diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex index 96cadd07913ff1f949a8c9091b7158c85ed31514..b967fa2a0a9e5da659b6c3f52ee0c58f992560bd 100644 --- a/tex/bounds-on-semistabilisers.tex +++ b/tex/bounds-on-semistabilisers.tex @@ -288,9 +288,10 @@ $P=(\alpha_0,\beta_0) \in \Theta_v^-$. Then $\sage{problem1.A2_subs}$ follows from $\chern_2^P(v)=0$. Using this substitution into the condition $\chern_2^P(u) = \sage{problem1.radius_condition_before_sub}$ yields: -\begin{equation*} +\begin{equation} + \label{eqn:radius_condition} \sage{problem1.radius_condition} -\end{equation*} +\end{equation} \noindent Expanding $\chern^{\beta_0}_2(u)$ in terms of $r$, $c$, $d$, and rearranging for @@ -348,7 +349,7 @@ $d$ yields: from plots_and_expressions import bgmlv3_d_upperbound_terms \end{sagesilent} -\begin{equation*} +\begin{equation} \label{eqn-bgmlv3_d_upperbound} d \leq \sage{bgmlv3_d_upperbound_terms.linear} @@ -356,23 +357,19 @@ from plots_and_expressions import bgmlv3_d_upperbound_terms \sage{bgmlv3_d_upperbound_terms.hyperbolic} \qquad \text{when }r>R -\end{equation*} +\end{equation} \noindent If $r=R$, then $\Delta(v-u)=(C-c)^2 \geq 0$ is always true, and for $r<R$ it gives a lower bound on $d$, but it is weaker than the one given by the lower bound -given by $\chern^P_2(u)>0$: -\begin{equation*} - d \geq - \sage{bgmlv3_d_upperbound_terms.linear} - + \sage{bgmlv3_d_upperbound_terms.const} - + \sage{-bgmlv3_d_upperbound_terms.hyperbolic} - \qquad - \text{when }r<R -\end{equation*} +given by $\chern^P_2(u)>0$ if $u$ already satisfies Equations +\ref{lem:eqn:cond-for-fixed-q}. +We see this by comparing the unique terms from either bound: + {\color{red} THIS IS BECAUSE TODO} + \subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem \texorpdfstring{\ref{problem:problem-statement-2}}{2}} \label{subsubsect:all-bounds-on-d-prob2}