From 48907aaba8f23eadfc51f07795f5053944d5a502 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Fri, 12 May 2023 16:16:26 +0100 Subject: [PATCH] Add restriction on r for c to be integral --- main.tex | 50 ++++++++++++++++++++++++++++++++++++++++---------- 1 file changed, 40 insertions(+), 10 deletions(-) diff --git a/main.tex b/main.tex index 6b844a9..f2fd268 100644 --- a/main.tex +++ b/main.tex @@ -33,6 +33,7 @@ Practical Methods for Finding Pseudowalls} \maketitle \section{Introduction} +\label{sec:intro} [ref] shows that for any rational $\beta_0$, the vertical line $\{\sigma_{\alpha,\beta_0} \colon \alpha \in \RR_{>0}\}$ only @@ -81,6 +82,7 @@ bounds on $\chern_0(E)$ of potential destabilizers $E$ of $F$. Characters} \section{Twisted Chern Characters of Pseudo Destabilizers} +\label{sec:twisted-chern} For a given $\beta$, we can define a twisted Chern character $\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)$: @@ -139,6 +141,7 @@ for the rank of $E$: \section{Limitations} \section{Refinement} +\label{sec:refinement} To get tighter bounds on the rank of destabilizers $E$ of some $F$ with some fixed Chern character, we will need to consider each of the values which @@ -756,16 +759,9 @@ These lines have the same assymptote at $r \to \infty$ (eqns \ref{eqn:bgmlv2_d_bound_betamin}, \ref{eqn:bgmlv3_d_bound_betamin}, \ref{eqn:positive_rad_d_bound_betamin}). -The finiteness of these solutions will be entirely determined by whether $\beta$ -is rational or irrational, as covered next. - - -\minorheading{Rational $\beta$} - -Suppose $\beta = \frac{*}{n}$ for some $n \in \NN,* \in \ZZ$. - -\minorheading{Irrational $\beta$} - +As mentioned in the introduction (sec \ref{sec:intro}), the finiteness of these +solutions is entirely determined by whether $\beta$ is rational or irrational. +Some of the details around the associated numerics are explored next. \begin{figure} \centering @@ -780,6 +776,40 @@ Suppose $\beta = \frac{*}{n}$ for some $n \in \NN,* \in \ZZ$. \label{fig:d_bounds_xmpl_gnrc_q} \end{figure} + +\minorheading{Rational $\beta$} + +The strategy here is similar to what was shown in (sect \ref{sec:twisted-chern}), +% ref to Schmidt? +Suppose $\beta = \frac{a}{n}$ for some coprime $n \in \NN,a \in \ZZ$. +Then fix a value of $q$: +\begin{equation} + q:=\chern_1^{\beta}(E) + =\frac{b}{n} + \in + \frac{1}{n} \ZZ + \cap [0, \chern_1^{\beta}(F)] +\end{equation} +as noted at the beginning of this section (\ref{sec:refinement}). +Firstly, we can ignore $r$-values for which $c:=\chern_1(E)$ is not integral: + +\begin{sagesilent} +var("a b n") # Define symbols introduce for values of beta and q +q_value_expr = (q == b/n) +beta_value_expr = (beta == a/n) +\end{sagesilent} + +\begin{equation} + c = + \sage{c_in_terms_of_q.subs([q_value_expr,beta_value_expr])} + \in \ZZ +\end{equation} + +That is, $r \equiv -a^{-1}b$ mod $n$ ($a$ is coprime to $n$, and so invertible mod $n$). + +\minorheading{Irrational $\beta$} + + \egroup \section{Conclusion} -- GitLab