From 22689d8b39aabe89debb78242ff5d09895ec121c Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Thu, 22 Jun 2023 16:46:53 +0100 Subject: [PATCH] Add extravagant set of examples --- main.tex | 108 ++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 107 insertions(+), 1 deletion(-) diff --git a/main.tex b/main.tex index f26a6c4..6eb1e74 100644 --- a/main.tex +++ b/main.tex @@ -548,6 +548,33 @@ rank that appears turns out to be 25. This will be a recurring example to illustrate the performance of later theorems about rank bounds \end{example} +\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] +\label{exmpl:extravagant-first} +\begin{sagesilent} +extravagant = Object() +extravagant.chern = Chern_Char(29, 13, -3/2) +extravagant.b = beta_minus(extravagant.chern) +extravagant.twisted = extravagant.chern.twist(extravagant.b) +extravagant.actual_rmax = 49313 +\end{sagesilent} +Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so +that $m=2$, $\beta_-=\sage{extravagant.b}$, +giving $n=\sage{extravagant.b.denominator()}$ and +$\chern_1^{\sage{extravagant.b}}(F) = \sage{extravagant.twisted.ch[1]}$. + +\begin{sagesilent} +n = extravagant.b.denominator() +m = 2 +loose_bound = ( + m*n^2*extravagant.twisted.ch[1]^2 +) / gcd(m, 2*n^2) +\end{sagesilent} +Using the above theorem \ref{thm:loose-bound-on-r}, we get that the ranks of +tilt semistabilizers for $v$ are bounded above by $\sage{loose_bound}$. +However, when computing all tilt semistabilizers for $v$ on $\PP^2$, the maximum +rank that appears turns out to be $\sage{extravagant.actual_rmax}$. +\end{example} + \section{B.Schmidt's Method} Goals: @@ -1498,6 +1525,29 @@ the ranks of tilt semistabilizers for $v$ are bounded above by $\sage{corrolary_bound} \approx \sage{float(corrolary_bound)}$, which is much closer to real maximum 25 than the original bound 144. \end{example} +\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] +\label{exmpl:extravagant-second} +Just like in example \ref{exmpl:extravagant-first}, take +$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so +that $m=2$, $\beta=\sage{extravagant.b}$, +giving $n=\sage{extravagant.b.denominator()}$. + +\begin{sagesilent} +extravagant.n = extravagant.b.denominator() +extravagant.bgmlv = extravagant.chern.Q_tilt() +corrolary_bound = ( + r_upper_bound_all_q.expand() + .subs(Delta==extravagant.bgmlv) + .subs(nu==1) ## \ell^2=1 on P^2 + .subs(R==extravagant.chern.ch[0]) + .subs(n==extravagant.n) +) +\end{sagesilent} +Using the above corrolary \ref{cor:direct_rmax_with_uniform_eps}, we get that +the ranks of tilt semistabilizers for $v$ are bounded above by +$\sage{corrolary_bound} \approx \sage{float(corrolary_bound)}$, +which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the original bound 7744. +\end{example} %% refinements using specific values of q and beta These bound can be refined a bit more by considering restrictions from the @@ -1710,8 +1760,9 @@ def bound_comparisons(example): qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring) \end{sagesilent} +\noindent \directlua{ table_width = 3*4+1 } -\directlua{ table_width = 3*4+1 }\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}} +\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}} $q=\chern_1^\beta(u)$ \directlua{for i=0,table_width-1 do local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$" @@ -1739,6 +1790,61 @@ was 144. \end{example} +\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] +\label{exmpl:extravagant-third} +Just like in examples \ref{exmpl:extravagant-first} and +\ref{exmpl:extravagant-second}, +take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that +$\beta=\sage{extravagant.b}$, giving $n=\sage{n:=extravagant.b.denominator()}$ +and $\chern_1^{\sage{extravagant.b}}(F) = \sage{extravagant.twisted.ch[1]}$. +This example was chosen because the $n$ value is moderatly large, giving more +possible values for $k_{v,q}$, in dfn/lemma \ref{lemdfn:epsilon_q}. This allows +for a larger possible difference between the bounds given by theorems +\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound +from the second being up to $\sage{n}$ smaller, for any given $q$ value. +The (non-exclusive) upper bounds for $r:=\chern_0(u)$ of a tilt semistabilizer $u$ of $v$ +in terms of the first few smallest possible values for $q:=\chern_1^{\beta}(u)$ are as follows: + +\begin{sagesilent} +qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant) +\end{sagesilent} + + +\noindent +\directlua{ table_width = 12 } +\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}} + $q=\chern_1^\beta(u)$ +\directlua{for i=0,table_width-1 do + local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$" + tex.sprint(cell) +end} + &$\cdots$ + \\ \hline + Thm \ref{thm:rmax_with_uniform_eps} +\directlua{for i=0,table_width-1 do + local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$" + tex.sprint(cell) +end} + &$\cdots$ + \\ + Thm \ref{thm:rmax_with_eps1} +\directlua{for i=0,table_width-1 do + local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$" + tex.sprint(cell) +end} + &$\cdots$ +\end{tabular} + + +\noindent +However the reduction in the overall bound on $r$ is not as drastic, since all +possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through +cyclically as we consider successive possible values for $q$. +Calculating the maximums over all values of $q$ yields +$\sage{max(theorem2_bounds)}$ for theorem \ref{thm:rmax_with_uniform_eps}, and +$\sage{max(theorem3_bounds)}$ for theorem \ref{thm:rmax_with_eps1}. +\end{example} + \egroup % end scope where beta redefined to beta_{-} \subsubsection{All Semistabilizers Giving Sufficiently Large Circular Walls Left -- GitLab