diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex
index 0bec1441124e53565a15bfb98b67b792391482a3..2507918b85a2fb9305f3d893c15a96065ca4044d 100644
--- a/tex/bounds-on-semistabilisers.tex
+++ b/tex/bounds-on-semistabilisers.tex
@@ -247,7 +247,7 @@ of travel.
 	This is a specialisation of Lemma \ref{lem:fixed-q-semistabs-criterion}
 	with a modification to the statement
 	\[
-	q\coloneqq \chern^{\beta_0}_1(u) &\in \left( 0, \chern_1^{\beta_0}(v) \right)
+	q\coloneqq \chern^{\beta_0}_1(u) \in \left( 0, \chern_1^{\beta_0}(v) \right)
 	\]
     for the case where $\beta_0$ is rational.
     Taking $\beta_0 = \frac{a_v}{n}$ we have:
@@ -263,7 +263,7 @@ of travel.
 	}$
     and so
 	${
-	a_v r &\equiv -b_q
+	a_v r \equiv -b_q
 	}$ modulo $n$.
 \end{proof}