diff --git a/main.tex b/main.tex index 82fe8b56b51907d9d09191391f1a3e8b815d8905..7e754d5a9181da8a43cfa82fbca67b9907a4a8be 100644 --- a/main.tex +++ b/main.tex @@ -261,19 +261,28 @@ bgmlv1_d_lowerbound_linear_term = ( ).expand() # Verify the simplified forms of the terms that will be mentioned in text + assert bgmlv1_d_lowerbound_const_term == ( v.twist(beta_min).ch[2]/2 + beta_min*q ) +var("chbv",domain="real") # symbol to represent ch_1^\beta(v) + assert bgmlv1_d_lowerbound_exp_term == ( ( - - R*v.twist(beta_min).ch[2]/2 - - R*beta_min*q - + C*q - - q^2 - )/(R-2*r) -).expand() + # Keep hold of this alternative expression: + bgmlv1_d_lowerbound_exp_term_alt := + ( + - R*chbv/2 + - R*beta_min*q + + C*q + - q^2 + )/(R-2*r) + ) + .subs(chbv == v.twist(beta_min).ch[2]) + .expand() +) \end{sagesilent} @@ -476,13 +485,18 @@ assert bgmlv3_d_upperbound_const_term == ( ) assert bgmlv3_d_upperbound_exp_term == ( - bgmlv3_d_upperbound_const_term_alt2 := ( - R*v.twist(beta_min).ch[2] - + (C - q)^2/2 - + R*beta_min*q - - D*R - )/(r-R) + # Keep hold of this alternative expression: + bgmlv3_d_upperbound_const_term_alt2 := + ( + R*chbv + + (C - q)^2/2 + + R*beta_min*q + - D*R + )/(r-R) + ) + .subs(chbv == v.twist(beta_min).ch[2]) # subs real val of ch_1^\beta(v) + .expand() ) \end{sagesilent} @@ -514,6 +528,13 @@ $(r,c,d)$ that satisfy all inequalities to give a pseudowall. Suppose we take $\beta = \beta_{-}$ in the previous subsections, to find all circular walls to the left of the vertical wall (TODO as discussed in ref). +\begin{equation*} + \sage{ bgmlv3_d_upperbound_const_term } +\end{equation*} +\begin{equation*} + \sage{bgmlv3_d_upperbound_const_term_alt1.subs(chbv == 0)} +\end{equation*} + \section{Conclusion}