diff --git a/main.tex b/main.tex index fb0f6fc09fc1168c3185c8b81af92670ae21b480..facf38fe7001d1a6dd5fe6e26b97b7a0383790d8 100644 --- a/main.tex +++ b/main.tex @@ -567,18 +567,21 @@ vertical wall (TODO as discussed in ref). &+ \sage{bgmlv1_d_lowerbound_const_term_alt.subs(chbv == 0)} +& \sage{bgmlv1_d_lowerbound_exp_term_alt.subs(chbv == 0)}, &\qquad\text{when\:} r > \frac{R}{2} + \label{eqn:bgmlv1_d_bound_betamin} \\ d &\leq& \sage{bgmlv2_d_upperbound_linear_term} &+ \sage{bgmlv2_d_upperbound_const_term} +& \sage{bgmlv2_d_upperbound_exp_term}, &\qquad\text{when\:} r > 0 + \label{eqn:bgmlv2_d_bound_betamin} \\ d &\leq& \sage{bgmlv3_d_upperbound_linear_term} &+ \sage{bgmlv3_d_upperbound_const_term_alt.subs(chbv == 0)} +& \sage{bgmlv3_d_upperbound_exp_term_alt.subs(chbv == 0)}, &\qquad\text{when\:} r > R + \label{eqn:bgmlv3_d_bound_betamin} \end{align} Furthermore, we get an extra bound for $d$ resulting from the condition that the @@ -596,9 +599,10 @@ positive_radius_condition = ( ) \end{sagesilent} -\begin{equation*} +\begin{equation} + \label{eqn:positive_rad_d_bound_betamin} \sage{positive_radius_condition} -\end{equation*} +\end{equation} \begin{sagesilent} def beta_min(chern): ts = stability.Tilt() @@ -704,13 +708,13 @@ def plot_d_bound( \begin{subfigure}{.5\textwidth} \centering \sageplot[width=\linewidth]{plot_d_bound(v_example, 0)} - \caption{$q = 0$} + \caption{$q = 0$ (all bounds other than green coincide on line)} \label{fig:d_bounds_xmpl_min_q} \end{subfigure}% \begin{subfigure}{.5\textwidth} \centering \sageplot[width=\linewidth]{plot_d_bound(v_example, 4)} - \caption{$q = \chern^{\beta}(F)$} + \caption{$q = \chern^{\beta}(F)$ (all bounds other than blue coincide on line)} \label{fig:d_bounds_xmpl_max_q} \end{subfigure} \caption{ @@ -721,6 +725,21 @@ def plot_d_bound( \label{fig:d_bounds_xmpl_extrm_q} \end{figure} +Recalling that $q := \chern^{\beta}_1(E) \in [0, \chern^{\beta}_1(F)]$, +it's worth noting that the extreme values of $q$ in this range lead to the +tightest bounds on $d$, as illustrated in figure +(\ref{fig:d_bounds_xmpl_extrm_q}). +In fact, in each case, one of the weak upper bounds coincides with one of the +weak lower bounds, (implying no possible destabilizers $E$ with +$\chern_0(E)=:r>R:=\chern_0(F)$ for these $q$-values). +This indeed happens in general since the right hand sides of +(eqn \ref{eqn:bgmlv2_d_bound_betamin}) and +(eqn \ref{eqn:positive_rad_d_bound_betamin}) match when $q=0$. +In the other case, $q=\chern^{\beta}_1(F)$, it's the right hand sides of +(eqn \ref{eqn:bgmlv3_d_bound_betamin}) and +(eqn \ref{eqn:positive_rad_d_bound_betamin}) which match. + + \begin{figure} \centering \sageplot[