From 43c063ded0e682f7f8d81e2c8ba48fdab1e27548 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Mon, 15 May 2023 00:19:00 +0100 Subject: [PATCH] Add theorem for final bound for rmax --- main.tex | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) diff --git a/main.tex b/main.tex index 489bee5..2d142d8 100644 --- a/main.tex +++ b/main.tex @@ -993,6 +993,7 @@ proof of theorem \ref{thm:rmax_with_uniform_eps}: Finding better alternatives to $\epsilon_F$: $\epsilon_q^1$ and $\epsilon_q^2$ ] +\label{lemdfn:epsilon_q} Suppose $d \in \frac{1}{m}\ZZ$ satisfies the condition in eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}. That is: @@ -1085,6 +1086,29 @@ which also guarantees that the gap $\frac{k}{2mn^2}$ is at least $\epsilon_q^2$. \end{proof} +\begin{theorem}[Bound on $r$ \#3] +\label{thm:rmax_with_eps1} + Let $v = (R,C,D)$ be a fixed Chern character. Then the ranks of the + pseudo-semistabilizers for $v$ with + $\chern_1^\beta = q = \frac{a_q}{n}$ + are bounded above by the following expression (with $i=1$ or 2). + + \begin{equation*} + \frac{1}{2 \epsilon_q^i} + \min + \left( + q^2, + 2R\beta q + +C^2 + -2DR + -2Cq + +q^2 + +\frac{R}{\lcm(m,2n^2)} + +R \epsilon_q^i + \right) + \end{equation*} + Where $\epsilon_q^i$ is defined as in definition/lemma \ref{lemdfn:epsilon_q}. +\end{theorem} \minorheading{Irrational $\beta$} -- GitLab