diff --git a/main.tex b/main.tex index c01c5fa72955f74fa2cf21ce6b7dd5bec858a840..a0c4921fc9b52feff9eac04bf076af575b1e903f 100644 --- a/main.tex +++ b/main.tex @@ -994,6 +994,41 @@ Considering the numerator of the right-hand-side of \noindent And so, we also have $\aa(\aa r+2\bb) \equiv \aa\bb$ (mod $2n^2$). +Now, suppose that $x/m$ is the smallest element of $\frac{1}{m}\ZZ$ strictly +greater than the right-hand-side of +(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}), and define $\epsilon$ +as the size of the gap. + +Using the following tautology: + +\begin{align} + &\frac{ x }{ m } + - \frac{ + (\aa r+2\bb)\aa + }{ + 2n^2 + } + = \frac{ k }{ 2mn^2 } + \quad \text{for some } x \in \ZZ +\\ &\iff + - (\aa r+2\bb)\aa m + \equiv k + \quad \mod 2n^2 +\\ &\iff + - \aa\bb m + \equiv k + \quad \mod 2n^2 +\end{align} + +We can recover how much greater $x/m$ is than the right-hand-side of +(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}). +First calculate the smallest $k_q \in \ZZ_{>0}$, such that +$k_q \equiv -\aa\bb m \mod 2n^2$. Then we have +$\epsilon = \epsilon_q := \frac{k_q}{2mn^2}$, +an expression independent of $x$ and $r$, only depending on $q$. + +%% TODO: check this^ result seems a bit strange + \minorheading{Irrational $\beta$}