diff --git a/main.tex b/main.tex index 1c738d5f70ef48c98d93a6463383b0d50946f118..14d9cbb12f64d9065c7b9e768cd58c41eb17837f 100644 --- a/main.tex +++ b/main.tex @@ -1396,7 +1396,36 @@ r_upper_bound_all_q = ( \egroup \end{corrolary} -%% TODO simplified expression for rmax by predicting which q gives rmax +\begin{proof} +\bgroup +\def\psi{\chern_1^{\beta}(F)} +\def\nu{\lcm(m,2n^2)} +\let\originalDelta\Delta +\renewcommand\Delta{{\psi^2}} +The ranks of the pseudo-semistabilizers for $v$ are bounded above by the +maximum over $q\in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$ of the +expression in theorem \ref{thm:rmax_with_uniform_eps}. +Noticing that the expression is a maximum of two quadratic functions in $q$: +\begin{equation*} + f_1(q):=\sage{r_upper_bound1.rhs()} \qquad + f_2(q):=\sage{r_upper_bound2.rhs()} +\end{equation*} +These have their minimums at $q=0$ and $q=\chern_1^{\beta}(F)$ respectively. +It suffices to find their intersection in +$q\in [0, \chern_1^{\beta}(F)]$, if it exists, +and evaluating on of the $f_i$ there. +The intersection exists, provided that +$f_1(\chern_1^{\beta}(F))>f_2(\chern_1^{\beta}(F))=R$, +or equivalently, +$R \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$. +Setting $f_1(q)=f_2(q)$ yields +$q=\sage{q_sol.expand()}$. +And evaluating $f_1$ at this $q$-value gives: +$\sage{r_upper_bound_all_q.expand()}$. +Finally, noting that $\originalDelta(v)=\psi^2$, we get the bound as +stated in the corollary. +\egroup +\end{proof} %% refinements using specific values of q and beta