diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex index 0bec1441124e53565a15bfb98b67b792391482a3..2507918b85a2fb9305f3d893c15a96065ca4044d 100644 --- a/tex/bounds-on-semistabilisers.tex +++ b/tex/bounds-on-semistabilisers.tex @@ -247,7 +247,7 @@ of travel. This is a specialisation of Lemma \ref{lem:fixed-q-semistabs-criterion} with a modification to the statement \[ - q\coloneqq \chern^{\beta_0}_1(u) &\in \left( 0, \chern_1^{\beta_0}(v) \right) + q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right) \] for the case where $\beta_0$ is rational. Taking $\beta_0 = \frac{a_v}{n}$ we have: @@ -263,7 +263,7 @@ of travel. }$ and so ${ - a_v r &\equiv -b_q + a_v r \equiv -b_q }$ modulo $n$. \end{proof}