diff --git a/main.tex b/main.tex index bda37b37c5fc99d08cb5af09a8a7d5ca4ff79510..99421a171132ab0fb53f85d6379279ae3fc415f7 100644 --- a/main.tex +++ b/main.tex @@ -226,19 +226,21 @@ the circular walls must be nested and non-intersecting. \subsection{Characteristic curves for pseudo-semistabilizers} \begin{lemma}[Numerical tests for left-wall pseudo-semistabilizers] -Let $v$ and $u$ be Chern characters with $\Delta(v), \Delta(u)\geq 0$ and -positive ranks. - -Suppose that $u$ gives rise to a pseudo-wall for $v$, left of the characteristic -vertical line $\chern_1^{\alpha,\beta}(v)=0$ and containing a fixed point $p$ in -it's interior. -To target all left-walls, $p$ can be chosen as the base of the left branch of -the hyperbola $\chern_2^{\alpha,\beta}(v)=0$. -Suppose further that this happens in a way such that $u$ destabilizes $v$ going -`inwards', that is, -$\nu_{\alpha,\beta}(u)<\nu_{\alpha,\beta}(v)$ outside the pseudo-wall, and -$\nu_{\alpha,\beta}(u)>\nu_{\alpha,\beta}(v)$ inside. +Let $v$ and $u$ be Chern characters with positive ranks and $\Delta(v), +\Delta(u)\geq 0$. Let $P$ be a point on the left branch of the characteristic +hyperbola ($\chern_2^{\alpha,\beta}(v)=0$) for $v$. +\noindent +Suppose that the following are satisfied: +\begin{itemize} +\item $u$ gives rise to a pseudo-wall for $v$, left of the characteristic + vertical line $\chern_1^{\alpha,\beta}(v)=0$ +\item The pseudo-wall contains $p$ in it's interior + ($P$ can be chosen to be the base of the left branch to target all left-walls) +\item $u$ destabilizes $v$ going `inwards', that is, + $\nu_{\alpha,\beta}(u)<\nu_{\alpha,\beta}(v)$ outside the pseudo-wall, and + $\nu_{\alpha,\beta}(u)>\nu_{\alpha,\beta}(v)$ inside. +\end{itemize} \noindent Then we have the following: @@ -247,13 +249,138 @@ Then we have the following: (if this is a real wall then $v$ is being semistabilized by a positive rank object) \item $\mu(u)<\mu(v)$, i.e., $u$'s vertical characteristic line is left of $v$'s vertical characteristic line - \item $\chern_2^{p}(u)>0$ + \item $\chern_2^{P}(u)>0$ \end{itemize} Furthermore, only the last two of these consequences are sufficient to recover all of the suppositions above. \end{lemma} +\begin{proof} +Let $u,v$ be Chern characters with positive ranks and +$\Delta(u),\Delta(v) \geq 0$. + + +For the forwards implication, assume that the suppositions of the lemma are +satisfied. The pseudo-wall intersects the characteristic hyperbola for $v$, at +some point $Q$ further up the hyperbola branch than $P$ (to satisfy second +supposition). At $Q$, we have $\mu_Q(v)=0$, and hence $\mu_Q(u)=0$ too. +This means that the characteristic hyperbola for $u$ must intersect that of $v$ +at $Q$. Considering the shapes of the hyperbolae alone, there are 3 distinct +ways that they can intersect, as illustrated in Fig +\ref{fig:hyperbol-intersection}. +These cases are distinguished by whether it is the left, or the right branch of +$u$'s hyperbola, as well as the positions of the base. +However, considering the third supposition, only case 3 (green in figure) is +valid. +This is because we need $\nu_{\alpha,\beta}(u)>0$ +($\nu_{\alpha,\beta}(-u)>0$ in case 1 involving the right hyperbola branch) +for points $(\beta,\alpha)$ on $v$'s characteristic curve inside the pseudo-wall. +Recalling how the sign of $\nu_{\alpha,\beta}(\pm u)$ changes +(illustrated in Fig \ref{fig:charact_curves_vis}), we can eliminate cases 1 and +2. In passing, this implies consequence 3. + +\begin{sagesilent} +def hyperbola_intersection_plot(): + var("alpha beta", domain="real") + coords_range = (beta, -3, -1/2), (alpha, 0, 2.5) + + delta1 = -sqrt(2)+1/100 + delta2 = 1/2 + pbeta=-1.5 + + p = ( + implicit_plot(beta^2 - alpha^2 == 2, *coords_range , rgbcolor = "black", legend_label=r"a") + + implicit_plot((beta+4)^2 - (alpha)^2 == 2, *coords_range , rgbcolor = "red") + + implicit_plot((beta+delta1)^2 - alpha^2 == (delta1-2)^2-2, *coords_range , rgbcolor = "blue") + + implicit_plot((beta+delta2)^2 - alpha^2 == (delta2-2)^2-2, *coords_range , rgbcolor = "green") + + point([-2, sqrt(2)], size=50, rgbcolor="black", zorder=50) + + text("Q",[-2, sqrt(2)+0.1], rgbcolor="black", fontsize="large", clip=true) + + point([pbeta, sqrt(pbeta^2-2)], size=50, rgbcolor="black", zorder=50) + + text("P",[pbeta+0.1, sqrt(pbeta^2-2)], rgbcolor="black", fontsize="large", clip=true) + + circle((-2,0),sqrt(2), linestyle="dashed", rgbcolor="purple") + # dummy lines to add legends (circumvent bug in implicit_plot) + + line([(2,0),(2,0)] , rgbcolor = "purple", linestyle="dotted", legend_label=r"pseudo-wall") + + line([(2,0),(2,0)] , rgbcolor = "black", legend_label=r"$ch_2^{\alpha,\beta}(v)=0$") + + line([(2,0),(2,0)] , rgbcolor = "red", legend_label=r"case 1") + + line([(2,0),(2,0)] , rgbcolor = "blue", legend_label=r"case 2") + + line([(2,0),(2,0)] , rgbcolor = "green", legend_label=r"case 3") + ) + p.xmax(coords_range[0][2]) + p.xmin(coords_range[0][1]) + p.ymax(coords_range[1][2]) + p.ymin(coords_range[1][1]) + p.axes_labels([r"$\beta$", + r"$\alpha$"]) + + return p + +def correct_hyperbola_intersection_plot(): + var("alpha beta", domain="real") + coords_range = (beta, -2.5, 0.5), (alpha, 0, 3) + + delta2 = 1/2 + pbeta=-1.5 + + p = ( + implicit_plot(beta^2 - alpha^2 == 2, *coords_range , rgbcolor = "black", legend_label=r"a") + + implicit_plot((beta+delta2)^2 - alpha^2 == (delta2-2)^2-2, *coords_range , rgbcolor = "green") + + point([-2, sqrt(2)], size=50, rgbcolor="black", zorder=50) + + text("Q",[-2, sqrt(2)+0.1], rgbcolor="black", fontsize="large", clip=true) + + point([pbeta, sqrt(pbeta^2-2)], size=50, rgbcolor="black", zorder=50) + + text("P",[pbeta+0.1, sqrt(pbeta^2-2)], rgbcolor="black", fontsize="large", clip=true) + + circle((-2,0),sqrt(2), linestyle="dashed", rgbcolor="purple") + # dummy lines to add legends (circumvent bug in implicit_plot) + + line([(2,0),(2,0)] , rgbcolor = "purple", linestyle="dotted", legend_label=r"pseudo-wall") + + line([(2,0),(2,0)] , rgbcolor = "black", legend_label=r"$ch_2^{\alpha,\beta}(v)=0$") + + line([(2,0),(2,0)] , rgbcolor = "green", legend_label=r"$ch_2^{\alpha,\beta}(u)=0$") + # vertical characteristic lines + +line([(0,0),(0,coords_range[1][2])], rgbcolor="black", linestyle="dashed", legend_label=r"$ch_1^{\alpha,\beta}(v)=0$") + +line([(-delta2,0),(-delta2,coords_range[1][2])], rgbcolor="green", linestyle="dashed", legend_label=r"$ch_1^{\alpha,\beta}(u)=0$") + +line([(0,0),(-coords_range[1][2],coords_range[1][2])], rgbcolor="black", linestyle="dotted", legend_label=r"assymptote for $ch_2^{\alpha,\beta}(v)=0$") + +line([(-delta2,0),(-delta2-coords_range[1][2],coords_range[1][2])], rgbcolor="green", linestyle="dotted", legend_label=r"assymptote for $ch_1^{\alpha,\beta}(u)=0$") + + ) + p.set_legend_options(loc="upper right") + p.xmax(coords_range[0][2]) + p.xmin(coords_range[0][1]) + p.ymax(coords_range[1][2]) + p.ymin(coords_range[1][1]) + p.axes_labels([r"$\beta$", r"$\alpha$"]) + + + return p +\end{sagesilent} +\begin{figure} +\begin{subfigure}[t]{0.48\textwidth} + \centering + \sageplot[width=\textwidth]{hyperbola_intersection_plot()} + \caption{Three ways the characteristic hyperbola for $u$ can intersect the left + branch of the characteristic hyperbola for $v$} + \label{fig:hyperbol-intersection} +\end{subfigure} +\hfill +\begin{subfigure}[t]{0.48\textwidth} + \centering + \sageplot[width=\textwidth]{correct_hyperbola_intersection_plot()} + \caption{Closer look at characteristic curves for valid case} + \label{fig:correct-hyperbol-intersection} +\end{subfigure} +\end{figure} + +Fixing attention on the only valid case (2), illustrated in Fig +\ref{fig:correct-hyperbol-intersection}. +We must have the left branch of the characteristic hyperbola for $u$ taking a +base-point to the right of that of $v$'s, but then, further up, crossing over to +the left side. The latter fact implies that the assymptote for $u$ must be to +the left of the one for $v$. Given that they are parallel and intersect the +$\beta$-axis at $\beta=\mu(u)$ and $\beta=\mu(v)$ respectively. +We must have $\mu(u)<\mu(v)$, that is, the vertical characteristic line for $u$ +is to the left of the one for $v$ (consequence 2). +Finally, the fact that it is the left branch of the hyperbola for $u$ implies +consequence 1. + +\end{proof} \begin{sagesilent} v = Chern_Char(3, 2, -2)