diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex index a45a5f17302cc21d95bc58b6bc280d3422f83da7..fb4ace89c8e54b455d5f41befdeeac61b1f146ec 100644 --- a/tex/bounds-on-semistabilisers.tex +++ b/tex/bounds-on-semistabilisers.tex @@ -94,14 +94,14 @@ pseudo-semistabilisers for tilt stability. \label{proof:first-bound-on-r} \end{align} \noindent - Which we can then immediately bound using Equation \ref{eqn-tilt-cat-cond}. + Which we can then immediately bound using Equation \eqref{eqn-tilt-cat-cond}. Alternatively, given that $\chern_1^{\beta_{-}}(u)$, $\chern_1^{\beta_{-}}(v)\in\frac{1}{n}\ZZ$, we can tighten this bound on $\chern_1^{\beta_{-}}(u)$ given by that equation to: \[ n\chern^{\beta_{-}}_1(u) \leq n\chern^{\beta_{-}}_1(v) - 1 \] - allowing us to bound the expression in Equation \ref{proof:first-bound-on-r} to + allowing us to bound the expression in Equation \eqref{proof:first-bound-on-r} to the following: \[ \chern_0(u) @@ -187,7 +187,7 @@ of travel. \noindent Conversely, any $u = (r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ - satisfying the above Equations \ref{lem:eqn:cond-for-fixed-q} + satisfying the above Equations \eqref{lem:eqn:cond-for-fixed-q} is a solution to the Problem if and only if the following are satisfied: \begin{multicols}{3} \begin{itemize} @@ -202,15 +202,15 @@ of travel. Recalling Theorems \ref{lem:num_test_prob1} and \ref{cor:num_test_prob2}, solutions $u$ to the problem are given by $u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ which satisfy six numerical conditions. - The first line of Equation \ref{lem:eqn:cond-for-fixed-q} is equivalent to + The first line of Equation \eqref{lem:eqn:cond-for-fixed-q} is equivalent to numerical condition 5. The second line is a rearrangement of numerical condition 4, assuming $r>0$ which is given by the first numerical condition. - Therefore any solution $u$ satisfies Equation \ref{lem:eqn:cond-for-fixed-q}. + Therefore any solution $u$ satisfies Equation \eqref{lem:eqn:cond-for-fixed-q}. But then Theorems \ref{lem:num_test_prob1} and \ref{cor:num_test_prob2}, also give that $u=(r,c\ell,d\ell^2)$ with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ satisfying Equation - \ref{lem:eqn:cond-for-fixed-q} is in fact a solution provided the remaining numerical conditions + \eqref{lem:eqn:cond-for-fixed-q} is in fact a solution provided the remaining numerical conditions 1, 2, 3 and 6 are satisfied. This is in essence the second part of the Lemma. \end{proof} @@ -377,7 +377,7 @@ we get: \noindent Rearranging to express this as a bound on $d$, we get the following. -Recall that $r>0$ is ensured by Equations \ref{lem:eqn:cond-for-fixed-q}. +Recall that $r>0$ is ensured by Equations \eqref{lem:eqn:cond-for-fixed-q}. \begin{sagesilent} from plots_and_expressions import bgmlv2_d_ineq @@ -416,11 +416,11 @@ $d$ yields: \noindent If $r=R$, then $\Delta(v-u)=(C-c)^2 \geq 0$ is always true, and for $r<R$ -the expression on the right hand side of Equation \ref{eqn-bgmlv3_d_upperbound} +the expression on the right hand side of Equation \eqref{eqn-bgmlv3_d_upperbound} gives a lower bound for $d$ instead. However it is weaker than lower bound given by $\chern^P_2(u)>0$ if $u$ already satisfies Equations -\ref{lem:eqn:cond-for-fixed-q} as will be shown now: +\eqref{lem:eqn:cond-for-fixed-q} as will be shown now: Since $r, R-r>0$, we have: \begin{equation} @@ -429,7 +429,7 @@ Since $r, R-r>0$, we have: \end{equation} \noindent The first inequality coming from $P \in \Theta_v^{-}$ and Equation -\ref{lem:eqn:cond-for-fixed-q}, and the second inequality following by the +\eqref{lem:eqn:cond-for-fixed-q}, and the second inequality following by the see-saw principle. % TODO maybe cover the see-saw principle \begin{align*} @@ -445,7 +445,7 @@ see-saw principle. \left( \mu(v) - \beta_0 \right)^2 - & \text{by Equation \ref{lem:proof:slope-order-rltR}} + & \text{by Equation \eqref{lem:proof:slope-order-rltR}} \\ & = \left( @@ -488,9 +488,9 @@ see-saw principle. \end{align*} \noindent Showing that the unique terms of Equation -\ref{eqn:radius_condition_d_bound} +\eqref{eqn:radius_condition_d_bound} are greater than those of Equation -\ref{eqn-bgmlv3_d_upperbound}. +\eqref{eqn-bgmlv3_d_upperbound}. \subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem @@ -503,7 +503,7 @@ bounds on $d$ calculated in this Subsection. So we conclude that final 3 conditions from Corollary \ref{cor:rational-beta:fixed-q-semistabs-criterion} for a potential solution to the problem of the form in Equation -\ref{eqn:u-coords}, amounts to the following: +\eqref{eqn:u-coords}, amounts to the following: \begin{sagesilent} from plots_and_expressions import bgmlv2_d_upperbound_terms @@ -536,11 +536,11 @@ Recalling that $q \coloneqq \chern^{\beta}_1(u) \in (0, \chern^{\beta}_1(v))$, it is worth noting that the extreme values of $q$ in this range lead to the tightest bounds on $d$. Small values of $q$ brings -Equation \ref{eqn:bgmlv2_d_bound_betamin} closer to -Equation \ref{eqn:radiuscond_d_bound_betamin}, +Equation \eqref{eqn:bgmlv2_d_bound_betamin} closer to +Equation \eqref{eqn:radiuscond_d_bound_betamin}, and larger values of $q$ brings -Equation \ref{eqn:bgmlv3_d_bound_betamin} closer to -Equation \ref{eqn:radiuscond_d_bound_betamin}. +Equation \eqref{eqn:bgmlv3_d_bound_betamin} closer to +Equation \eqref{eqn:radiuscond_d_bound_betamin}. For a generic case, when $0 < q\coloneqq\chern_1^{\beta}(u) < \chern_1^{\beta}(v)$, @@ -552,9 +552,9 @@ $(r,d) \in \ZZ \oplus \frac{1}{\lcm(m,2)} \ZZ$ (with large $r$) that fit above the yellow line (ensuring positive radius of wall) but below the blue and green (ensuring $\Delta(u), \Delta(v-u) > 0$). These lines have the same assymptote at $r \to \infty$ -(Equations \ref{eqn:bgmlv2_d_bound_betamin}, -\ref{eqn:bgmlv3_d_bound_betamin}, -\ref{eqn:radiuscond_d_bound_betamin}). +(Equations \eqref{eqn:bgmlv2_d_bound_betamin}, +\eqref{eqn:bgmlv3_d_bound_betamin}, +\eqref{eqn:radiuscond_d_bound_betamin}). As mentioned in the introduction to this Part, the finiteness of these solutions is entirely determined by whether $\beta_{-}$ is rational or irrational. This will be pursued in Subsection @@ -624,9 +624,9 @@ bounds do not share the same assymptote as the lower bound Notice that as functions of $r$, the linear term in -Equation \ref{eqn:prob1:radiuscond} is strictly greater than -those in Equations \ref{eqn:prob1:bgmlv2} -and \ref{eqn:prob1:bgmlv3} in the context of the Problem. +Equation \eqref{eqn:prob1:radiuscond} is strictly greater than +those in Equations \eqref{eqn:prob1:bgmlv2} +and \eqref{eqn:prob1:bgmlv3} in the context of the Problem. This is because $R\coloneqq\chern_0(v)$ and $\chern_2^{\beta_0}(v)$ are all strictly positive: \begin{itemize} @@ -671,23 +671,23 @@ the lower bound on $d$ is equal to one of the upper bounds on $d$ \begin{proof} Lemma \ref{lem:fixed-q-semistabs-criterion} gives us that any solution $u$ - must be of the form in Equation \ref{eqn:u-coords} and - satisfy Equations \ref{lem:eqn:cond-for-fixed-q} as well as the three + must be of the form in Equation \eqref{eqn:u-coords} and + satisfy Equations \eqref{lem:eqn:cond-for-fixed-q} as well as the three conditions $\chern^P_2(u)>0$, $\Delta(u) \geq 0$, and $\Delta(v-u) \geq 0$. Subsection \ref{subsec:bounds-on-d} equates these latter three conditions - (provided Equations \ref{lem:eqn:cond-for-fixed-q}) + (provided Equations \eqref{lem:eqn:cond-for-fixed-q}) to upper bounds on $d$ given by - Equations \ref{eqn:prob1:bgmlv2} and \ref{eqn:prob1:bgmlv3}; - and one lower bound given by Equation \ref{eqn:prob1:radiuscond}. + Equations \eqref{eqn:prob1:bgmlv2} and \eqref{eqn:prob1:bgmlv3}; + and one lower bound given by Equation \eqref{eqn:prob1:radiuscond}. - Solving for the lower bound in Equation \ref{eqn:prob1:radiuscond} being - less than the upper bound in Equation \ref{eqn:prob1:bgmlv2} yields: + Solving for the lower bound in Equation \eqref{eqn:prob1:radiuscond} being + less than the upper bound in Equation \eqref{eqn:prob1:bgmlv2} yields: \begin{equation} r<\sage{problem1.positive_intersection_bgmlv2} \end{equation} \noindent - Similarly, but with the upper bound in Equation \ref{eqn:prob1:bgmlv3}, gives: + Similarly, but with the upper bound in Equation \eqref{eqn:prob1:bgmlv3}, gives: \begin{equation} r<\sage{problem1.positive_intersection_bgmlv3} \end{equation} @@ -751,7 +751,7 @@ where $\beta_{-}(v) = \frac{a_v}{n}$ in lowest terms and $b_q$ is an integer between 1 and $n\chern_1^{\beta_0}(v) - 1$ (inclusive), and $a_v r \equiv -b_q \pmod{n}$. The Corollary then gives a lower bound for $r$, and states that any $u$ of the -form from Equation \ref{eqn:u-coords} satisfying these conditions so far, is a +form from Equation \eqref{eqn:u-coords} satisfying these conditions so far, is a solution to Problem \ref{problem:problem-statement-2} if and only if it satisfies the conditions $\chern^{\beta_{-}(v)}(u)>0$, $\Delta(u) \geq 0$, and $\Delta(v-u) \geq 0$. @@ -761,7 +761,7 @@ $\chern^{\beta_{-}(v)}(u)>0$, $\Delta(u) \geq 0$, and $\Delta(v-u) \geq 0$. \newcommand{\bb}{{b_q}} Substituting more specialised values of $q$ and $\beta_0=\beta_{-}(v)$ into the condition $\chern^{\beta_0}(u) > 0$ -(Equation \ref{eqn:radiuscond_d_bound_betamin}) we get: +(Equation \eqref{eqn:radiuscond_d_bound_betamin}) we get: \begin{sagesilent} from plots_and_expressions import \ @@ -814,7 +814,7 @@ proof of Theorem \begin{proof} Both $d$ and the lower bound in - (Equation \ref{eqn:positive_rad_condition_in_terms_of_q_beta}) + (Equation \eqref{eqn:positive_rad_condition_in_terms_of_q_beta}) are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. So, if any of the two upper bounds on $d$ come to within $\epsilon_v \coloneqq \frac{1}{\lcm(m,2n^2)}$ of this lower bound, @@ -824,8 +824,8 @@ proof of Theorem To avoid this, we must have, considering Equations - \ref{eqn:bgmlv2_d_bound_betamin}, - \ref{eqn:bgmlv3_d_bound_betamin}, + \eqref{eqn:bgmlv2_d_bound_betamin}, + \eqref{eqn:bgmlv3_d_bound_betamin}, \ref{eqn:radiuscond_d_bound_betamin}. \begin{sagesilent} @@ -988,7 +988,7 @@ proof of Theorem \ref{thm:rmax_with_uniform_eps}: ] \label{lemdfn:epsilon_q} Suppose $d \in \frac{1}{\lcm(m,2n^2)}\ZZ$ satisfies the condition in - Equation \ref{eqn:positive_rad_condition_in_terms_of_q_beta}. + Equation \eqref{eqn:positive_rad_condition_in_terms_of_q_beta}. That is: \begin{equation*} @@ -1093,13 +1093,13 @@ proof of Theorem \ref{thm:rmax_with_uniform_eps}: \end{align} In our situation, we want to find the least $k>0$ satisfying - Equation \ref{eqn:finding_better_eps_problem}. - Since such a $k$ must also satisfy Equation \ref{eqn:better_eps_problem_k_mod_n}, + Equation \eqref{eqn:finding_better_eps_problem}. + Since such a $k$ must also satisfy Equation \eqref{eqn:better_eps_problem_k_mod_n}, we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition (a computation only depending on $q$ and $\beta$, but not $r$). We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying Equation - \ref{eqn:finding_better_eps_problem}, giving the first inequality in Equation - \ref{eqn:epsilon_q_lemma_prop}. + \eqref{eqn:finding_better_eps_problem}, giving the first inequality in Equation + \eqref{eqn:epsilon_q_lemma_prop}. Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality: $\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$.