From 1d94f415029289d486e502192add0b9e8b028205 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Tue, 2 May 2023 17:47:48 +0100 Subject: [PATCH] Add alternative expression for hyperbolic term in third bound for d --- main.tex | 12 +++++++----- 1 file changed, 7 insertions(+), 5 deletions(-) diff --git a/main.tex b/main.tex index ab36005..e66912c 100644 --- a/main.tex +++ b/main.tex @@ -413,12 +413,14 @@ This can be rearranged to express a bound on $d$ as follows: v.twist(beta_min).ch[2] + beta_min*q ).expand() + assert bgmlv3_d_upperbound_exp_term == ( + R*v.twist(beta_min).ch[2] + + (C - q)^2/2 + + R*beta_min*q + - D*R + )/(r-R) \end{sagesilent} -Hyperbolic term: -\begin{equation} - \sage{bgmlv3_d_upperbound_exp_term} -\end{equation} \noindent Viewing equation \ref{eqn-bgmlv3_d_upperbound} as an upper bound for $d$ give: @@ -429,7 +431,7 @@ The linear term in $r$ is $\sage{bgmlv3_d_upperbound_linear_term}$. Finally, there's an hyperbolic term in $r$ which tends to 0 as $r \to \infty$, and can be written: -$?$. +$\frac{R\chern^{\beta}_2(F) + (C-q)^2/2 + R\beta q - DR}{r-R}$. In the case $\beta = \beta_{-}$ (or $\beta_{+}$) we have $\chern^{\beta}_2(F) = 0$, so some of these expressions simplify, and in particular, the constant and -- GitLab