positive_radius_condition_with_q, \ + q_value_expr, \ + beta_value_expr \end{sagesilent} \begin{equation} -\label{eqn:positive_rad_condition_in_terms_of_q_beta} + \label{eqn:positive_rad_condition_in_terms_of_q_beta} \frac{1}{\lcm(m,2)}\ZZ \ni \:\: @@ -786,10 +787,10 @@ proof of Theorem \begin{sagesilent} -from plots_and_expressions import main_theorem1, betamin_subs + from plots_and_expressions import main_theorem1, betamin_subs \end{sagesilent} \begin{theorem}[First bound on $r$ for Problem \ref{problem:problem-statement-2}] -\label{thm:rmax_with_uniform_eps} + \label{thm:rmax_with_uniform_eps} Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and $m\coloneqq\ell^2$. @@ -803,8 +804,8 @@ from plots_and_expressions import main_theorem1, betamin_subs \begin{align*} \min \left( - \sage{main_theorem1.r_upper_bound1.subs(betamin_subs)}, \:\: - \sage{main_theorem1.r_upper_bound2.subs(betamin_subs)} + \sage{main_theorem1.r_upper_bound1.subs(betamin_subs)}, \:\: + \sage{main_theorem1.r_upper_bound2.subs(betamin_subs)} \right) \end{align*} \noindent @@ -812,57 +813,57 @@ from plots_and_expressions import main_theorem1, betamin_subs \end{theorem} \begin{proof} -Both $d$ and the lower bound in -(Equation \ref{eqn:positive_rad_condition_in_terms_of_q_beta}) -are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. -So, if any of the two upper bounds on $d$ come to within -$\epsilon_v \coloneqq \frac{1}{\lcm(m,2n^2)}$ of this lower bound, -then there are no solutions for $d$. -Hence any corresponding $r$ cannot be a rank of a -pseudo-semistabiliser for $v$. - -To avoid this, we must have, -considering Equations -\ref{eqn:bgmlv2_d_bound_betamin}, -\ref{eqn:bgmlv3_d_bound_betamin}, -\ref{eqn:radiuscond_d_bound_betamin}. + Both $d$ and the lower bound in + (Equation \ref{eqn:positive_rad_condition_in_terms_of_q_beta}) + are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. + So, if any of the two upper bounds on $d$ come to within + $\epsilon_v \coloneqq \frac{1}{\lcm(m,2n^2)}$ of this lower bound, + then there are no solutions for $d$. + Hence any corresponding $r$ cannot be a rank of a + pseudo-semistabiliser for $v$. + + To avoid this, we must have, + considering Equations + \ref{eqn:bgmlv2_d_bound_betamin}, + \ref{eqn:bgmlv3_d_bound_betamin}, + \ref{eqn:radiuscond_d_bound_betamin}. + + \begin{sagesilent} + from plots_and_expressions import \ + assymptote_gap_condition1, assymptote_gap_condition2, k + \end{sagesilent} + + + \begin{align} + \epsilon_v = & \sage{assymptote_gap_condition1.subs(k==1)} \\ + \epsilon_v = & \sage{assymptote_gap_condition2.subs(k==1)} + \end{align} -\begin{sagesilent} -from plots_and_expressions import \ -assymptote_gap_condition1, assymptote_gap_condition2, k -\end{sagesilent} - - -\begin{align} - \epsilon_v =&\sage{assymptote_gap_condition1.subs(k==1)} \\ - \epsilon_v =&\sage{assymptote_gap_condition2.subs(k==1)} -\end{align} - -\noindent -This is equivalent to: + \noindent + This is equivalent to: -\begin{equation} - \label{eqn:thm-bound-for-r-impossible-cond-for-r} - r \leq - \min\left( + \begin{equation} + \label{eqn:thm-bound-for-r-impossible-cond-for-r} + r \leq + \min\left( \sage{ main_theorem1.r_upper_bound1 } , \sage{ main_theorem1.r_upper_bound2 } - \right) -\end{equation} + \right) + \end{equation} \end{proof} \begin{sagesilent} -from plots_and_expressions import q_sol, bgmlv_v, psi + from plots_and_expressions import q_sol, bgmlv_v, psi \end{sagesilent} \begin{corollary}[Second, global bound on $r$ for Problem \ref{problem:problem-statement-2}] -\label{cor:direct_rmax_with_uniform_eps} + \label{cor:direct_rmax_with_uniform_eps} Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and $m\coloneqq\ell^2$. @@ -873,90 +874,90 @@ from plots_and_expressions import q_sol, bgmlv_v, psi are bounded above as follows. \begin{align*} - r &\leq \sage{main_theorem1.corollary_r_bound} - &\text{if } R < \frac{\Delta(v)\lcm(m,2n^2)}{2m} + r & \leq \sage{main_theorem1.corollary_r_bound} + & \text{if } R < \frac{\Delta(v)\lcm(m,2n^2)}{2m} \\ - r &\leq \frac{\Delta(v)\lcm(m,2n^2)}{2m} - &\text{if } R \geq \frac{\Delta(v)\lcm(m,2n^2)}{2m} + r & \leq \frac{\Delta(v)\lcm(m,2n^2)}{2m} + & \text{if } R \geq \frac{\Delta(v)\lcm(m,2n^2)}{2m} \end{align*} \end{corollary} \begin{proof} -The ranks of the pseudo-semistabilisers for $v$ are bounded above by the -maximum over $q\in [0, \chern_1^{\beta_{-}}(v)]$ of the expression in Theorem -\ref{thm:rmax_with_uniform_eps}. -Noticing that the expression is a maximum of two quadratic functions in $q$ -($\beta_0=\beta_{-}(v)$ in this context): -\begin{equation*} - f_1(q)\coloneqq\sage{main_theorem1.r_upper_bound1} \qquad - f_2(q)\coloneqq\sage{main_theorem1.r_upper_bound2} -\end{equation*} -These have their minimums at $q=0$ and $q=\chern_1^{\beta_{-}}(v)$ respectively, -with values 0 and $R>0$ respectively. -So provided that -$f_2\left(\chern^{\beta_{-}}_1(v)\right) < f_1\left(\chern^{\beta_{-}}_1(v)\right)$, -the maximum is achieved at their intersection. -Otherwise, the maximum is achieved at -$\chern^{\beta_{-}}_1(v)$. -So we can say that + The ranks of the pseudo-semistabilisers for $v$ are bounded above by the + maximum over $q\in [0, \chern_1^{\beta_{-}}(v)]$ of the expression in Theorem + \ref{thm:rmax_with_uniform_eps}. + Noticing that the expression is a maximum of two quadratic functions in $q$ + ($\beta_0=\beta_{-}(v)$ in this context): + \begin{equation*} + f_1(q)\coloneqq\sage{main_theorem1.r_upper_bound1} \qquad + f_2(q)\coloneqq\sage{main_theorem1.r_upper_bound2} + \end{equation*} + These have their minimums at $q=0$ and $q=\chern_1^{\beta_{-}}(v)$ respectively, + with values 0 and $R>0$ respectively. + So provided that + $f_2\left(\chern^{\beta_{-}}_1(v)\right) < f_1\left(\chern^{\beta_{-}}_1(v)\right)$, + the maximum is achieved at their intersection. + Otherwise, the maximum is achieved at + $\chern^{\beta_{-}}_1(v)$. + So we can say that -\begin{align*} - r &\leq + \begin{align*} + r & \leq f_{1}(q_{\mathrm{max}}) - &\text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) < + & \text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) < f_1\left(\chern^{\beta_{-}}_1(v)\right) - \\ && + \\ && \text{where $q_{\mathrm{max}}$ is the $q$-value where the $f_i$ intersect} - \\ - r &\leq f_1\left(\chern^{\beta_{-}}(v)\right) - &\text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) \geq + \\ + r & \leq f_1\left(\chern^{\beta_{-}}(v)\right) + & \text{if } f_2\left(\chern^{\beta_{-}}_1(v)\right) \geq f_1\left(\chern^{\beta_{-}}_1(v)\right) -\end{align*} + \end{align*} -\noindent -In the first case, -solving for $f_1(q)=f_2(q)$ yields -\begin{equation*} - q=\sage{q_sol.expand()} -\end{equation*} -And evaluating $f_1$ at this $q$-value gives: -\begin{equation*} - \sage{main_theorem1.corollary_intermediate} -\end{equation*} + \noindent + In the first case, + solving for $f_1(q)=f_2(q)$ yields + \begin{equation*} + q=\sage{q_sol.expand()} + \end{equation*} + And evaluating $f_1$ at this $q$-value gives: + \begin{equation*} + \sage{main_theorem1.corollary_intermediate} + \end{equation*} -\noindent -Finally, noting that $\Delta(v)=\left(\chern_1^{\beta_{-}(v)}(v)\right)^2\ell^2$, -we get the bounds as stated in the statement of the Corollary. + \noindent + Finally, noting that $\Delta(v)=\left(\chern_1^{\beta_{-}(v)}(v)\right)^2\ell^2$, + we get the bounds as stated in the statement of the Corollary. \end{proof} \begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] -\label{exmpl:recurring-second} -Just like in Example \ref{exmpl:recurring-first}, take -$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so -that $m=2$, $\beta=\sage{recurring.betaminus}$, -giving $n=\sage{recurring.n}$. - -Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that -the ranks of tilt semistabilisers for $v$ are bounded above by -$\sage{recurring.corrolary_bound} \approx -\sage{round(float(recurring.corrolary_bound), 1)}$, -which is much closer to real maximum 25 than the original bound 144. + \label{exmpl:recurring-second} + Just like in Example \ref{exmpl:recurring-first}, take + $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so + that $m=2$, $\beta=\sage{recurring.betaminus}$, + giving $n=\sage{recurring.n}$. + + Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that + the ranks of tilt semistabilisers for $v$ are bounded above by + $\sage{recurring.corrolary_bound} \approx + \sage{round(float(recurring.corrolary_bound), 1)}$, + which is much closer to real maximum 25 than the original bound 144. \end{example} \begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] -\label{exmpl:extravagant-second} -Just like in Example \ref{exmpl:extravagant-first}, take -$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so -that $m=2$, $\beta=\sage{extravagant.betaminus}$, -giving $n=\sage{extravagant.n}$. - -Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that -the ranks of tilt semistabilisers for $v$ are bounded above by -$\sage{extravagant.corrolary_bound} \approx -\sage{round(float(extravagant.corrolary_bound), 1)}$, -which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the -original bound 215296. + \label{exmpl:extravagant-second} + Just like in Example \ref{exmpl:extravagant-first}, take + $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so + that $m=2$, $\beta=\sage{extravagant.betaminus}$, + giving $n=\sage{extravagant.n}$. + + Using the above Corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that + the ranks of tilt semistabilisers for $v$ are bounded above by + $\sage{extravagant.corrolary_bound} \approx + \sage{round(float(extravagant.corrolary_bound), 1)}$, + which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the + original bound 215296. \end{example} %% refinements using specific values of q and beta @@ -982,8 +983,8 @@ Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_v$ in the proof of Theorem \ref{thm:rmax_with_uniform_eps}: \begin{lemmadfn}[% - A better alternative to $\epsilon_v$: - $\epsilon_{v,q}$ + A better alternative to $\epsilon_v$: + $\epsilon_{v,q}$ ] \label{lemdfn:epsilon_q} Suppose $d \in \frac{1}{\lcm(m,2n^2)}\ZZ$ satisfies the condition in @@ -1021,94 +1022,94 @@ proof of Theorem \ref{thm:rmax_with_uniform_eps}: \mod{\gcd\left( \frac{n^2\gcd(m,2)}{\gcd(m,2n^2)}, \frac{mn\aa}{\gcd(m,2n^2)} - \right)} + \right)} \end{equation*} \end{lemmadfn} \begin{remark} - The quantity $m$ is determined by the variety, whereas $a_v$ and $n$ are determined by the Chern - character $v$ for which we are trying to find pseudo-semistabilisers. - So the $\gcd$ expression we are taking the modulus with respect to is considered - constant in the context of the problem we are solving for - (i.e. Problem \ref{problem:problem-statement-2}). - However $b_q$ depends on the choice of $q$, that is the value of - $\chern_1^{\beta_{-}(v)}(u)$ for which we are searching for solutions $u$, hence - why $k_{v,q}$ is denoted to depend on $q$ on top of $v$ and the context of the problem. + The quantity $m$ is determined by the variety, whereas $a_v$ and $n$ are determined by the Chern + character $v$ for which we are trying to find pseudo-semistabilisers. + So the $\gcd$ expression we are taking the modulus with respect to is considered + constant in the context of the problem we are solving for + (i.e. Problem \ref{problem:problem-statement-2}). + However $b_q$ depends on the choice of $q$, that is the value of + $\chern_1^{\beta_{-}(v)}(u)$ for which we are searching for solutions $u$, hence + why $k_{v,q}$ is denoted to depend on $q$ on top of $v$ and the context of the problem. \end{remark} \begin{proof} -Consider the following sequence of logical implications. -The one-way implication follows from -$\aa r + \bb \equiv 0 \pmod{n}$, -and the final logical equivalence is just a simplification of the expressions. - -\begin{align} - \frac{ x }{ \lcm(m,2) } - - \frac{ - (\aa r+2\bb)\aa - }{ - 2n^2 - } - = \frac{ k }{ \lcm(m,2n^2) } - \quad \text{for some } x \in \ZZ - \span \span \span \span \span - \label{eqn:finding_better_eps_problem} -\\ \nonumber -\\ \Leftrightarrow& & - - (\aa r+2\bb)\aa - \frac{\lcm(m,2n^2)}{2n^2} - &\equiv k && - \nonumber -\\ &&& - \mod \frac{\lcm(m,2n^2)}{\lcm(m,2)} - \span \span \span - \nonumber -\\ \Rightarrow& & - - \bb\aa - \frac{\lcm(m,2n^2)}{2n^2} - &\equiv k && - \nonumber -\\ &&& - \mod \gcd\left( + Consider the following sequence of logical implications. + The one-way implication follows from + $\aa r + \bb \equiv 0 \pmod{n}$, + and the final logical equivalence is just a simplification of the expressions. + + \begin{align} + \frac{ x }{ \lcm(m,2) } + - \frac{ + (\aa r+2\bb)\aa + }{ + 2n^2 + } + = \frac{ k }{ \lcm(m,2n^2) } + \quad \text{for some } x \in \ZZ + \span \span \span \span \span + \label{eqn:finding_better_eps_problem} + \\ \nonumber + \\ \Leftrightarrow& & + - (\aa r+2\bb)\aa + \frac{\lcm(m,2n^2)}{2n^2} + & \equiv k & & + \nonumber + \\ &&& + \mod \frac{\lcm(m,2n^2)}{\lcm(m,2)} + \span \span \span + \nonumber + \\ \Rightarrow& & + - \bb\aa + \frac{\lcm(m,2n^2)}{2n^2} + & \equiv k & & + \nonumber + \\ &&& + \mod \gcd\left( \frac{\lcm(m,2n^2)}{\lcm(m,2)}, \frac{n \aa \lcm(m,2n^2)}{2n^2} - \right) - \span \span \span - \nonumber -\\ \Leftrightarrow& & - - \bb\aa - \frac{m}{\gcd(m,2n^2)} - &\equiv k && - \label{eqn:better_eps_problem_k_mod_n} -\\ &&& - \mod \gcd\left( + \right) + \span \span \span + \nonumber + \\ \Leftrightarrow& & + - \bb\aa + \frac{m}{\gcd(m,2n^2)} + & \equiv k & & + \label{eqn:better_eps_problem_k_mod_n} + \\ &&& + \mod \gcd\left( \frac{n^2\gcd(m,2)}{\gcd(m,2n^2)}, \frac{mn \aa}{\gcd(m,2n^2)} - \right) - \span \span \span - \nonumber -\end{align} - -In our situation, we want to find the least $k>0$ satisfying -Equation \ref{eqn:finding_better_eps_problem}. -Since such a $k$ must also satisfy Equation \ref{eqn:better_eps_problem_k_mod_n}, -we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition -(a computation only depending on $q$ and $\beta$, but not $r$). -We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying Equation -\ref{eqn:finding_better_eps_problem}, giving the first inequality in Equation -\ref{eqn:epsilon_q_lemma_prop}. -Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality: -$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$. + \right) + \span \span \span + \nonumber + \end{align} + + In our situation, we want to find the least $k>0$ satisfying + Equation \ref{eqn:finding_better_eps_problem}. + Since such a $k$ must also satisfy Equation \ref{eqn:better_eps_problem_k_mod_n}, + we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition + (a computation only depending on $q$ and $\beta$, but not $r$). + We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying Equation + \ref{eqn:finding_better_eps_problem}, giving the first inequality in Equation + \ref{eqn:epsilon_q_lemma_prop}. + Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality: + $\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$. \end{proof} \begin{sagesilent} -from plots_and_expressions import main_theorem2 + from plots_and_expressions import main_theorem2 \end{sagesilent} \begin{theorem}[Third bound on $r$ for Problem \ref{problem:problem-statement-2}] -\label{thm:rmax_with_eps1} + \label{thm:rmax_with_eps1} Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and $m\coloneqq\ell^2$. @@ -1122,8 +1123,8 @@ from plots_and_expressions import main_theorem2 \begin{align*} \min \left( - \sage{main_theorem2.r_upper_bound1.subs(betamin_subs)}, \:\: - \sage{main_theorem2.r_upper_bound2.subs(betamin_subs)} + \sage{main_theorem2.r_upper_bound1.subs(betamin_subs)}, \:\: + \sage{main_theorem2.r_upper_bound2.subs(betamin_subs)} \right), \end{align*} where $k_{v,q}$ is defined as in Definition/Lemma \ref{lemdfn:epsilon_q}, @@ -1142,10 +1143,10 @@ Although the general form of this bound is quite complicated, it does simplify a lot when $m$ is small. \begin{sagesilent} -from plots_and_expressions import main_theorem2_corollary + from plots_and_expressions import main_theorem2_corollary \end{sagesilent} \begin{corollary}[Third bound on $r$ on $\PP^2$ and principally polarised abelian surfaces] -\label{cor:rmax_with_eps1} + \label{cor:rmax_with_eps1} Suppose we are working over $\PP^2$ or a principally polarised abelian surface (or any other surfaces with $m=\ell^2=1$ or $2$). Let $v$ be a fixed Chern character, with $\beta_{-}\coloneqq\beta_{-}(v)=\frac{a_v}{n}$ @@ -1158,127 +1159,127 @@ from plots_and_expressions import main_theorem2_corollary \begin{align*} \min \left( - \sage{main_theorem2_corollary.r_upper_bound1.subs(betamin_subs)}, \:\: - \sage{main_theorem2_corollary.r_upper_bound2.subs(betamin_subs)} + \sage{main_theorem2_corollary.r_upper_bound1.subs(betamin_subs)}, \:\: + \sage{main_theorem2_corollary.r_upper_bound2.subs(betamin_subs)} \right), \end{align*} where $R = \chern_0(v)$ and $k_{v,q}$ is the least $k\in\ZZ_{>0}$ satisfying ${ - k \equiv -\aa\bb - \pmod{n} - }$. + k \equiv -\aa\bb + \pmod{n} + }$. \end{corollary} \begin{proof} -This is a specialisation of Theorem \ref{thm:rmax_with_eps1}, where we can -drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both -$2$ and $2n^2$, and that $a_v$ is coprime to $n$. + This is a specialisation of Theorem \ref{thm:rmax_with_eps1}, where we can + drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both + $2$ and $2n^2$, and that $a_v$ is coprime to $n$. \end{proof} \begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] -\label{exmpl:recurring-third} -Just like in Examples \ref{exmpl:recurring-first} and -\ref{exmpl:recurring-second}, -take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that -$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$ -and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$. -%% TODO transcode notebook code -The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$ -in terms of the possible values for $q\coloneqq\chern_1^{\beta_{-}}(u)$ are as follows: - -\begin{sagesilent} -from examples import bound_comparisons -qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring) -\end{sagesilent} - -\vspace{1em} -\noindent -\directlua{ table_width = 3*4+1 } -\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}} - $q=\chern_1^{\beta_{-}}(u)$ -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$" - tex.sprint(cell) -end} - \\ \hline - Theorem \ref{thm:rmax_with_uniform_eps} -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$" - tex.sprint(cell) -end} - \\ - Theorem \ref{thm:rmax_with_eps1} -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$" - tex.sprint(cell) -end} -\end{tabular} -\vspace{1em} + \label{exmpl:recurring-third} + Just like in Examples \ref{exmpl:recurring-first} and + \ref{exmpl:recurring-second}, + take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that + $\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$ + and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$. + %% TODO transcode notebook code + The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$ + in terms of the possible values for $q\coloneqq\chern_1^{\beta_{-}}(u)$ are as follows: + + \begin{sagesilent} + from examples import bound_comparisons + qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring) + \end{sagesilent} + + \vspace{1em} + \noindent + \directlua{ table_width = 3*4+1 } + \begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}} + $q=\chern_1^{\beta_{-}}(u)$ + \directlua{for i=0,table_width-1 do + local cell = [[ & $\noexpand\sage{qs[]] .. i .. "]}$" + tex.sprint(cell) + end} + \\ \hline + Theorem \ref{thm:rmax_with_uniform_eps} + \directlua{for i=0,table_width-1 do + local cell = [[ & $\noexpand\sage{theorem2_bounds[]] .. i .. "]}$" + tex.sprint(cell) + end} + \\ + Theorem \ref{thm:rmax_with_eps1} + \directlua{for i=0,table_width-1 do + local cell = [[ & $\noexpand\sage{theorem3_bounds[]] .. i .. "]}$" + tex.sprint(cell) + end} + \end{tabular} + \vspace{1em} -\noindent -It is worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1} -reach, but do not exceed, the actual maximum rank 25 of the -pseudo-semistabilisers of $v$ in this case. -As a reminder, the original loose bound from Theorem \ref{thm:loose-bound-on-r} -was 144. + \noindent + It is worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1} + reach, but do not exceed, the actual maximum rank 25 of the + pseudo-semistabilisers of $v$ in this case. + As a reminder, the original loose bound from Theorem \ref{thm:loose-bound-on-r} + was 144. \end{example} \begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] -\label{exmpl:extravagant-third} -Just like in examples \ref{exmpl:extravagant-first} and -\ref{exmpl:extravagant-second}, -take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that -$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$ -and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$. -This example was chosen because the $n$ value is moderatly large, giving more -possible values for $k_{v,q}$, in Definition/Lemma \ref{lemdfn:epsilon_q}. This allows -for a larger possible difference between the bounds given by Theorems -\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound -from the second being up to $\sage{n}$ times smaller, for any given $q$ value. -The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$ -in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows: - -\begin{sagesilent} -qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant) -\end{sagesilent} - - -\vspace{1em} -\noindent -\directlua{ table_width = 12 } -\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}} - $q=\chern_1^\beta(u)$ -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$" - tex.sprint(cell) -end} - &$\cdots$ - \\ \hline - Theorem \ref{thm:rmax_with_uniform_eps} -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$" - tex.sprint(cell) -end} - &$\cdots$ - \\ - Theorem \ref{thm:rmax_with_eps1} -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$" - tex.sprint(cell) -end} - &$\cdots$ -\end{tabular} -\vspace{1em} + \label{exmpl:extravagant-third} + Just like in examples \ref{exmpl:extravagant-first} and + \ref{exmpl:extravagant-second}, + take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that + $\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$ + and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$. + This example was chosen because the $n$ value is moderatly large, giving more + possible values for $k_{v,q}$, in Definition/Lemma \ref{lemdfn:epsilon_q}. This allows + for a larger possible difference between the bounds given by Theorems + \ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound + from the second being up to $\sage{n}$ times smaller, for any given $q$ value. + The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$ + in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows: + + \begin{sagesilent} + qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant) + \end{sagesilent} + + + \vspace{1em} + \noindent + \directlua{ table_width = 12 } + \begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}} + $q=\chern_1^\beta(u)$ + \directlua{for i=0,table_width-1 do + local cell = [[ & $\noexpand\sage{qs[]] .. i .. "]}$" + tex.sprint(cell) + end} + & $\cdots$ + \\ \hline + Theorem \ref{thm:rmax_with_uniform_eps} + \directlua{for i=0,table_width-1 do + local cell = [[ & $\noexpand\sage{theorem2_bounds[]] .. i .. "]}$" + tex.sprint(cell) + end} + & $\cdots$ + \\ + Theorem \ref{thm:rmax_with_eps1} + \directlua{for i=0,table_width-1 do + local cell = [[ & $\noexpand\sage{theorem3_bounds[]] .. i .. "]}$" + tex.sprint(cell) + end} + & $\cdots$ + \end{tabular} + \vspace{1em} -\noindent -However the reduction in the overall bound on $r$ is not as drastic, since all -possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through -cyclically as we consider successive possible values for $q$. -And for each $q$ where $k_{v,q}=1$, both theorems give the same bound. -Calculating the maximums over all values of $q$ yields -$\sage{max(theorem2_bounds)}$ for Theorem \ref{thm:rmax_with_uniform_eps}, and -$\sage{max(theorem3_bounds)}$ for Theorem \ref{thm:rmax_with_eps1}. + \noindent + However the reduction in the overall bound on $r$ is not as drastic, since all + possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through + cyclically as we consider successive possible values for $q$. + And for each $q$ where $k_{v,q}=1$, both theorems give the same bound. + Calculating the maximums over all values of $q$ yields + $\sage{max(theorem2_bounds)}$ for Theorem \ref{thm:rmax_with_uniform_eps}, and + $\sage{max(theorem3_bounds)}$ for Theorem \ref{thm:rmax_with_eps1}. \end{example} diff --git a/tex/computing-solutions.tex b/tex/computing-solutions.tex index 96763db..690dbdf 100644 --- a/tex/computing-solutions.tex +++ b/tex/computing-solutions.tex @@ -13,7 +13,7 @@ a different algorithm will be presented making use of theorems from Section with the goal of cutting down the run time. \subsubsection{Finding possible \texorpdfstring{$r$}{r} and -\texorpdfstring{$c$}{c}} + \texorpdfstring{$c$}{c}} To do this, first calculate the upper bound $r_{\mathrm{max}}$ on the ranks of tilt semistabilisers, as given by Theorem \ref{thm:loose-bound-on-r}. @@ -36,7 +36,7 @@ the Bogomolov inequalities and Consequence 3 of Lemma ($\chern_2^{\beta_{-}}(u)>0$). \subsubsection{Finding \texorpdfstring{$d$}{d} for fixed \texorpdfstring{$r$}{r} -and \texorpdfstring{$c$}{c}} + and \texorpdfstring{$c$}{c}} $\Delta(u) \geq 0$ induces an upper bound $\frac{c^2}{2r}$ on $d$, and the $\chern_2^{\beta_{-}}(u)>0$ condition induces a lower bound on $d$. @@ -51,8 +51,8 @@ end up not yielding any solutions for the problem. In fact, solutions $u$ to our problem with high rank must have $\mu(u)$ close to $\beta_{-}(v)$: \begin{align*} - 0 &\leq \chern_1^{\beta_{-}}(u) \leq \chern_1^{\beta_{-}}(u) \\ - 0 &\leq \mu(u) - \beta_{-} \leq \frac{\chern_1^{\beta_{-}}(v)}{r} + 0 & \leq \chern_1^{\beta_{-}}(u) \leq \chern_1^{\beta_{-}}(u) \\ + 0 & \leq \mu(u) - \beta_{-} \leq \frac{\chern_1^{\beta_{-}}(v)}{r} \end{align*} In particular, it is the $\chern_1^{\beta_{-}}(v-u) \geq 0$ condition which fails for $r$,$c$ pairs with large $r$ and $\frac{c}{r}$ too far from $\beta_{-}$. @@ -66,17 +66,17 @@ alternative algorithm which will later be described in Section \ref{sect:prob2-algorithm}. \begin{center} -\label{table:bench-schmidt-vs-nay} -\begin{tabular}{ |r|l|l| } - \hline - Choice of $v$ on $\mathbb{P}^2$ - & $(3, 2\ell, -2)$ - & $(3, 2\ell, -\frac{15}{2})$ \\ - \hline - \cite[\texttt{tilt.walls_left}]{SchmidtGithub2020} exec time & \sim 20s & >1hr \\ - \cite{NaylorRust2023} exec time & \sim 50ms & \sim 50ms \\ - \hline -\end{tabular} + \label{table:bench-schmidt-vs-nay} + \begin{tabular}{ |r|l|l| } + \hline + Choice of $v$ on $\mathbb{P}^2$ + & $(3, 2\ell, -2)$ + & $(3, 2\ell, -\frac{15}{2})$ \\ + \hline + \cite[\texttt{tilt.walls_left}]{SchmidtGithub2020} exec time & \sim 20s & >1hr \\ + \cite{NaylorRust2023} exec time & \sim 50ms & \sim 50ms \\ + \hline + \end{tabular} \end{center} \section{Computing Solutions to Problem \ref{problem:problem-statement-2}} @@ -94,7 +94,7 @@ The algorithm yields solutions $u=(r,c\ell,d\ell^2)$ to the problem as follows. \subsubsection{Iterating Over Possible -\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}} + \texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}} Given a Chern character $v$, the domain of the problem are first verified: that $v$ has positive rank, that it satisfies $\Delta(v) \geq 0$, and that @@ -102,6 +102,7 @@ $\beta_{-}(v)$ is rational. Take $\beta_{-}(v)=\frac{a_v}{n}$ in simplest terms. Iterate over $q = \frac{b_q}{n} \in (0,\chern_1^{\beta_{-}}(v))\cap\frac{1}{n}\ZZ$. The code used to generate the corresponding values for $b_q$ is shown in Listing +% texlab: ignore \ref{fig:code:consideredb}. \lstinputlisting[ @@ -118,6 +119,7 @@ We can therefore reduce the problem of finding solutions to the more specialised problem of finding the solutions $u$ with each fixed possible $q=\chern_1^\beta(u)$ (i.e. choice of $b$). The code representing this appears in Listing +% texlab: ignore \ref{fig:code:reducingtoeachb}. Line 16 refers to creating an objects representing the context the specialised problem for the fixed $q$ value, with the next line `solving' the specialised @@ -133,9 +135,9 @@ and collect up the results. ]{../tilt.rs/src/tilt_stability/find_all.git-untrack.rs.tex.git-untrack} \subsubsection{Iterating Over Possible -\texorpdfstring{$r=\chern_0(u)$}{r} -for Fixed -\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q} + \texorpdfstring{$r=\chern_0(u)$}{r} + for Fixed + \texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q} } Let $q=\frac{b_q}{n}$, for which we are now solving the more specialised problem of finding @@ -159,6 +161,7 @@ Fixing $r$ and $q$ also determines $c\coloneqq\chern_1(u)$, and so we can genera the corresponding values of $c$, as we generate the $r$ values. It now remains to solve the problem for each of the combinations of fixed values for $q$ and $r$ (and consequently $c$) considered. +% texlab: ignore This is shown in Listing \ref{fig:code:reducingtoeachr}. \lstinputlisting[ @@ -170,11 +173,11 @@ This is shown in Listing \ref{fig:code:reducingtoeachr}. \subsubsection{Iterating Over Possible -\texorpdfstring{$d=\chern_2(u)/\ell^2$}{d} -for Fixed -\texorpdfstring{$r=\chern_0(u)$}{r} -and -\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q} + \texorpdfstring{$d=\chern_2(u)/\ell^2$}{d} + for Fixed + \texorpdfstring{$r=\chern_0(u)$}{r} + and + \texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q} } At this point we are considering a specialisation of the problem @@ -198,8 +201,10 @@ equivalent to bounds on $d$ given by the equations in Subsubsection \ref{subsubsect:all-bounds-on-d-prob2} It therefore remains to just pick values $d\in\frac{1}{\lcm(m,2n^2)}\ZZ$ within the bounds. +% texlab: ignore Listing \ref{fig:code:solveforfixedr} is the code for solving this specialisation of the problem, where the possible $d$ values are computed in +% texlab: ignore Listing \ref{fig:code:possible_chern2}. The explicit code for the bounds can be found in Appendix \ref{appendix:subsubsec:fixed-r}. @@ -232,11 +237,11 @@ decrease in computational time to find the solutions to the problem. This could be due to a range of potential reasons: \begin{itemize} \item Unexpected optimisations from the compiler for a certain form of the - program. + program. \item Increased complexity to computing the formulae for the tighter bounds. \item Modern CPU architecture such as branch predictors - \cite{BranchPredictor2024} may offset the overhead of considering ranks that - turn out to be too large to have any solutions. + \cite{BranchPredictor2024} may offset the overhead of considering ranks that + turn out to be too large to have any solutions. \end{itemize} For relatively small Chern characters (as those appearing in examples so far), -- GitLab