From 34f6f7730ad49bade2d74314e5d8c5204af03be0 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Sun, 14 May 2023 20:38:38 +0100 Subject: [PATCH] Complete epsilon lemma statement --- main.tex | 23 +++++++++++++++++++++-- 1 file changed, 21 insertions(+), 2 deletions(-) diff --git a/main.tex b/main.tex index 231d55c..31376b6 100644 --- a/main.tex +++ b/main.tex @@ -991,9 +991,9 @@ proof of theorem \ref{thm:rmax_with_uniform_eps}: \begin{lemmadfn}[ Finding better alternatives to $\epsilon_F$: - $\epsilon_q^1$ and $\epsilon_q^1$ + $\epsilon_q^1$ and $\epsilon_q^2$ ] -Suppose $d \in \frac{1}{m}\ZZ$ is satisfies the condition in +Suppose $d \in \frac{1}{m}\ZZ$ satisfies the condition in eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}. That is: @@ -1010,6 +1010,25 @@ Then we have: \end{equation*} Where $\epsilon_q^1$ and $\epsilon_q^2$ are defined as follows: + +\begin{equation*} + \epsilon_q^1 := + \frac{k_q^1}{2mn^2} + \qquad + \epsilon_q^2 := + \frac{k_q^2}{2mn^2} +\end{equation*} +\begin{align*} + \text{where } + &k_q^1 \text{ is the least } + k\in\ZZ_{>0}\: s.t.:\: + k \equiv -\aa\bb m \mod n +\\ + &k_q^2 \text{ is the least } + k\in\ZZ_{>0}\: s.t.:\: + k \equiv \aa\bb m (\aa\aa^{'}-2) + \mod n\gcd(2n,\aa^2 m) +\end{align*} \end{lemmadfn} -- GitLab