diff --git a/main.tex b/main.tex index a399bbac748905a8d59eb2940e15afd0bda07ea3..08bca1f309f64a6a64d04b2e1aaf937f5bcd67f8 100644 --- a/main.tex +++ b/main.tex @@ -490,92 +490,9 @@ Recalling how the sign of $\nu_{\alpha,\beta}(\pm u)$ changes (illustrated in Fig \ref{fig:charact_curves_vis}), we can eliminate cases 1 and 2. \begin{sagesilent} -def hyperbola_intersection_plot(): - var("alpha beta", domain="real") - coords_range = (beta, -3, -1/2), (alpha, 0, 2.5) - delta1 = -sqrt(2)+1/100 - delta2 = 1/2 - pbeta=-1.5 - text_args = {"fontsize":"large", "clip":True} - black_text_args = {"rgbcolor":"black", **text_args} - p = ( - implicit_plot( beta^2 - alpha^2 == 2, - *coords_range , rgbcolor = "black", legend_label=r"a") - + implicit_plot( (beta+4)^2 - (alpha)^2 == 2, - *coords_range , rgbcolor = "red") - + implicit_plot( (beta+delta1)^2 - alpha^2 == (delta1-2)^2-2, - *coords_range , rgbcolor = "blue") - + implicit_plot( (beta+delta2)^2 - alpha^2 == (delta2-2)^2-2, - *coords_range , rgbcolor = "green") - + point([-2, sqrt(2)], size=50, rgbcolor="black", zorder=50) - + text("Q",[-2, sqrt(2)+0.1], **black_text_args) - + point([pbeta, sqrt(pbeta^2-2)], size=50, rgbcolor="black", zorder=50) - + text("P",[pbeta+0.1, sqrt(pbeta^2-2)], **black_text_args) - + circle((-2,0),sqrt(2), linestyle="dashed", rgbcolor="purple") - # dummy lines to add legends (circumvent bug in implicit_plot) - + line([(2,0),(2,0)] , rgbcolor = "purple", linestyle="dotted", - legend_label=r"pseudo-wall") - + line([(2,0),(2,0)] , rgbcolor = "black", - legend_label=r"$\Theta_v^-$") - + line([(2,0),(2,0)] , rgbcolor = "red", legend_label=r"$\Theta_u$ case 1") - + line([(2,0),(2,0)] , rgbcolor = "blue", legend_label=r"$\Theta_u$ case 2") - + line([(2,0),(2,0)] , rgbcolor = "green", legend_label=r"$\Theta_u$ case 3") - ) - p.set_legend_options(loc="upper right", font_size="x-large", - font_family="serif") - p.xmax(coords_range[0][2]) - p.xmin(coords_range[0][1]) - p.ymax(coords_range[1][2]) - p.ymin(coords_range[1][1]) - p.axes_labels([r"$\beta$", r"$\alpha$"]) - return p - -def correct_hyperbola_intersection_plot(): - var("alpha beta", domain="real") - coords_range = (beta, -2.5, 0.5), (alpha, 0, 3) - delta2 = 1/2 - pbeta=-1.5 - text_args = {"fontsize":"large", "clip":True} - black_text_args = {"rgbcolor":"black", **text_args} - p = ( - implicit_plot( beta^2 - alpha^2 == 2, - *coords_range , rgbcolor = "black", legend_label=r"a") - + implicit_plot((beta+delta2)^2 - alpha^2 == (delta2-2)^2-2, - *coords_range , rgbcolor = "green") - + point([-2, sqrt(2)], size=50, rgbcolor="black", zorder=50) - + text("Q",[-2, sqrt(2)+0.1], **black_text_args) - + point([pbeta, sqrt(pbeta^2-2)], size=50, rgbcolor="black", zorder=50) - + text("P",[pbeta+0.1, sqrt(pbeta^2-2)], **black_text_args) - + circle((-2,0),sqrt(2), linestyle="dashed", rgbcolor="purple") - # dummy lines to add legends (circumvent bug in implicit_plot) - + line([(2,0),(2,0)] , rgbcolor = "purple", linestyle="dotted", - legend_label=r"pseudo-wall") - + line([(2,0),(2,0)] , rgbcolor = "black", - legend_label=r"$\Theta_v^-$") - + line([(2,0),(2,0)] , rgbcolor = "green", - legend_label=r"$\Theta_u^-$") - # vertical characteristic lines - + line([(0,0),(0,coords_range[1][2])], - rgbcolor="black", linestyle="dashed", - legend_label=r"$V_v$") - + line([(-delta2,0),(-delta2,coords_range[1][2])], - rgbcolor="green", linestyle="dashed", - legend_label=r"$V_u$") - + line([(-delta2,0),(-delta2-coords_range[1][2],coords_range[1][2])], - rgbcolor="green", linestyle="dotted", - legend_label=r"$\Theta_u^-$ assymptote") - + line([(0,0),(-coords_range[1][2],coords_range[1][2])], - rgbcolor="black", linestyle="dotted", - legend_label=r"$\Theta_v^-$ assymptote") - ) - p.set_legend_options(loc="upper right", font_size="x-large", - font_family="serif") - p.xmax(coords_range[0][2]) - p.xmin(coords_range[0][1]) - p.ymax(coords_range[1][2]) - p.ymin(coords_range[1][1]) - p.axes_labels([r"$\beta$", r"$\alpha$"]) - return p +from plots_and_expressions import \ +hyperbola_intersection_plot, \ +correct_hyperbola_intersection_plot \end{sagesilent} \begin{figure}