From 20c165a07d3c350dbe3923b84023fb2d9cd36a22 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Thu, 29 Jun 2023 22:06:16 +0100 Subject: [PATCH] Update statement of main lemma to be aware of quotient being in tilt --- main.tex | 28 +++++++++++----------------- 1 file changed, 11 insertions(+), 17 deletions(-) diff --git a/main.tex b/main.tex index 502ee04..55c7b68 100644 --- a/main.tex +++ b/main.tex @@ -284,36 +284,30 @@ the circular walls must be nested and non-intersecting. \begin{lemma}[Numerical tests for left-wall pseudo-semistabilizers] \label{lem:pseudo_wall_numerical_tests} -Let $v$ and $u$ be Chern characters with positive ranks and $\Delta(v), -\Delta(u)\geq 0$. Let $P$ be a point on $\Theta_v^-$. +Let $v$ and $u$ be Chern characters with $\Delta(v), +\Delta(u)\geq 0$, and $v$ has positive rank. Let $P$ be a point on $\Theta_v^-$. \noindent -Suppose that the following are satisfied: +The following conditions: \bgroup \renewcommand{\labelenumi}{\alph{enumi}.} \begin{enumerate} -\item $u$ gives rise to a pseudo-wall for $v$, left of the vertical line $V_v$ -\item The pseudo-wall contains $P$ in it's interior - ($P$ can be chosen to be the base of the left branch to target all left-walls) +\item $u$ is a pseudo-semistabilizer of $v$ at some point on $\Theta_v^-$ above + $P$ \item $u$ destabilizes $v$ going `inwards', that is, - $\nu_{\alpha,\beta}(\pm u)<\nu_{\alpha,\beta}(v)$ outside the pseudo-wall, and - $\nu_{\alpha,\beta}(\pm u)>\nu_{\alpha,\beta}(v)$ inside. - Where we use $+u$ or $-u$ depending on whether $(\beta,\alpha)$ is on the left - or right (resp.) of $V_u$. + $\nu_{\alpha,\beta}(u)<\nu_{\alpha,\beta}(v)$ outside the pseudo-wall, and + $\nu_{\alpha,\beta}(u)>\nu_{\alpha,\beta}(v)$ inside. \end{enumerate} \egroup \noindent -Then we have the following: +are equivalent to the following more numerical conditions: \begin{enumerate} - \item The pseudo-wall is left of $V_u$ - (if this is a real wall then $v$ is being semistabilized by an object with - Chern character $u$, not $-u$) - \item $\beta(P)<\mu(u)<\mu(v)$, i.e., $V_u$ is strictly between $P$ and $V_v$. + \item $u$ has positive rank + \item $\beta(P)<\mu(u)<\mu(v)$, i.e. $V_u$ is strictly between $P$ and $V_v$. + \item $\chern_1^{\beta(P)}(v-u)\geq0$ \item $\chern_2^{P}(u)>0$ \end{enumerate} -Furthermore, only the last two of these consequences are sufficient to recover -all of the suppositions above. \end{lemma} \begin{proof} -- GitLab