From 4d2777abfe1124846b34427cbb8695913af2c3df Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Thu, 7 Sep 2023 18:23:29 +0100 Subject: [PATCH] Introduce rank 0 case up to main lemma --- main.tex | 40 ++++++++++++++++++++++++++++++++++------ 1 file changed, 34 insertions(+), 6 deletions(-) diff --git a/main.tex b/main.tex index b28f254..3247b76 100644 --- a/main.tex +++ b/main.tex @@ -289,8 +289,8 @@ Given a Chern character $v$, with positive rank and $\Delta(v) \geq 0$, we define two characteristic curves on the $(\alpha, \beta)$-plane: \begin{align*} - V_v &\colon \chern_1^{\alpha, \beta}(v) = 0 \\ - \Theta_v &\colon \chern_2^{\alpha, \beta}(v) = 0 + V_v &\colon \:\: \chern_1^{\alpha, \beta}(v) = 0 \\ + \Theta_v &\colon \:\: \chern_2^{\alpha, \beta}(v) = 0 \end{align*} \end{definition} @@ -366,26 +366,49 @@ The following facts can be deduced from the formulae for $\chern_i^{\alpha, \bet as well as the restrictions on $v$, when $\chern_0(v)=0$ and $\chern_1(v)>0$: -\begin{minipage}{0.49\textwidth} +\begin{minipage}{0.59\textwidth} \begin{itemize} \item $V_v = \emptyset$ \item $\Theta_v$ is a vertical line at $\beta=\frac{D}{C}$ where $v=\left(0,C\ell,D\ell^2\right)$ \end{itemize} \end{minipage} -\begin{minipage}{0.49\textwidth} +\hfill +\begin{minipage}{0.39\textwidth} \sageplot[width=\textwidth]{Theta_v_plot} %\caption{$\Delta(v)>0$} %\label{fig:charact_curves_rank0} \end{minipage} \end{fact} +We can view the characteristic curves for $\left(0,C\ell, D\ell^2\right)$ with $C>0$ as +the limiting behaviour of those of $\left(\varepsilon, C\ell, D\ell^2\right)$. +Indeed: +\begin{align*} + \mu\left(\varepsilon, C\ell, D\ell^2\right) = \frac{C}{\varepsilon} &\longrightarrow +\infty + \\ + \text{as} \: 0<\varepsilon &\longrightarrow 0 +\end{align*} +So we can view $V_v$ as moving off infinitely to the right, with $\Theta_v^+$ even further. +But also, considering the base point of $\Theta_v^-$: +\begin{align*} + \beta_{-}\left(\varepsilon, C\ell, D\ell^2\right) = \frac{C - \sqrt{C^2-2D\varepsilon}}{\varepsilon} + &\longrightarrow \frac{D}{C} + \\ + \text{as} \:\: 0<\varepsilon &\longrightarrow 0 + &\text{(via L'H\^opital)} +\end{align*} + +So we can view $\Theta_v^-$ as approaching the vertical line that $\Theta_v$ becomes. +For this reason, I will refer to the whole of $\Theta_v$ in the rank zero case +as $\Theta_v^-$ to be able to use the same terminology in both positive rank +and rank zero cases. \subsection{Relevance of $V_v$} \label{subsect:relevance-of-V_v} -By definition of the first tilt $\firsttilt\beta$, objects of Chern character +For the positive rank case, by definition of the first tilt $\firsttilt\beta$, objects of Chern character $v$ can only be in $\firsttilt\beta$ on the left of $V_v$, where $\chern_1^{\alpha,\beta}(v)>0$, and objects of Chern character $-v$ can only be in $\firsttilt\beta$ on the right, where $\chern_1^{\alpha,\beta}(-v)>0$. In @@ -396,6 +419,11 @@ Because of this, when using these characteristic curves, only positive ranks are considered, as negative rank objects are implicitly considered on the right hand side of $V_v$. +In the rank zero case, this still applies if we consider $V_v$ to be +`infinitely to the right' ($\mu(v) = +\infty$). Precisely, Gieseker semistable +coherent sheaves $E$ of Chern character $v$ are contained in +$\firsttilt{\beta}$ for all $\beta$ + \subsection{Relevance of $\Theta_v$} @@ -406,7 +434,7 @@ $(\alpha$-$\beta)$-half-plane into regions where the signs of tilt slopes of objects of Chern character $v$ (or $-v$) are fixed. Secondly, it gives more of a fixed target for some $u=(r,c\ell,d\frac{1}{2}\ell^2)$ to be a pseudo-semistabilizer of $v$, in the following sense: If $(\alpha,\beta)$, is on -$\Theta_v$, then for any $u$, $u$ is a pseudo-semistabilizer of $v$ iff +$\Theta_v$, then for any $u$, $u$ can only be a pseudo-semistabilizer of $v$ if $\nu_{\alpha,\beta}(u)=0$, and hence $\chern_2^{\alpha, \beta}(u)=0$. In fact, this allows us to use the characteristic curves of some $v$ and $u$ (with $\Delta(v), \Delta(u)\geq 0$ and positive ranks) to determine the location of -- GitLab