diff --git a/main.tex b/main.tex
index 839c5d4d90de84735482d25a5a1b6acc2a3a46be..efd077090495400b841f90ae9dc24a2833979845 100644
--- a/main.tex
+++ b/main.tex
@@ -45,25 +45,7 @@ sorting=ynt
 
 \begin{document}
 
-\begin{sagesilent}
-# Requires extra package:
-#! sage -pip install "pseudowalls==0.0.3" --extra-index-url https://gitlab.com/api/v4/projects/43962374/packages/pypi/simple
-
-from pseudowalls import *
 
-Δ = lambda v: v.Q_tilt()
-mu = stability.Mumford().slope
-
-def beta_minus(v):
-  beta = stability.Tilt().beta
-  solutions = solve(
-    stability.Tilt(alpha=0).degree(v)==0,
-    beta)
-  return min(map(lambda s: s.rhs(), solutions))
-
-class Object(object):
-  pass
-\end{sagesilent}
 
 \title{Tighter Bounds for Ranks of Tilt Semistabilizers on Picard Rank 1 Surfaces
 \\[1em] \large
@@ -330,33 +312,7 @@ Because of this, when using these characteristic curves, only positive ranks are
 considered, as negative rank objects are implicitly considered on the right hand
 side of $V_v$.
 
-\begin{sagesilent}
-def charact_curves(v):
-    alpha = stability.Tilt().alpha
-    beta = stability.Tilt().beta
-    coords_range = (beta, -4, 5), (alpha, 0, 4)
-    text_args = {"fontsize":"xx-large", "clip":True}
-    black_text_args = {"rgbcolor": "black", **text_args}
-    p = (
-      implicit_plot(stability.Tilt().degree(v), *coords_range )
-      + line([(mu(v),0),(mu(v),5)], linestyle = "dashed")
-      + text(r"$\Theta_v^+$",[3.5, 2], rotation=45, **text_args)
-      + text(r"$V_v$", [0.43, 1.5], rotation=90, **text_args)
-      + text(r"$\Theta_v^-$", [-2.2, 2], rotation=-45, **text_args)
-      + text(r"$\nu_{\alpha, \beta}(v)>0$", [-3, 1], **black_text_args)
-      + text(r"$\nu_{\alpha, \beta}(v)<0$", [-1, 3], **black_text_args)
-      + text(r"$\nu_{\alpha, \beta}(-v)>0$", [2, 3], **black_text_args)
-      + text(r"$\nu_{\alpha, \beta}(-v)<0$", [4, 1], **black_text_args)
-    )
-    p.xmax(5)
-    p.xmin(-4)
-    p.ymax(4)
-    p.axes_labels([r"$\beta$", r"$\alpha$"])
-    return p
-
-v1 = Chern_Char(3, 2, -2)
-v2 = Chern_Char(3, 2, 2/3)
-\end{sagesilent}
+
 
 \begin{sagesilent}
 from plots_and_expressions import \
@@ -728,9 +684,7 @@ The restrictions on $\chern^{\beta_-}_0(E)$ and $\chern^{\beta_-}_2(E)$
 is best seen with the following graph:
 
 % TODO: hyperbola restriction graph (shaded)
-\begin{sagesilent}
-var("m") # Initialize symbol for variety parameter
-\end{sagesilent}
+
 
 This is where the rationality of $\beta_{-}$ comes in. If
 $\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$. Then
@@ -888,17 +842,7 @@ Take $\beta = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem
 		&& \text{where $r,c,2d\in \ZZ$}
 \end{align}
  
-\begin{sagesilent}
-# Requires extra package:
-#! sage -pip install "pseudowalls==0.0.3" --extra-index-url https://gitlab.com/api/v4/projects/43962374/packages/pypi/simple
-
-from pseudowalls import *
-
-v = Chern_Char(*var("R C D", domain="real"))
-u = Chern_Char(*var("r c d", domain="real"))
 
-Δ = lambda v: v.Q_tilt()
-\end{sagesilent}
 
 Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in
 lemma \ref{lem:num_test_prob1}
@@ -906,18 +850,7 @@ lemma \ref{lem:num_test_prob1}
 that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$,
 and so we can write:
 
-\begin{sagesilent}
-ts = stability.Tilt
-var("beta", domain="real")
-
-c_lower_bound = -(
-	ts(beta=beta).rank(u)
-	/ts().alpha
-).expand() + c
 
-var("q", domain="real")
-c_in_terms_of_q = c_lower_bound + q
-\end{sagesilent}
 
 \begin{sagesilent}
 from plots_and_expressions import c_in_terms_of_q	
@@ -974,22 +907,10 @@ from lemma \ref{lem:num_test_prob1}
 (or corollary \ref{cor:num_test_prob2}).
 
 
-\begin{sagesilent}
-# First Bogomolov-Gieseker form expression that must be non-negative:
-bgmlv2 = Δ(u)
-\end{sagesilent}
-
 \noindent
 Expressing $\Delta(u)\geq 0$ in terms of $q$ as defined in eqn \ref{eqn-cintermsofm}
 we get the following:
 
-\begin{sagesilent}
-bgmlv2_with_q = (
-	bgmlv2
-	.expand()
-	.subs(c == c_in_terms_of_q)
-)
-\end{sagesilent}
 
 \begin{sagesilent}
 from plots_and_expressions import bgmlv2_with_q
@@ -1006,15 +927,6 @@ This can be rearranged to express a bound on $d$ as follows
 in lemma \ref{lem:num_test_prob1} or corollary
 \ref{cor:num_test_prob2} that $r>0$):
 
-\begin{sagesilent}
-bgmlv2_d_ineq = (
-	(0 <= bgmlv2_with_q)/2/r # rescale assuming r > 0
-	+ d # Rearrange for d
-).expand()
-
-# Keep hold of lower bound for d
-bgmlv2_d_upperbound = bgmlv2_d_ineq.rhs()
-\end{sagesilent}
 
 \begin{sagesilent}
 from plots_and_expressions import bgmlv2_d_ineq
@@ -1024,30 +936,6 @@ from plots_and_expressions import bgmlv2_d_ineq
 	\sage{bgmlv2_d_ineq}
 \end{equation}
 
-\begin{sagesilent}
-# Seperate out the terms of the lower bound for d
-
-bgmlv2_d_upperbound_without_hyp = (
-	bgmlv2_d_upperbound
-	.subs(1/r == 0)
-)
-
-bgmlv2_d_upperbound_const_term = (
-	bgmlv2_d_upperbound_without_hyp
-	.subs(r==0)
-)
-
-bgmlv2_d_upperbound_linear_term = (
-	bgmlv2_d_upperbound_without_hyp
-	- bgmlv2_d_upperbound_const_term
-).expand()
-
-bgmlv2_d_upperbound_exp_term = (
-	bgmlv2_d_upperbound
-	- bgmlv2_d_upperbound_without_hyp
-).expand()
-\end{sagesilent}
-
 \begin{sagesilent}
 from plots_and_expressions import \
 bgmlv2_d_upperbound_const_term, \
@@ -1084,100 +972,6 @@ from lemma \ref{lem:num_test_prob1}
 Expressing $\Delta(v-u)\geq 0$ in term of $q$ and rearranging as a bound on
 $d$ yields:
 
-\begin{sagesilent}
-# Third Bogomolov-Gieseker form expression that must be non-negative:
-bgmlv3 = Δ(v-u)
-bgmlv3_with_q = (
-	bgmlv3
-	.expand()
-	.subs(c == c_in_terms_of_q)
-)
-var("r_alt",domain="real") # r_alt = r - R temporary substitution
-
-bgmlv3_with_q_reparam = (
-	bgmlv3_with_q
-	.subs(r == r_alt + R)
-	/r_alt # This operation assumes r_alt > 0
-).expand()
-
-bgmlv3_d_ineq = (
-	((0 <= bgmlv3_with_q_reparam)/2 + d) # Rearrange for d
-	.subs(r_alt == r - R) # Resubstitute r back in
-	.expand()
-)
-
-# Check that this equation represents a bound for d
-assert bgmlv3_d_ineq.lhs() == d
-
-bgmlv3_d_upperbound = bgmlv3_d_ineq.rhs() # Keep hold of lower bound for d
-
-# Seperate out the terms of the lower bound for d
-
-bgmlv3_d_upperbound_without_hyp = (
-	bgmlv3_d_upperbound
-	.subs(1/(R-r) == 0)
-)
-
-bgmlv3_d_upperbound_const_term = (
-	bgmlv3_d_upperbound_without_hyp
-	.subs(r==0)
-)
-
-bgmlv3_d_upperbound_linear_term = (
-	bgmlv3_d_upperbound_without_hyp
-	- bgmlv3_d_upperbound_const_term
-).expand()
-
-bgmlv3_d_upperbound_exp_term = (
-	bgmlv3_d_upperbound
-	- bgmlv3_d_upperbound_without_hyp
-).expand()
-
-# Verify the simplified forms of the terms that will be mentioned in text
-
-var("chb1v chb2v",domain="real") # symbol to represent ch_1^\beta(v)
-var("psi phi", domain="real") # symbol to represent ch_1^\beta(v) and
-# ch_2^\beta(v)
-
-assert bgmlv3_d_upperbound_const_term == ( 
-	(
-		# keep hold of this alternative expression:
-		bgmlv3_d_upperbound_const_term_alt := (
-			phi
-			+ beta*q
-		)
-	)
-	.subs(phi == v.twist(beta).ch[2]) # subs real val of ch_1^\beta(v)
-	.expand()
-)
-
-assert bgmlv3_d_upperbound_exp_term == (
-	(
-		# Keep hold of this alternative expression:
-		bgmlv3_d_upperbound_exp_term_alt :=
-		(
-			R*phi
-			+ (C - q)^2/2
-			+ R*beta*q
-			- D*R
-		)/(r-R)
-	)
-	.subs(phi == v.twist(beta).ch[2]) # subs real val of ch_1^\beta(v)
-	.expand()
-)
-
-assert bgmlv3_d_upperbound_exp_term == (
-	(
-		# Keep hold of this alternative expression:
-		bgmlv3_d_upperbound_exp_term_alt2 :=
-		(
-			(psi - q)^2/2/(r-R)
-		)
-	)
-	.subs(psi == v.twist(beta).ch[1]) # subs real val of ch_1^\beta(v)
-	.expand()
-)
-\end{sagesilent}
 
 \begin{sagesilent}
 from plots_and_expressions import \
@@ -1271,98 +1065,6 @@ from plots_and_expressions import phi
 \end{align}
 \egroup
 
-\begin{sagesilent}
-positive_radius_condition = (
-	(
-		(0 > - u.twist(beta).ch[2])
-		+ d # rearrange for d
-	)
-	.subs(solve(q == u.twist(beta).ch[1], c)[0]) # express c in term of q
-	.expand()
-)
-
-def beta_min(chern):
-  ts = stability.Tilt()
-  return min(
-    map(
-      lambda soln: soln.rhs(),
-      solve(
-        (ts.degree(chern))
-          .expand()
-          .subs(ts.alpha == 0),
-        beta
-      )
-    )
-  )
-
-v_example = Chern_Char(3,2,-2)
-q_example = 7/3
-
-def plot_d_bound(
-  v_example,
-  q_example,
-  ymax=5,
-  ymin=-2,
-  xmax=20,
-  aspect_ratio=None
-):
-
-  # Equations to plot imminently representing the bounds on d:
-  eq2 = (
-    bgmlv2_d_upperbound
-    .subs(R == v_example.ch[0])
-    .subs(C == v_example.ch[1])
-    .subs(D == v_example.ch[2])
-    .subs(beta = beta_min(v_example))
-    .subs(q == q_example)
-  )
-
-  eq3 = (
-    bgmlv3_d_upperbound
-    .subs(R == v_example.ch[0])
-    .subs(C == v_example.ch[1])
-    .subs(D == v_example.ch[2])
-    .subs(beta = beta_min(v_example))
-    .subs(q == q_example)
-  )
-
-  eq4 = (
-    positive_radius_condition.rhs()
-    .subs(q == q_example)
-    .subs(beta = beta_min(v_example))
-  )
-
-  example_bounds_on_d_plot = (
-    plot(
-      eq3,
-      (r,v_example.ch[0],xmax),
-      color='green',
-			linestyle = "dashed",
-      legend_label=r"upper bound: $\Delta(v-u) \geq 0$",
-    )
-    + plot(
-      eq2,
-      (r,0,xmax),
-      color='blue',
-			linestyle = "dashed",
-      legend_label=r"upper bound: $\Delta(u) \geq 0$"
-    )
-    + plot(
-      eq4,
-      (r,0,xmax),
-      color='orange',
-			linestyle = "dotted",
-      legend_label=r"lower bound: $\mathrm{ch}_2^{\beta_{-}}(u)>0$"
-    )
-  )
-  example_bounds_on_d_plot.ymin(ymin)
-  example_bounds_on_d_plot.ymax(ymax)
-  example_bounds_on_d_plot.axes_labels(['$r$', '$d$'])
-  if aspect_ratio:
-    example_bounds_on_d_plot.set_aspect_ratio(aspect_ratio)
-  return example_bounds_on_d_plot
-
-\end{sagesilent}
 
 \begin{sagesilent}
 from plots_and_expressions import \
@@ -1451,11 +1153,6 @@ $u=(r,c\ell,d\ell^2)$ to problem \ref{problem:problem-statement-2}.
 The strategy here is similar to what was shown in theorem
 \ref{thm:loose-bound-on-r}.
 
-\begin{sagesilent}
-var("a_v b_q n") # Define symbols introduce for values of beta and q
-beta_value_expr = (beta == a_v/n)
-q_value_expr = (q == b_q/n)
-\end{sagesilent}
 
 \renewcommand{\aa}{{a_v}}
 \newcommand{\bb}{{b_q}}
@@ -1493,27 +1190,6 @@ beta_value_expr
 	\frac{1}{2n^2}\ZZ
 \end{equation}
 
-\begin{sagesilent}
-# placeholder for the specific values of k (start with 1):
-var("kappa", domain="real")
-
-assymptote_gap_condition1 = (kappa/(2*n^2) < bgmlv2_d_upperbound_exp_term)
-assymptote_gap_condition2 = (kappa/(2*n^2) < bgmlv3_d_upperbound_exp_term_alt2)
-
-r_upper_bound1 = (
-	assymptote_gap_condition1
-	* r * 2*n^2 / kappa
-)
-
-assert r_upper_bound1.lhs() == r
-
-r_upper_bound2 = (
-	assymptote_gap_condition2
-	* (r-R) * 2*n^2 / kappa + R
-)
-
-assert r_upper_bound2.lhs() == r
-\end{sagesilent}
 
 \begin{sagesilent}
 from plots_and_expressions import r_upper_bound1, r_upper_bound2, kappa
@@ -1566,22 +1242,6 @@ considering equations
 \let\originalepsilon\epsilon
 \renewcommand\epsilon{{\originalepsilon_{v}}}
 
-\begin{sagesilent}
-var("epsilon")
-var("chbv") # symbol to represent \chern_1^{\beta}(v)
-
-# Tightness conditions:
-
-bounds_too_tight_condition1 = (
-	bgmlv2_d_upperbound_exp_term
-	< epsilon
-)
-
-bounds_too_tight_condition2 = (
-	bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0)
-	< epsilon
-)
-\end{sagesilent}
 
 \begin{sagesilent}
 from plots_and_expressions import bounds_too_tight_condition1, bounds_too_tight_condition2
@@ -1621,24 +1281,9 @@ This is equivalent to:
 
 \end{proof}
 
-\begin{sagesilent}
-var("Delta nu", domain="real")
-q_sol = solve(
-  r_upper_bound1.subs(kappa==1).rhs()
-  == r_upper_bound2.subs(kappa==1).rhs()
-, q)[0].rhs()
-r_upper_bound_all_q = (
-	r_upper_bound1.rhs()
-	.expand()
-	.subs(q==q_sol)
-	.subs(kappa==1)
-	.subs(psi**2 == Delta/nu^2)
-	.subs(1/psi**2 == nu^2/Delta)
-)
-\end{sagesilent}
 
 \begin{sagesilent}
-from plots_and_expressions import r_upper_bound_all_q, q_sol
+from plots_and_expressions import r_upper_bound_all_q, q_sol, nu, Delta, psi
 \end{sagesilent}
 
 \begin{corollary}[Bound on $r$ \#2]
@@ -1749,15 +1394,6 @@ integral:
 That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to
 $n$, and so invertible mod $n$).
 
-\begin{sagesilent}
-	rhs_numerator = (
-	positive_radius_condition
-	.rhs()
-	.subs([q_value_expr,beta_value_expr])
-	.factor()
-	.numerator()
-	)
-\end{sagesilent}
 
 \noindent
 Let $\aa^{'}$ be an integer representative of $\aa^{-1}$ in $\ZZ/n\ZZ$.
@@ -1856,10 +1492,6 @@ $\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$.
 	$\chern_1^\beta(u) = q = \frac{b_q}{n}$
 	are bounded above by the following expression:
 
-\begin{sagesilent}
-var("delta", domain="real") # placeholder symbol to be replaced by k_{q,i}
-\end{sagesilent}
-
 	\bgroup
 	\def\kappa{k_{v,q}}
 	\def\psi{\chern_1^{\beta}(F)}