diff --git a/main.tex b/main.tex index c3c66cc111a0909f2276e7b4585aa309abe02097..839c5d4d90de84735482d25a5a1b6acc2a3a46be 100644 --- a/main.tex +++ b/main.tex @@ -919,6 +919,10 @@ var("q", domain="real") c_in_terms_of_q = c_lower_bound + q \end{sagesilent} +\begin{sagesilent} +from plots_and_expressions import c_in_terms_of_q +\end{sagesilent} + \begin{equation} \label{eqn-cintermsofm} c=\chern_1(u) = \sage{c_in_terms_of_q} @@ -987,6 +991,10 @@ bgmlv2_with_q = ( ) \end{sagesilent} +\begin{sagesilent} +from plots_and_expressions import bgmlv2_with_q +\end{sagesilent} + \begin{equation} \sage{0 <= bgmlv2_with_q} \end{equation} @@ -1008,6 +1016,9 @@ bgmlv2_d_ineq = ( bgmlv2_d_upperbound = bgmlv2_d_ineq.rhs() \end{sagesilent} +\begin{sagesilent} +from plots_and_expressions import bgmlv2_d_ineq +\end{sagesilent} \begin{equation} \label{eqn-bgmlv2_d_upperbound} \sage{bgmlv2_d_ineq} @@ -1037,6 +1048,12 @@ bgmlv2_d_upperbound_exp_term = ( ).expand() \end{sagesilent} +\begin{sagesilent} +from plots_and_expressions import \ +bgmlv2_d_upperbound_const_term, \ +bgmlv2_d_upperbound_linear_term, \ +bgmlv2_d_upperbound_exp_term +\end{sagesilent} Viewing equation \ref{eqn-bgmlv2_d_upperbound} as a lower bound for $d$ in term of $r$ again, there is a constant term $\sage{bgmlv2_d_upperbound_const_term}$, @@ -1162,6 +1179,13 @@ assert bgmlv3_d_upperbound_exp_term == ( ) \end{sagesilent} +\begin{sagesilent} +from plots_and_expressions import \ +bgmlv3_d_upperbound_const_term_alt, \ +bgmlv3_d_upperbound_linear_term, \ +bgmlv3_d_upperbound_exp_term_alt2 +\end{sagesilent} + \bgroup \def\psi{\chern_1^{\beta}(v)} \def\phi{\chern_2^{\beta}(v)} @@ -1216,6 +1240,9 @@ These give bounds with the same assymptotes when we take $r\to\infty$ \let\originalbeta\beta \renewcommand\beta{{\originalbeta_{-}}} +\begin{sagesilent} +from plots_and_expressions import phi +\end{sagesilent} \bgroup % redefine \psi in sage expressions (placeholder for ch_1^\beta(F) \def\psi{\chern_1^{\beta}(F)} @@ -1449,6 +1476,12 @@ Substituting the current values of $q$ and $\beta$ into the condition for the radius of the pseudo-wall being positive (eqn \ref{eqn:radiuscond_d_bound_betamin}) we get: +\begin{sagesilent} +from plots_and_expressions import \ +positive_radius_condition, \ +q_value_expr, \ +beta_value_expr +\end{sagesilent} \begin{equation} \label{eqn:positive_rad_condition_in_terms_of_q_beta} \frac{1}{2}\ZZ @@ -1482,6 +1515,9 @@ r_upper_bound2 = ( assert r_upper_bound2.lhs() == r \end{sagesilent} +\begin{sagesilent} +from plots_and_expressions import r_upper_bound1, r_upper_bound2, kappa +\end{sagesilent} \begin{theorem}[Bound on $r$ \#1] \label{thm:rmax_with_uniform_eps} Let $v = (R,C\ell,D\ell^2)$ be a fixed Chern character. Then the ranks of the @@ -1547,6 +1583,10 @@ bounds_too_tight_condition2 = ( ) \end{sagesilent} +\begin{sagesilent} +from plots_and_expressions import bounds_too_tight_condition1, bounds_too_tight_condition2 +\end{sagesilent} + \bgroup \def\psi{\chern_1^{\beta}(F)} \begin{equation} @@ -1597,6 +1637,10 @@ r_upper_bound_all_q = ( ) \end{sagesilent} +\begin{sagesilent} +from plots_and_expressions import r_upper_bound_all_q, q_sol +\end{sagesilent} + \begin{corollary}[Bound on $r$ \#2] \label{cor:direct_rmax_with_uniform_eps} Let $v$ be a fixed Chern character and